Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu."

Transcripción

1 Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) SADIO 26 de Marzo, 9 y 23 de Abril y 7 de mayo de 2010

2 grupo de PLN en FaMAF Doctores Gabriel Infante-Lopez análisis sintáctico, theorem provers Laura Alonso Alemany métodos empíricos, subcategorización Paula Estrella traducción automática Luciana Benotti generación de lenguaje natural, interacción persona-computador Carlos Areces generación de lenguaje natural, lógicas híbridas Estudiantes de Doctorado Martín Domínguez análisis sintáctico Franco Luque análisis sintáctico Romina Altamirano reconocimiento de implicación textual Raúl Fervari lógicas y ontologías 1 vacante...

3 qué es (y qué no es) la minería de datos minería de datos es... descubrimiento a partir de datos de información previamente no conocida y no evidente, que puede ser usada para predecir el comportamiento de eventos no vistos minería de datos NO es... reordenación cosmética de datos previamente conocidos la frontera es poco clara: qué pasa con EDA?

4 qué es (y qué no es) la minería de datos minería de datos es... árboles de decisión bootstrapping redes neurales inducción de reglas clustering (agrupamiento) minería de datos NO es... queries a una base de datos OLAP (On-Line Analytical Processing) visualización de datos data warehousing agentes inteligentes (de software) la frontera es poco clara: qué pasa con EDA?

5 qué es (y qué no es) la minería de texto minería de texto es... is the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources. Marti Hearst minería de texto NO es... la frontera es poco clara: qué pasa con los modelos que se aprenden de ejemplos clasificados?

6 qué es (y qué no es) la minería de texto minería de texto es... minado de conceptos minado de opiniones descubrimiento de relaciones descubrimiento del comportamiento de las palabras descubrimiento de la semántica de las palabras minería de texto NO es... recuperación de información aprendizaje automático de ejemplos ya clasificados la frontera es poco clara: qué pasa con los modelos que se aprenden de ejemplos clasificados?

7 importancia de la minería de texto grandes cantidades de información en formato textual (no de base de datos) necesidades de información más sofisticadas detectar sentimientos respecto a un producto, candidato, poĺıtica, en medios de comunicación colectivos (foros, blogs) respuestas a preguntas vs. recuperación de documentos resumen de múltiples documentos vs. listados explicitar la estructura conceptual de los documentos de un cierto tipo

8 qué parte de la minería de texto vamos a ver orientación de Procesamiento del Lenguaje Natural (PLN) aplicaciones de técnicas básicas a problemas de PLN análisis de trabajos experimentales vigentes NO vamos a ver sistemas comerciales profundización en los algoritmos de aprendizaje para eso, vean: Machine Learning, Tom Mitchell, McGraw Hill. Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Ian H. Witten, Eibe Frank, Morgan Kaufmann. Web Data Mining. Exploring Hyperlinks, Contents and Usage Data, Bing Liu, Springer.

9 objetivos del curso perspectiva general de la minería de datos aplicada a texto, familiaridad con técnicas de aprendizaje automático no supervisado y semi-supervisado, profundización en tres subáreas concretas, con estudio detallado de algunas aproximaciones de trabajo previo madurez para criticar el trabajo en el área, capacidad para replicar y progresar trabajos ya iniciados en este área

10 contenidos del curso 1. conceptos básicos de Minería de Datos 2. conceptos básicos de PLN 3. ejemplos de minería de texto 4. presentación del software de minería WEKA 5. discusión de métodos de evaluación 6. descubrimiento de clases de palabras y semántica léxica 7. traducción automática estadística y generación estadística 8. descubrimiento de relaciones entre entidades y eventos

11 organización del curso DÍA 1 conceptos básicos de Minería de Datos conceptos básicos de PLN presentación de Weka DÍA 2 DÍA 3 DÍA 4

12 organización del curso DÍA 1 DÍA 2 descubrimiento de clases de palabras y semántica léxica (colocaciones) el rol de los recursos léxico-semánticos introducción a las ontologías y tesauros, estado de la cuestión usos habituales de ontologías y tesauros usos semi-supervisados de ontologías y tesauros inducción y población de ontologías lecturas: capítulo 5 de Foundations of Statistical Natural Language Processing Patrick Pantel and Marco Pennacchiotti Automatically Harvesting and Ontologizing Semantic Relations. In Paul Buitelaar and Philipp Cimiano (Eds.) Ontology Learning and Population: Bridging the Gap between Text and Knowledge - Selected Contributions to Ontology Learning and Population from Text. pp ISBN: IOS Press. DÍA 3

