Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación."

Transcripción

1 Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir esa cantidad. Pero realizar de forma correcta una medición exige conocer en qué consiste el proceso mismo de medir, cómo se informa a los demás el resultado de la medida y saber interpretar ese resultado. En este laboratorio usted se familiarizará con las nociones básicas sobre el proceso de medir y la forma de expresar correctamente el resultado de una medición Objetivos Cuando concluya satisfactoriamente este laboratorio usted podrá: Realizar medidas directas e indirectas en forma correcta Encontrar la incertidumbre de medidas directas e indirectas Expresar correctamente el resultado de una medición Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Medición Lord Kelvin afirmó: Cuando uno puede medir aquello de lo que está hablando y expresarlo con números, sabe algo acerca de ello; pero cuando no puede medirlo, cuando no puede expresarlo con números, su conocimiento es escaso e insatisfactorio: podrá ser un principio de conocimiento, pero escasamente ha avanzado su conocimiento a la etapa de una ciencia Sabemos la importancia que tiene la medición en la vida diaria; por ejemplo, si queremos pintar una pared conviene que conozcamos el área de la misma para saber la cantidad de pintura que debemos comprar. Veamos qué significa medir Medir: Siempre que se mide algo, a lo que llamaremos variable o mesurando, lo que se hace es comparar su magnitud con un patrón - una cantidad física de la misma naturaleza que la variable a medir - aceptado como unidad de medida. La medición es, entonces, una operación humana de observación que implica comparar y leer en una escala. Pero una medición no es una verdad absoluta, al medir hacemos una interpretación personal de la lectura: dos personas obtendrán, muy probablemente, valores ligeramente diferentes al realizar la misma medición, diferencia que indica que existen límites dentro de los cuales se encuentra la medida. Medidas directas: son aquellas que se realizan cuando la medición consiste en comparar la cantidad a medir con otra de su misma especie. Veamos un ejemplo, la medición, aparentemente sencilla, de una longitud. Tomemos como unidad de medida el largo de una cinta cuya longitud es igual a le de un dedo pulgar. Aquí observamos que el tamaño de la unidad es arbitrario pero debe ser conveniente: si se trata de longitudes que caben en una mesa, la unidad definida parece apropiada, pero sería inmanejable si el problema fuera medir la distancia entre dos ciudades. El siguiente paso es la definición del procedimiento de medida. En nuestro caso éste consiste en colocar la cinta unitaria en un extremo del objeto cuya longitud deseamos medir y luego, a continuación, sucesivamente, hasta llegar al otro extremo del objeto. Como resultado de este procedimiento obtenemos un número que es igual al número de veces que cabe la unidad en la longitud que medimos. En general este número no es un entero, pues al llegar al final es muy probable que este no coincida con el extremo de la cinta unitaria, sino con una fracción de ella. Aquí aparece la conveniencia de dividir la unidad en fracciones.

2 Medias indirectas: Cuando una cantidad física que nos interesa no puede medirse directamente (podría ser el área de un triángulo) debe calcularse a partir de dos o más valores medidos, esto es realizar una medición indirecta. Bien sea que la medida sea directa o indirecta el resultado se expresa como un número seguido de las unidades correspondientes, pero como bien lo muestra el ejemplo de medición directa ese valor se encuentra dentro de ciertos límites y por lo tanto el resultado de una medición indirecta también lo estará. Es necesario entonces hablar sobre otros conceptos relacionados con la medición. Apreciación: es la cifra que resulta de realizar una operación para estimar la última cifra del resultado de una medición; esto puede deberse a que la unidad y el procedimiento de que se dispone no permiten la determinación sin lugar a dudas de esta cifra. Cifras significativas: son todas las cifras obtenidas directamente de un proceso de medida y sobre las cuales tenemos certeza; en el número de cifras significativas se incluye la última cifra obtenida por apreciación. Normalmente todas las cifras significativas, hasta la penúltima, se hallan determinadas sin duda alguna y la última se halla determinada por medio de una apreciación. Incertidumbre: dado que la última cifra significativa es generada por apreciación, no estamos seguros de ella y la medición tiene incertidumbre. Esta incertidumbre es el intervalo dentro del cual aceptaremos que es más probable que se encuentre el valor real del mesurando. No existen reglas para determinar el tamaño del intervalo porque dependerá de muchos factores del proceso de medición: la clase de medición, el tipo de escala, nuestra agudeza visual, las condiciones de iluminación, etc. El ancho o intervalo debe determinarse explícitamente cada vez que se haga una medición. Algunos criterios se han adoptado para determinar la incertidumbre en la lectura: cuando se hace una medición usando una escala graduada la incertidumbre en la lectura es automáticamente igual a la mitad de la división de la escala más pequeña. Esta puede ser una simplificación excesiva y errónea de la situación. Una escala con divisiones muy finas que se use para medir un objeto con bordes mal definidos, puede dar un intervalo de incertidumbre más grande que varias de las divisiones más pequeñas; por otro lado, un objeto con bordes bien definidos y con buenas condiciones visuales puede permitir la identificación de un intervalo de medición mucho menor que la mitad de división más pequeña de la escala. En este último caso con frecuencia se emplea el siguiente criterio: la incertidumbre es igual a la apreciación si ésta es menor que la mitad de la menor división del instrumento o, en caso contrario, igual a la diferencia entre la apreciación y la menor división del instrumento. Sin embargo, cada situación debe evaluarse en forma individual. Entonces, el resultado de la medición directa de una cantidad x se expresa: x ±, donde es la incertidumbre de la medición e indica que el valor de x está muy probablemente dentro del intervalo (x, x + ) En el caso de medidas indirectas se debe calcular la incertidumbre, el proceso se conoce como propagación de la incertidumbre o error, del cual hablaremos a continuación. Propagación de la incertidumbre o error: Cuando la cantidad física depende de una sola variable, por ejemplo el perímetro de una circunferencia, usamos el método que explica la gráfica 1, según la cual tan( θ), pero tan( θ) df dx df dx

3 10 Para el caso del perímetro P de una circunferencia de radio R, como resultado de la medida directa se tendría R ± R, entonces el valor del perímetro P de encontraría así Puesto que dp P πr P R dr Entonces P π R Por lo tanto el valor de P está en el intervalo (P - π R, P + π R) f(x) z θ tanθ (df/dx) 6 b Fig 1.- Incertidumbre en funciones de una sola variable. La función f(x) nos permite calcular el valor requerido z 0 f(x 0). Si x varía desde x 0 - hasta x 0 +, implica un intervalo de posibles valores de z entre z 0 - a z 0 +. Se ilustra la forma de calcular : tan (θ)., (df/dx tan (θ) asumiendo que en este pequeño intervalo la curva se aproxima a una recta). El valor de incertidumbre de una medida directa o indirecta, determinado como acaba de explicarse, se llama incertidumbre absoluta; pero con frecuencia resulta más útil, porque informa mejor sobre la calidad de la medida, determinar la incertidumbre relativa: si es la incertidumbre absoluta de la medición de una cantidad x, entonces la incertidumbre relativa o error relativo es r 100 x este valor es la expresión porcentual de la incertidumbre respecto al valor medido Cuando una cantidad física z que nos interesa debe calcularse a partir de dos o más valores medidos, x ±, y ± y, etc., la incertidumbre de la cantidad z (correspondiente, por ejemplo, al producto entre las variables x e y) se puede calcular de varias formas, a saber: El criterio pesimista: suponer que las desviaciones reales de x e y: y y, (que son las incertidumbres estimadas y tienen siempre valores positivos) ocurren combinándose de manera tal que desvíen el valor de z tan lejos como sea posible de su valor central. De esta manera calculamos el valor de como el ancho extremo del intervalo de posibles valores de z. Este enfoque, aunque pesimista, es seguro ya que si, y, etc., representan límites dentro de los cuales estamos casi seguros que se encuentran sus valores reales, entonces el valor calculado de x