13 organización del curso DÍA 1 DÍA 2 DÍA 3 Traducción automática estadística y Generación estadística de lenguaje natural Modelos de lenguaje Alineación de corpus paralelos y de corpus comparables lecturas: capítulo 13 de Foundations of Statistical Natural Language Processing handbook de statistical machine translation DÍA 4

14 organización del curso DÍA 1 DÍA 2 DÍA 3 DÍA 4 Descubrimiento de relaciones entre entidades y eventos subcategorización verbal ambigüedad estructural de dependencia (pp-attachment) aproximaciones clásicas al descubrimiento de relaciones entre entidades aproximaciones no supervisadas al descubrimiento de relaciones entre entidades lecturas: capítulo 8 de Foundations of Statistical Natural Language Processing

15 evaluación 30% trabajo práctico sobre descubrimiento de propiedades léxicas 30% trabajo práctico sobre traducción y generación 30% trabajo práctico sobre descubrimiento de relaciones 10% presentación oral en el aula

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/ laura SADIO 12, 13 y 14 de Marzo de 2008 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/ pln/

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso PROGRAMA DE CURSO Código Nombre CC5206 Introducción a la Minería de Datos Nombre en Inglés Introduction to Data Mining SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

Aprendizaje Computacional. Eduardo Morales y Jesús González

Aprendizaje Computacional. Eduardo Morales y Jesús González Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación TÉCNICAS DE APRENDIZAJE AUTOMÁTICO COMPUTACIÓN TECNOLOGÍAS ESPECÍFICAS GRADO EN INGENIERÍA INFORMÁTICA Plan 545 Código 46932 Periodo de

Más detalles

Inteligencia Artificial. Grado en INFORMÁTICA 4º curso. Modalidad: Presencial

Inteligencia Artificial. Grado en INFORMÁTICA 4º curso. Modalidad: Presencial Grado en INFORMÁTICA 4º curso Modalidad: Presencial Sumario Datos básicos 3 Breve descripción de la asignatura 4 Requisitos previos 4 Objetivos 4 Competencias 5 Contenidos 6 Metodología 6 Criterios de

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu Agüero Martín Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.martin@gmail.com

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente Agüero Martin Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.marin@gmail.com López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu

Más detalles

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación 5.5.1. Denominación: Introducción a la Minería de Datos 5.5.2. Breve Descripción del Contenido: Introducción a la minería de datos. Aprendizaje supervisado, modelos no paramétricos y modelos generalizados

Más detalles

Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información

Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información Marcelo López Nocera Programa de Maestría en Ingeniería de Sistemas de Información.

Más detalles

Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software

Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software Mª. José Ramírez Quintana José Hernández Orallo Programa: Programación Declarativa e Ingeniería de la Programación Objetivos

Más detalles

Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO

Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO CS271T. Bases de Datos II (Obligatorio) 2012-2 1. DATOS GENERALES 1.1 CARRERA

Más detalles

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Verónica Escobar González, Claudio Barrientos Ochoa, Sergio Barrientos Ochoa, Dirección de Modelamiento Geometalúrgico

Más detalles

Carrera: TID-1015 SATCA1 2-2 - 4

Carrera: TID-1015 SATCA1 2-2 - 4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA1 Ingeniería del Conocimiento Ingeniería en Tecnologías de la Información y Comunicaciones TID-1015 2-2 - 4 2.-

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Bibliografía Anotada

Bibliografía Anotada Maestría en Ingeniería de Sistemas y Computación Universidad Nacional de Colombia Bogotá D.C. June 2, 2006 Contenido Tema Amplio 1 Tema Amplio 2 3 4 5 Tema Tema Amplio Extracción de información y obtención

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales I. IDENTIFICACIÓN DEL CURSO PROGRAMA DE ESTUDIO POR COMPETENCIAS Minería de Datos ORGANISMO ACADÉMICO: FACULTAD DE INGENIERÍA Programa Educativo: Ingeniería en Computación Área de docencia: Tratamiento

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE Datamining y Automático 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad: Grado en

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN

LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN Blanca Maricela Ibarra Murrieta, Ricardo Blanco Vega y María Angélica García Fierro Departamento