4 dará los límites dentro de los cuales también estamos seguros que se encuentra el valor real de z. El criterio de derivadas parciales: Un método general para determinar la incertidumbre en funciones de dos o más variables requiere el empleo del cálculo diferencial. Si tenemos z f(x, y), la cantidad apropiada para calcular es la diferencial total dz, que está dada por (véase figura 1) z dx + dy (1) x y Si tratamos a esta diferencial como una diferencia finita, se puede calcular a partir de las incertidumbres y y: + x y y () El valor absoluto de la derivada parcial garantiza que las contribuciones a la suma sean positivas de acuerdo con nuestro criterio pesimista. Ejemplo: Producto de dos variables. Supongamos que z x y. Los valores de las derivadas parciales son: z x y z y x por consiguiente el valor de será: y x + y Si dividimos esta igualdad por z, obtenemos la incertidumbre relativa: z y + x y Entonces, cuando la cantidad medida es el producto de dos variables, la incertidumbre relativa es la suma de las incertidumbres relativas de las componentes. La ecuación () se aplica para el cálculo de la incertidumbre cuando ésta proviene de una única medida de la cantidad. Tercer criterio: la ecuación general, más adecuada para el cálculo de la incertidumbre o error cuando la medida se repite varias veces, se logra obtener mediante consideraciones estadísticas. En este caso se usa la siguiente expresión para hallar la incertidumbre absoluta z x z y ( ) + ( y) (3) Al comparar la incertidumbre relativa, calculada a partir de este criterio, con el resultado de la ecuación (), se observa que el valor de /z es menor. El valor calculado con la ecuación () es entonces un estimado del error máximo que se puede cometer y como tal también es aplicable en el caso de medidas repetidas.

5 Práctica 1.1 Realizar una medida indirecta Usted debe resolver un problema muy concreto: debe encontrar el área del triángulo que aparece dibujado en esta guía. CUÁL ES EL VALOR DEL ÁREA DE UN TRIÁNGULO Y CUÁL ES EL VALOR DE LA INCERTIDUMBRE EN SU MEDICIÓN? Preguntas 1. Qué es una medición directa?. Qué es una medición indirecta? 3. Qué se entiende por cifras significativas en una medición? 4. Qué es la incertidumbre de una medición? 5. Qué es incertidumbre absoluta? 6. Qué es incertidumbre relativa? 7. Por qué debe incluirse la incertidumbre cuando se expresa el resultado de una medición? Exploración Use como unidad de medida la longitud del pequeño rectángulo impreso al lado del triángulo que se va a medir. Asigne un nombre a la unidad de medida 1. Determine cuántas veces cabe la unidad de medida en una de las bases del triángulo.. Qué dificultades encuentra? Escríbalas en su cuaderno 3. Cómo puede solucionar esas dificultades? 4. Encuentre una forma conveniente de dividir la unidad de medida para que su resultado incluya fracciones de esta unidad. Compare su resultado con el de sus compañeros. Discútalos. 5. Teniendo en cuenta la definición dada de apreciación, estime de la mejor forma posible el valor de esta cifra y escriba el resultado de la medición de la longitud b de la línea que eligió como base del triángulo (no olvide las unidades de su medida) 6. Cuántas cifras significativas tiene el número que resulta de su medición? 7. Determine el valor de la incertidumbre b de su medición 8. Qué criterio utilizó para determinar su b? 9. Ahora usted puede decir que la longitud de la base del triángulo muy probablemente estará entre b - b y b + b.; esto se simboliza con la expresión b ± b. Escriba el valor de la longitud de la base del triángulo usando esta notación Medidas 1. Trace la altura h del triángulo sobre la base que midió antes. Mida h ± h siguiendo el mismo procedimiento que empleó para medir la longitud de la base.. Use la relación (b x h)/ para encontrar la superficie S del triángulo (no olvide incluir las unidades) 3. Ahora debe determinar la incertidumbre S en la medida del área por tres métodos diferentes, a saber: a. Método del máximo error posible: i. Calcule los valores máximo y mínimo de las longitudes de la base y la altura, ellos permitirán definir los límites de los intervalos de alta probabilidad de cada variable. Calcule ahora los valores máximo S max y mínimo S min del área S del triángulo

6 El valor del área puede expresarse mediante el promedio S (S max + S min) / y el valor de la incertidumbre como S S max - S ii.