Más detalles

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática Presentación Introducción a las técnicas de reconocimiento de patrones Materia de doctorado en ingeniería/informática Tópicos de minería de datos Materia optativa de LCC Docente: Pablo M. Granitto Horarios:

Más detalles

Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO

Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO CS270T. Bases de Datos I (Obligatorio) 2012-2 1. DATOS GENERALES 1.1 CARRERA

Más detalles

Towards Semantic Web Mining

Towards Semantic Web Mining Bettina Berendt, Andreas Hotho, Gerd Stumme Rodríguez Maestría en Ingeniería de Sistemas y Computación Universidad Nacional de Colombia Bogotá D.C. April 28, 2006 Contenido 1 Resumen 2 Introducción El

Más detalles

"Big Data Analysis" (Métodos especiales para bases de datos gigantes)

Big Data Analysis (Métodos especiales para bases de datos gigantes) "Big Data Analysis" (Métodos especiales para bases de datos gigantes) Tutor: El curso será impartido por Dr. Oldemar Rodríguez graduado de la Universidad de París IX y con un postdoctorado de la Universidad

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Perfilamiento de usuarios para detectar en tiempo real el fraude en la banca online T23: Banca electrónica y pago seguro

Perfilamiento de usuarios para detectar en tiempo real el fraude en la banca online T23: Banca electrónica y pago seguro Perfilamiento de usuarios para detectar en tiempo real el fraude en la banca online T23: Banca electrónica y pago seguro Fabrizio Malfanti CTO Dotforce/ Intelligrate fabrizio.malfanti@intelligrate.it http://rake.intelligrate.eu

Más detalles

Prontuario. I. Titulo del curso: Minería de Datos. II. Codificación: ESTA 5504. Horas / Crédito: 3 horas semanales / 3 Créditos

Prontuario. I. Titulo del curso: Minería de Datos. II. Codificación: ESTA 5504. Horas / Crédito: 3 horas semanales / 3 Créditos Universidad de Puerto Rico Recinto de Rio Piedras Facultad de Administración de Empresas 1 2 I. Titulo del curso: Minería de Datos Prontuario II. Codificación: ESTA 5504 III. Horas / Crédito: 3 horas semanales

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA GUÍA DOCENTE DE LA ASIGNATURA G655 - Introducción a los Sistemas Inteligentes Grado en Ingeniería Informática Obligatoria. Curso Grado en Matemáticas Optativa. Curso Curso Académico 2014-2015 1 1. DATOS

Más detalles

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Osvaldo M. Spositto spositto@unlam.edu.ar Martín E. Etcheverry metcheverry@unlam.edu.ar

Más detalles

Minería de Datos. Presentación de la asignatura. Fac. Ciencias Ing. Informática Otoño de 2012. Dept. Matesco, Universidad de Cantabria

Minería de Datos. Presentación de la asignatura. Fac. Ciencias Ing. Informática Otoño de 2012. Dept. Matesco, Universidad de Cantabria Minería de Datos Presentación de la asignatura Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Cuestiones Factuales De índole práctica Personal e

Más detalles

de Lanús. Buenos Aires, Argentina. rgarcia@unla.edu.ar.

de Lanús. Buenos Aires, Argentina. rgarcia@unla.edu.ar. Behavioral Variability of Clustering and Induction Based on Domain Features Variabilidad del Comportamiento de Agrupamiento e Inducción Basado en las Características del Dominio Marcelo López N. 1, Ramón

Más detalles

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Introducción a almacén de datos Profesor: Mtro Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords Almacén de Datos, Datawarehouse, Arquitectura

Más detalles

Análisis de opinión como un sistema multiagente distribuido

Análisis de opinión como un sistema multiagente distribuido Análisis de opinión como un sistema multiagente distribuido Pablo Kogan Sandra Roger email: {pkogan,sroger}@uncoma.edu.ar Grupo de Investigación en Lenguajes e Inteligencia Artificial Departmento de Teoría

Más detalles

Manual de Instalación

Manual de Instalación Manual de Instalación MANUAL DE INSTALACIÓN... 1 1. REQUERIMIENTOS DEL SISTEMA... 2 1.1 Hardware... 2 1.2 Software... 2 2. MANUAL DE INSTALACIÓN... 3 2.1 Descargar instalador Weka... 3 2.2 Instalación

Más detalles

GRADO EN INGENIERÍA INFORMÁTICA

GRADO EN INGENIERÍA INFORMÁTICA GRADO EN INGENIERÍA INFORMÁTICA CURSO ACADÉMICO 2010/2011 Estudios Grado en Ingeniería (En el presente año académico solamente se ofertará el primer curso) Rama de conocimiento Ingeniería y Arquitectura

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: ADMINISTRACIÓN DE BASES DE DATOS FECHA DE ELABORACIÓN: ENERO 2005 ÁREA DEL PLAN DE ESTUDIOS:

Más detalles

TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi

TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi Meglioli (5400). rauloscarklenzi@gmail.com Msc. María Alejandra Malberti Meglioli (5400). amalberti@gmail.com Msc. Graciela

Más detalles

Dirección General de Educación Superior Tecnológica

Dirección General de Educación Superior Tecnológica Dirección General de Educación Superior Tecnológica 1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: Créditos (Ht-Hp_ créditos): Carrera: Tópicos avanzados de bases

Más detalles

Gestión del Conocimiento. Gestión del Conocimiento. Herramientas para la

Gestión del Conocimiento. Gestión del Conocimiento. Herramientas para la Herramientas para la Departamento de Informática Facultad de Ciencias Económicas Universidad Nacional de Misiones Universidad Nacional de Misiones Facultad de Ciencias Económicas Departamento de Informática

Más detalles

Introducción Inferencia de Gramáticas

Introducción Inferencia de Gramáticas Introducción a la Inferencia de Gramáticas Grupo de PLN Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~pln http://www.cs.famaf.unc.edu.ar/~gabriel

Más detalles

Introducción a la Minería de Datos y al Aprendizaje Automático

Introducción a la Minería de Datos y al Aprendizaje Automático Introducción a la Minería de Datos y al Aprendizaje Automático Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Juan José Rodriguez Diez Grupo

Más detalles

Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor. Egresada de Licenciada en Sistemas de Información 2005. 2

Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor. Egresada de Licenciada en Sistemas de Información 2005. 2 Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor AUTORES: Teodora Sofía Argoti Doylet 1, Soraya Freire Oliveros 2, Carmen Orozco Roggiero 3, Juan Alvarado O. 4 1 Egresada de Licenciada

Más detalles

ASIGNATURA FECHA HORA AULA. Matemática Discreta 25-ene 16,00-19,00 LAB. 7. Álgebra Lineal 06-feb 09,00-12,00 LAB. 7

ASIGNATURA FECHA HORA AULA. Matemática Discreta 25-ene 16,00-19,00 LAB. 7. Álgebra Lineal 06-feb 09,00-12,00 LAB. 7 EXÁMENES FEBRERO - CURSO 2015-2016 PRIMER CURSO - GRUPO B Matemática Discreta 25-ene 16,00-19,00 LAB. 7 Álgebra Lineal 06-feb 09,00-12,00 LAB. 7 EXÁMENES JUNIO - CURSO 2015-2016 PRIMER CURSO - GRUPO B

Más detalles

MINERÍA DE DATOS APLICADA A LA CONSERVACIÓN EX SITU

MINERÍA DE DATOS APLICADA A LA CONSERVACIÓN EX SITU MINERÍA DE DATOS APLICADA A LA CONSERVACIÓN EX SITU DE RECURSOS FITOGENÉTICOS DE SAN JUAN. Karina Fernández 1, Carola Meglioli 2, Raúl Klenzi 1 1 Departamento de Informática. Facultad de Ciencias Exactas,

Más detalles

Bases de Datos II. Programa de la Asignatura:

Bases de Datos II. Programa de la Asignatura: Programa de la Asignatura: Bases de Datos II Código: 761 Carrera: Ingeniería en Computación Plan:2008 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Tercer Año Segundo cuatrimestre

Más detalles

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA CÓDIGO ASIGNATURA 1131-3 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: DATA MINING y DATA WAREHOUSE Plan 2009 Ingeniería en Informática Año: 5 (Electiva - Ingeniería de Software)

Más detalles

(Data Analytics) Guía de Aprendizaje Información al estudiante

(Data Analytics) Guía de Aprendizaje Información al estudiante (Data Analytics) Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Titulación Grado en Matemáticas e Informática Módulo Materia Asignatura Carácter SISTEMAS Y SERVICIOS BASADOS EN EL

Más detalles

Clasificación Bayesiana de textos y páginas web

Clasificación Bayesiana de textos y páginas web Clasificación Bayesiana de textos y páginas web Curso de doctorado: Ingeniería Lingüística aplicada al Procesamiento de Documentos Víctor Fresno Fernández Introducción Enorme cantidad de información en

Más detalles

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos Anteproyecto de Tesis de Magíster en Ingeniería del Software Tesista: Lic. Matilde

Más detalles

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA Enrique Puertas epuertas@uem.es Francisco Carrero fcarrero@uem.es José María Gómez Hidalgo jmgomez@uem.es Manuel de Buenaga buenga@uem.es

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Sistemas ROLAP y MOLAP Profesor: Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords: ROLAP, MOLAP,HOLAP Tema: Sistemas ROLAP y MOLAP Abstract

Más detalles

Grupo de investigación en Minería de Datos http://mida.usal.es

Grupo de investigación en Minería de Datos http://mida.usal.es Departamento de Informática y Automática Postgrado en Informática y Automática MÁSTER EN SISTEMAS INTELIGENTES ASIGNATURAS Introducción a la Minería de Datos Minería Web María N. Moreno García http://avellano.usal.es/~mmoreno

Más detalles

Arquitectura de Aplicaciones

Arquitectura de Aplicaciones 1 Capítulo 13: Arquitectura de aplicaciones. - Sommerville Contenidos del capítulo 13.1 Sistemas de procesamiento de datos 13.2 Sistemas de procesamiento de transacciones 13.3 Sistemas de procesamiento

Más detalles

Introducción a la Minería de Datos y el Data Warehousing

Introducción a la Minería de Datos y el Data Warehousing Introducción a la Minería de Datos y el Data Warehousing Sergio R. Coria E-mail: sergio@mineriadedatos.com.mx Resumen. Para hallar patrones significativos en grandes volúmenes de datos se ha usado inicialmente

Más detalles

Curso de procesamiento del lenguaje natural

Curso de procesamiento del lenguaje natural MPGI UC MAGISTER EN PROCESAMIENTO Y GESTIÓN DE LA INFORMACIÓN Curso de procesamiento del lenguaje natural César Antonio Aguilar Facultad de Lenguas y Letras 05/08/2015 Cesar.Aguilar72@gmail.com PLN: qué

Más detalles

El taller de Inteligencia de Negocio no tiene requisitos en cuanto a conocimientos, debido a su naturaleza introductoria.

El taller de Inteligencia de Negocio no tiene requisitos en cuanto a conocimientos, debido a su naturaleza introductoria. DESCRIPTOR DE PROGRAMAS PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Versión: 03 UNIDAD ACADÉMICA: Escuela de Ingeniería Departamento de Ciencia de la Computación- CETIUC NOMBRE DE LA ACTIVIDAD Taller: Inteligencia

Más detalles

Profesor Asociado Doctor of Philosophy, University of Toronto, Canadá. Profesor Asistente Doctor of Philosophy, Edimburg University, Reino Unido

Profesor Asociado Doctor of Philosophy, University of Toronto, Canadá. Profesor Asistente Doctor of Philosophy, Edimburg University, Reino Unido PROGRAMA DE DOCTORADO EN CIENCIAS DE LA INGENIERIA AREA CIENCIA DE LA COMPUTACIÓN LÍNEAS DE INVESTIGACIÓN Y TÓPICOS ABORDADOS LABORATORIO DE DATOS En esta área se investigan aspectos tanto teóricos como

Más detalles

Tema AA 1: Introducción a al Aprendizaje Automático

Tema AA 1: Introducción a al Aprendizaje Automático Razonamiento Automático Curso 200 2002 Tema AA : Introducción a al Aprendizaje Automático José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial

Más detalles

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA M.ª del Pilar Cantero Blanco Jefa de Servicio de Sistemas Informáticos. Subdirección General de Planificación

Más detalles

Text Mining Introducción a Minería de Datos

Text Mining Introducción a Minería de Datos Text Mining Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 12 de Marzo de 2008 qué es la minería de datos? A technique using software tools

Más detalles

GUÍA DOCENTE PROCESADORES DE LENGUAGE

GUÍA DOCENTE PROCESADORES DE LENGUAGE Año académico 2015-16 GUÍA DOCENTE PROCESADORES DE LENGUAGE Profesorado: Jordi Planes Cid Maria Teresa Alsinet Bernadó Información general de la asignatura Denominación Carácter PROCESADORES DE LENGUAGE

Más detalles

MODELOS DE CIENCIA DE DATOS NO NUMÉRICOS. APLICACIONES EN REDES SOCIALES, WEB Y GESTIÓN DE PROCESOS

MODELOS DE CIENCIA DE DATOS NO NUMÉRICOS. APLICACIONES EN REDES SOCIALES, WEB Y GESTIÓN DE PROCESOS GUIA DOCENTE DE LA ASIGNATURA MODELOS DE CIENCIA DE DATOS NO NUMÉRICOS. APLICACIONES EN REDES SOCIALES, WEB Y GESTIÓN DE PROCESOS MÓDULO MATERIA ASIGNATURA CURSO SEMESTRE CRÉDITOS CARÁCTER Modelos avanzados

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

SET: SISTEMA DE EXTRACCIÓN DE TÉRMINOS EN EL DOMINIO DE LA INFORMÁTICA. yusneym@unah.edu.cu, lilibeth@unah.edu.cu

SET: SISTEMA DE EXTRACCIÓN DE TÉRMINOS EN EL DOMINIO DE LA INFORMÁTICA. yusneym@unah.edu.cu, lilibeth@unah.edu.cu SET: SISTEMA DE EXTRACCIÓN DE TÉRMINOS EN EL DOMINIO DE LA INFORMÁTICA. Yusney Marrero García 1, Lilibeth M. González Ruiz 1 1 Universidad Agraria de la Habana (CUBA) yusneym@unah.edu.cu, lilibeth@unah.edu.cu

Más detalles

Un Protocolo de Caracterización Empírica de Dominios para Uso en Explotación de Información

Un Protocolo de Caracterización Empírica de Dominios para Uso en Explotación de Información Un Protocolo de aracterización Empírica de Dominios para Uso en Explotación de Información Lopez-Nocera, M., Pollo-attaneo, F., Britos, P., García-Martínez, R. Grupo Investigación en Sistemas de Información.

Más detalles

Semestre de cursado: primero Cantidad de horas semanales: 8. Hoja 1 de 10 Profesor Asociado: María Eugenia Stefanoni. J:T:P: Higinio Facchini

Semestre de cursado: primero Cantidad de horas semanales: 8. Hoja 1 de 10 Profesor Asociado: María Eugenia Stefanoni. J:T:P: Higinio Facchini Semestre de cursado: primero Cantidad de horas semanales: 8. Hoja 1 de 10 PROGRAMA 1) OBJETIVOS DE LA ASIGNATURA Formar al alumno como usuario de bases de datos, brindándole: 1. Comprensión de las bases

Más detalles

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información:

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información: Datamining y Aprendizaje Automatizado Prof. Carlos Iván Chesñevar Email: cic@cs.uns.edu.ar Http:\\cs.uns.edu.ar\~cic Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca,

Más detalles

Bases de datos y bases de conocimiento

Bases de datos y bases de conocimiento Bases de datos y bases de conocimiento MSC-0202 Nombre de la asignatura: Bases de datos y bases de conocimiento Línea de trabajo: Tecnologías Web Tiempo de dedicación del estudiante a las actividades de:

Más detalles

1. PRINCIPALES APLICACIONES DE LA LINGÜÍSTICA COMPUTACIONAL

1. PRINCIPALES APLICACIONES DE LA LINGÜÍSTICA COMPUTACIONAL Lingüística Computacional II. Introducción a la Lingüística Computacional Aplicada 1 1. PRINCIPALES APLICACIONES DE LA LINGÜÍSTICA COMPUTACIONAL La vertiente aplicada de la LC tiene como objetivo desarrollar

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Ing. Juan Miguel Moine Ing. Cristian Germán Bigatti Ing. Guillermo Leale Est. Graciela Carnevali Est. Esther Francheli

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción El WWW es la mayor fuente de imágenes que día a día se va incrementando. Según una encuesta realizada por el Centro de Bibliotecas de Cómputo en Línea (OCLC) en Enero de 2005,

Más detalles

ESCUELA POLITÉCNICA SUPERIOR

ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN PETICIÓN DE TEMA PARA PROYECTO FIN DE CARRERA: TÍTULO Herramienta para la preparación de conjuntos de aprendizaje

Más detalles

José Hernández Orallo Mª. José Ramírez Quintana

José Hernández Orallo Mª. José Ramírez Quintana http://www.dsic.upv.es/~jorallo/docent/master/index.html José Hernández Orallo Mª. José Ramírez Quintana jorallo@dsic.upv.es mramirez@dsic.upv.es Cèsar Ferri Ramírez cferri@dsic.upv.es (profesor responsable)

Más detalles

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos).

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Autores: - MsC. Ing. Mario L. Basulto Núñez (ETECSA) mario.basulto@etecsa.cu - Lic.

Más detalles

Facultad de Ingeniería y Tecnología Informática Licenciatura en Sistemas de Información Plan: 2012 Ciclo: 2014 Programa Analítico Base de Datos II

Facultad de Ingeniería y Tecnología Informática Licenciatura en Sistemas de Información Plan: 2012 Ciclo: 2014 Programa Analítico Base de Datos II 1. OBJETIVOS: Lograr que los alumnos conozcan los componentes y la arquitectura de las bases de datos relacionales. Brindar un curso internacionalmente actualizado respecto del ámbito académico, así como

Más detalles

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos I. Barbona - Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparison among

Más detalles

Determinación de Perfiles de Rendimiento Académico en la UTN - FRRe

Determinación de Perfiles de Rendimiento Académico en la UTN - FRRe Determinación de Perfiles de Rendimiento Académico en la UTN - FRRe David L. la Red Martínez, Mirtha E. Giovannini, Noelia Pinto, Martín Frisone, M. Eugenia Báez Grupo de Investigación Educativa / Departamento

Más detalles

MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL

MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL APLICACIÓN DE TÉCNICAS DE MINERÍA DE DATOS Yegny Amaya, Edwin Barrientos, Universidad Francisco de Paula Santander, Colombia Diana Heredia Vizcaíno, Universidad

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

ENSIA 605 Inteligencia de Negocios y Minería de Datos

ENSIA 605 Inteligencia de Negocios y Minería de Datos ENSIA 605 Inteligencia de Negocios y Minería de Datos Profesor: Jaime Miranda P. E mail profesor: jmirandap@fen.uchile.cl OBJETIVOS DEL CURSO OBJETIVO GENERAL Estudiar, analizar, diseñar y aplicar tecnologías

Más detalles

Minería de datos (Presentación del curso)

Minería de datos (Presentación del curso) Minería de datos (Presentación del curso) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 10 Forma de evaluar

Más detalles

Computing, nuevos horizontes para. Guía a de temas a desarrollar

Computing, nuevos horizontes para. Guía a de temas a desarrollar Acuerdo de Bibliotecas Universitarias de Córdoba Seminario 27 y 28 de septiembre de 2012 Web semántica ntica,, Web 3.0 y entornos Cloud Computing, nuevos horizontes para bibliotecarios, documentalistas

Más detalles

GUÍA DOCENTE TITULACIONES DE GRADO

GUÍA DOCENTE TITULACIONES DE GRADO GUÍA DOCENTE TITULACIONES DE GRADO TITULACIÓN: GRADO EN INGENIERIA INFORMATICA DE SISTEMAS DE INFORMACIÓN CURSO 2015/2016 ASIGNATURA: MINERÏA DE DATOS Nombre del Módulo o Materia al que pertenece la asignatura.

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica

Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica C1. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar

Más detalles

Web mining y obtención de información para la generación de

Web mining y obtención de información para la generación de Web mining y obtención de información para la generación de inteligencia Miguel Ángel Esteban (Universidad de Zaragoza) mesteban@unizar.es Instituto Juan Velázquez de Velasco de Investigación en Inteligencia

Más detalles

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Sergio Valero Orea 1, Alejandro Salvador Vargas 1, Marcela

Más detalles

MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación

MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación Esther Hochsztain (*), Andrómaca Tasistro (**) esther@ccee.edu.uy, andromaca.tasistro@agesic.gub.uy

Más detalles

340455 - REIN-I7P23 - Recuperación de la Información

340455 - REIN-I7P23 - Recuperación de la Información Unidad responsable: 340 - EPSEVG - Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú Unidad que imparte: 723 - CS - Departamento de Ciencias de la Computación Curso: Titulación: 2015 GRADO

Más detalles

Búsqueda sobre catálogos basada en ontologías

Búsqueda sobre catálogos basada en ontologías Búsqueda sobre catálogos basada en ontologías Alianis Pérez Sosa, Yuniel Eliades Proenza Arias Universidad de las Ciencias Informáticas. Carretera a San Antonio Km 2 ½, Reparto Torrens, La Lisa, Ciudad

Más detalles