7 ii. Escriba el valor del área y su incertidumbre utilizando todas las cifras que le da su calculadora. Discuta este resultado. Es correcto el número de cifras significativas? iii. En el método que acaba de emplear se utilizan los valores máximo y mínimo para determinar la incertidumbre. Este método es bastante pesimista. Dada su simplicidad se usa una sola cifra significativa para expresar la incertidumbre. Para hallarla, lea el valor de S de izquierda a derecha como siempre se hace- y encuentre el primer dígito diferente de cero. Este dígito es el único que se retiene y todos los demás que le siguen se desechan. Su posición se denomina la posición retenida. Redondee el valor de S y escriba el resultado a continuación. iv. El valor de S que acaba de encontrar determina el número de cifras significativas de S: ubique en S el dígito que ocupa el mismo lugar de la posición retenida que acaba de hallar en el S. Deseche todos los dígitos que siguen hacia la derecha. Redondee el resultado y escriba el valor final para el área en la forma S ± S b. Método de propagación de la incertidumbre usando derivadas parciales Utilice el método que emplea las derivadas parciales dado por la ecuación () propuesto para la propagación de la incertidumbre del área. Redondee el resultado y escriba el valor final. S ± S c. Método de propagación de incertidumbres utilizando consideraciones estadísticas Utilice el método dado por la ecuación (3) para encontrar la incertidumbre del área. Redondee el resultado y escriba el valor final. S ± S Análisis Compare los tres métodos y discútalos. Conclusión Escriba el resultado de la discusión que llevó acabo. Utilice el método de propagación de la incertidumbre usando derivadas parciales para encontrar la expresión de la incertidumbre relativa cuando se trata de una medida indirecta que se calcula dividiendo dos cantidades medidas directamente, por ejemplo la velocidad de un móvil determinada como el cociente cambio de posición X sobre intervalo de tiempo t

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Equipo requerido Cantidad Observaciones Reglas graduadas en decímetros, en centímetros y milímetros

Equipo requerido Cantidad Observaciones Reglas graduadas en decímetros, en centímetros y milímetros DEPARTAMENTO DE FISICA Y GEOLOGIA No 0 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos Entender y familiarizarse

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS 4 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

FÍSICA LAB. donde s es la desviación estándar (ver la teoría o consultar con su jefe de trabajo prácticos).

FÍSICA LAB. donde s es la desviación estándar (ver la teoría o consultar con su jefe de trabajo prácticos). FÍSICA LAB. 1 ERRORES Una magnitud física es un atributo de un cuerpo, un fenómeno o sustancia, susceptible de ser medido. El error de una medición está asociado al concepto de incertidumbre en el resultado

Más detalles

secundaria Solucionario desarrollado

secundaria Solucionario desarrollado secundaria FUNDAMENTAL Solucionario desarrollado Presentación Estimado maestro: En la búsqueda de facilitar la labor docente, Ediciones Castillo pone a su alcance el presente Solucionario desarrollado

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Instrumentos, mediciones e incertidumbres

Instrumentos, mediciones e incertidumbres Instrumentos, mediciones e incertidumbres Dra. María de los Dolores Ayala Velázquez Departamento de Física, División de CBI Realizar mediciones requiere el uso de algún instrumento que dará un número que

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS 5 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08)

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08) Variable Compleja I (3 o de Matemáticas) Apuntes sobre algunos teoremas fundamentales de análisis complejo, con ejemplos resueltos (7-8) En estos apuntes, consideraremos las funciones anaĺıticas (holomorfas)

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

Universidad de la Frontera

Universidad de la Frontera Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos

Más detalles

ALGUNAS ACTIVIDADES EN LAS CIENCIAS

ALGUNAS ACTIVIDADES EN LAS CIENCIAS ALGUNAS ACTIVIDADES EN LAS CIENCIAS CIENCIAS FÍSICAS PRIMER AÑO. MARZO 2007 LUIS BONELLI LOS CUERPOS Y LA LUZ ACTIVIDAD 3.1 En esta etapa de nuestro curso no disponemos de elementos suficientes para responder

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

La derivada. 5.2 La derivada de una función

La derivada. 5.2 La derivada de una función Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

QUÉ ES UN NÚMERO DECIMAL?

QUÉ ES UN NÚMERO DECIMAL? QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo VI Concepto de error 6.1 Introducción Uno de los temas más importantes en

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Estimación en multiplicación y división

Estimación en multiplicación y división Estimación en multiplicación y división Una vez los estudiantes han adquirido experiencia con el redondeo de números y se sienten cómodos con estimación en adición y sustracción, parece ser que el aprender

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

1.5. UNIDADES Y LÍMITES DEL DIBUJO.

1.5. UNIDADES Y LÍMITES DEL DIBUJO. 1.5. UNIDADES Y LÍMITES DEL DIBUJO. Desde el punto de vista meramente operativo, un usuario de una aplicación CAD modela en coordenadas universales, utilizando valores reales. Los otros sistemas de coordenadas

Más detalles

La suma y la resta. Introducción. Capítulo

La suma y la resta. Introducción. Capítulo Capítulo II La suma y la resta Introducción En el capítulo anterior, vimos que los números permiten expresar la cantidad de objetos que tiene una colección. Juntar dos o más colecciones, agregar objetos

Más detalles

Problemas con Proporciones

Problemas con Proporciones Estimados Padres de Familia y Personas Encargadas del Cuidado de los Niños, Esta carta tratará sobre el aprendizaje de su hijo sobre las matemáticas de séptimo grado con proporción y porcentaje. Usted

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

1.1Estándares de longitud, masa y tiempo

1.1Estándares de longitud, masa y tiempo CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

Tema 2 GUAU! LA MEDIDA PERFECTA!

Tema 2 GUAU! LA MEDIDA PERFECTA! Tema 2 GUAU! LA MEDIDA PERFECTA! Aprendizajes esperados: Identifica la función de las herramientas, máquinas e instrumentos en el desarrollo de procesos técnicos. Utiliza las herramientas, máquinas e instrumentos

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

Incertidumbre y errores en mediciones experimentales

Incertidumbre y errores en mediciones experimentales UNIVERSIDAD SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA ÁREA BÁSICA CURSO FÍSICAMATEMÁTICA Incertidumbre y errores en mediciones experimentales Documento de apoyo a la docencia Elaborado por: Ing.

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

NOTACIÓN EXPONENCIAL O CIENTÍFICA

NOTACIÓN EXPONENCIAL O CIENTÍFICA 1 NOTACIÓN EXPONENCIAL O CIENTÍFICA En cualquier ciencia los números que se deben escribir son a veces muy grandes o muy pequeños, por ejemplo: El número de átomos de carbono que hay en un gramo: 50 150

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. 5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Una fórmula para la pendiente

Una fórmula para la pendiente LECCIÓN CONDENSADA 5.1 Una fórmula para la pendiente En esta lección aprenderás cómo calcular la pendiente de una recta dados dos puntos de la recta determinarás si un punto se encuentra en la misma recta

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario binariooliverio J. Santana Jaria 2. El sistema de numeración Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Todos Curso 2006 2007 En numeración estamos decimal, familiarizados ya que

Más detalles

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización PROGRAMACIONES DE AULA 4º MATEMÁTICAS Unidad 0. Números y operaciones Números de hasta cinco cifras. Comparación de números. Tablas de multiplicar. Multiplicación y sus términos. División y sus términos.

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

Aprendamos sobre fracciones

Aprendamos sobre fracciones Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemática Nivel 4-6 Guía del Maestro Aprendamos sobre fracciones Introducción Muchas situaciones de la vida cotidiana

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

Aritmética finita y análisis de error

Aritmética finita y análisis de error Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47 Contenidos 1 Sistemas decimal

Más detalles

ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8

ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8 ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8 5. PROCEDIMIENTOS E INSTRUMENTOS DE EVALUACIÓN. CRITERIOS DE CALIFICACIÓN...

Más detalles

Unidad III. Perímetro, diámetro y área

Unidad III. Perímetro, diámetro y área Perímetro, diámetro y área Unidad III En esta unidad usted aprenderá a: Calcular la longitud del contorno de una figura, lo que se llama perímetro. Medir terrenos y planos. Calcular la cantidad de material

Más detalles

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle

Más detalles

Las mediciones, los cálculos, cómputos y presupuestos en Ingeniería

Las mediciones, los cálculos, cómputos y presupuestos en Ingeniería Las mediciones, los cálculos, cómputos y presupuestos en Ingeniería La ingeniería, como hemos visto, se ocupa en líneas generales del proyecto, ejecución y operación de bienes y servicios necesarios para

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

MAGNITUDES Y SU MEDIDA

MAGNITUDES Y SU MEDIDA MAGNITUDES Y SU MEDIDA 1. Introducción Vivimos en un universo sometido a continuos cambios, cambios que tienen lugar de acuerdo con unas normas a las que en términos genricos llamamos Leyes de la Naturaleza.

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles