Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación."

Transcripción

1 Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir esa cantidad. Pero realizar de forma correcta una medición exige conocer en qué consiste el proceso mismo de medir, cómo se informa a los demás el resultado de la medida y saber interpretar ese resultado. En este laboratorio usted se familiarizará con las nociones básicas sobre el proceso de medir y la forma de expresar correctamente el resultado de una medición Objetivos Cuando concluya satisfactoriamente este laboratorio usted podrá: Realizar medidas directas e indirectas en forma correcta Encontrar la incertidumbre de medidas directas e indirectas Expresar correctamente el resultado de una medición Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Medición Lord Kelvin afirmó: Cuando uno puede medir aquello de lo que está hablando y expresarlo con números, sabe algo acerca de ello; pero cuando no puede medirlo, cuando no puede expresarlo con números, su conocimiento es escaso e insatisfactorio: podrá ser un principio de conocimiento, pero escasamente ha avanzado su conocimiento a la etapa de una ciencia Sabemos la importancia que tiene la medición en la vida diaria; por ejemplo, si queremos pintar una pared conviene que conozcamos el área de la misma para saber la cantidad de pintura que debemos comprar. Veamos qué significa medir Medir: Siempre que se mide algo, a lo que llamaremos variable o mesurando, lo que se hace es comparar su magnitud con un patrón - una cantidad física de la misma naturaleza que la variable a medir - aceptado como unidad de medida. La medición es, entonces, una operación humana de observación que implica comparar y leer en una escala. Pero una medición no es una verdad absoluta, al medir hacemos una interpretación personal de la lectura: dos personas obtendrán, muy probablemente, valores ligeramente diferentes al realizar la misma medición, diferencia que indica que existen límites dentro de los cuales se encuentra la medida. Medidas directas: son aquellas que se realizan cuando la medición consiste en comparar la cantidad a medir con otra de su misma especie. Veamos un ejemplo, la medición, aparentemente sencilla, de una longitud. Tomemos como unidad de medida el largo de una cinta cuya longitud es igual a le de un dedo pulgar. Aquí observamos que el tamaño de la unidad es arbitrario pero debe ser conveniente: si se trata de longitudes que caben en una mesa, la unidad definida parece apropiada, pero sería inmanejable si el problema fuera medir la distancia entre dos ciudades. El siguiente paso es la definición del procedimiento de medida. En nuestro caso éste consiste en colocar la cinta unitaria en un extremo del objeto cuya longitud deseamos medir y luego, a continuación, sucesivamente, hasta llegar al otro extremo del objeto. Como resultado de este procedimiento obtenemos un número que es igual al número de veces que cabe la unidad en la longitud que medimos. En general este número no es un entero, pues al llegar al final es muy probable que este no coincida con el extremo de la cinta unitaria, sino con una fracción de ella. Aquí aparece la conveniencia de dividir la unidad en fracciones.

2 Medias indirectas: Cuando una cantidad física que nos interesa no puede medirse directamente (podría ser el área de un triángulo) debe calcularse a partir de dos o más valores medidos, esto es realizar una medición indirecta. Bien sea que la medida sea directa o indirecta el resultado se expresa como un número seguido de las unidades correspondientes, pero como bien lo muestra el ejemplo de medición directa ese valor se encuentra dentro de ciertos límites y por lo tanto el resultado de una medición indirecta también lo estará. Es necesario entonces hablar sobre otros conceptos relacionados con la medición. Apreciación: es la cifra que resulta de realizar una operación para estimar la última cifra del resultado de una medición; esto puede deberse a que la unidad y el procedimiento de que se dispone no permiten la determinación sin lugar a dudas de esta cifra. Cifras significativas: son todas las cifras obtenidas directamente de un proceso de medida y sobre las cuales tenemos certeza; en el número de cifras significativas se incluye la última cifra obtenida por apreciación. Normalmente todas las cifras significativas, hasta la penúltima, se hallan determinadas sin duda alguna y la última se halla determinada por medio de una apreciación. Incertidumbre: dado que la última cifra significativa es generada por apreciación, no estamos seguros de ella y la medición tiene incertidumbre. Esta incertidumbre es el intervalo dentro del cual aceptaremos que es más probable que se encuentre el valor real del mesurando. No existen reglas para determinar el tamaño del intervalo porque dependerá de muchos factores del proceso de medición: la clase de medición, el tipo de escala, nuestra agudeza visual, las condiciones de iluminación, etc. El ancho o intervalo debe determinarse explícitamente cada vez que se haga una medición. Algunos criterios se han adoptado para determinar la incertidumbre en la lectura: cuando se hace una medición usando una escala graduada la incertidumbre en la lectura es automáticamente igual a la mitad de la división de la escala más pequeña. Esta puede ser una simplificación excesiva y errónea de la situación. Una escala con divisiones muy finas que se use para medir un objeto con bordes mal definidos, puede dar un intervalo de incertidumbre más grande que varias de las divisiones más pequeñas; por otro lado, un objeto con bordes bien definidos y con buenas condiciones visuales puede permitir la identificación de un intervalo de medición mucho menor que la mitad de división más pequeña de la escala. En este último caso con frecuencia se emplea el siguiente criterio: la incertidumbre es igual a la apreciación si ésta es menor que la mitad de la menor división del instrumento o, en caso contrario, igual a la diferencia entre la apreciación y la menor división del instrumento. Sin embargo, cada situación debe evaluarse en forma individual. Entonces, el resultado de la medición directa de una cantidad x se expresa: x ±, donde es la incertidumbre de la medición e indica que el valor de x está muy probablemente dentro del intervalo (x, x + ) En el caso de medidas indirectas se debe calcular la incertidumbre, el proceso se conoce como propagación de la incertidumbre o error, del cual hablaremos a continuación. Propagación de la incertidumbre o error: Cuando la cantidad física depende de una sola variable, por ejemplo el perímetro de una circunferencia, usamos el método que explica la gráfica 1, según la cual tan( θ), pero tan( θ) df dx df dx

3 10 Para el caso del perímetro P de una circunferencia de radio R, como resultado de la medida directa se tendría R ± R, entonces el valor del perímetro P de encontraría así Puesto que dp P πr P R dr Entonces P π R Por lo tanto el valor de P está en el intervalo (P - π R, P + π R) f(x) z θ tanθ (df/dx) 6 b Fig 1.- Incertidumbre en funciones de una sola variable. La función f(x) nos permite calcular el valor requerido z 0 f(x 0). Si x varía desde x 0 - hasta x 0 +, implica un intervalo de posibles valores de z entre z 0 - a z 0 +. Se ilustra la forma de calcular : tan (θ)., (df/dx tan (θ) asumiendo que en este pequeño intervalo la curva se aproxima a una recta). El valor de incertidumbre de una medida directa o indirecta, determinado como acaba de explicarse, se llama incertidumbre absoluta; pero con frecuencia resulta más útil, porque informa mejor sobre la calidad de la medida, determinar la incertidumbre relativa: si es la incertidumbre absoluta de la medición de una cantidad x, entonces la incertidumbre relativa o error relativo es r 100 x este valor es la expresión porcentual de la incertidumbre respecto al valor medido Cuando una cantidad física z que nos interesa debe calcularse a partir de dos o más valores medidos, x ±, y ± y, etc., la incertidumbre de la cantidad z (correspondiente, por ejemplo, al producto entre las variables x e y) se puede calcular de varias formas, a saber: El criterio pesimista: suponer que las desviaciones reales de x e y: y y, (que son las incertidumbres estimadas y tienen siempre valores positivos) ocurren combinándose de manera tal que desvíen el valor de z tan lejos como sea posible de su valor central. De esta manera calculamos el valor de como el ancho extremo del intervalo de posibles valores de z. Este enfoque, aunque pesimista, es seguro ya que si, y, etc., representan límites dentro de los cuales estamos casi seguros que se encuentran sus valores reales, entonces el valor calculado de x

4 dará los límites dentro de los cuales también estamos seguros que se encuentra el valor real de z. El criterio de derivadas parciales: Un método general para determinar la incertidumbre en funciones de dos o más variables requiere el empleo del cálculo diferencial. Si tenemos z f(x, y), la cantidad apropiada para calcular es la diferencial total dz, que está dada por (véase figura 1) z dx + dy (1) x y Si tratamos a esta diferencial como una diferencia finita, se puede calcular a partir de las incertidumbres y y: + x y y () El valor absoluto de la derivada parcial garantiza que las contribuciones a la suma sean positivas de acuerdo con nuestro criterio pesimista. Ejemplo: Producto de dos variables. Supongamos que z x y. Los valores de las derivadas parciales son: z x y z y x por consiguiente el valor de será: y x + y Si dividimos esta igualdad por z, obtenemos la incertidumbre relativa: z y + x y Entonces, cuando la cantidad medida es el producto de dos variables, la incertidumbre relativa es la suma de las incertidumbres relativas de las componentes. La ecuación () se aplica para el cálculo de la incertidumbre cuando ésta proviene de una única medida de la cantidad. Tercer criterio: la ecuación general, más adecuada para el cálculo de la incertidumbre o error cuando la medida se repite varias veces, se logra obtener mediante consideraciones estadísticas. En este caso se usa la siguiente expresión para hallar la incertidumbre absoluta z x z y ( ) + ( y) (3) Al comparar la incertidumbre relativa, calculada a partir de este criterio, con el resultado de la ecuación (), se observa que el valor de /z es menor. El valor calculado con la ecuación () es entonces un estimado del error máximo que se puede cometer y como tal también es aplicable en el caso de medidas repetidas.

5 Práctica 1.1 Realizar una medida indirecta Usted debe resolver un problema muy concreto: debe encontrar el área del triángulo que aparece dibujado en esta guía. CUÁL ES EL VALOR DEL ÁREA DE UN TRIÁNGULO Y CUÁL ES EL VALOR DE LA INCERTIDUMBRE EN SU MEDICIÓN? Preguntas 1. Qué es una medición directa?. Qué es una medición indirecta? 3. Qué se entiende por cifras significativas en una medición? 4. Qué es la incertidumbre de una medición? 5. Qué es incertidumbre absoluta? 6. Qué es incertidumbre relativa? 7. Por qué debe incluirse la incertidumbre cuando se expresa el resultado de una medición? Exploración Use como unidad de medida la longitud del pequeño rectángulo impreso al lado del triángulo que se va a medir. Asigne un nombre a la unidad de medida 1. Determine cuántas veces cabe la unidad de medida en una de las bases del triángulo.. Qué dificultades encuentra? Escríbalas en su cuaderno 3. Cómo puede solucionar esas dificultades? 4. Encuentre una forma conveniente de dividir la unidad de medida para que su resultado incluya fracciones de esta unidad. Compare su resultado con el de sus compañeros. Discútalos. 5. Teniendo en cuenta la definición dada de apreciación, estime de la mejor forma posible el valor de esta cifra y escriba el resultado de la medición de la longitud b de la línea que eligió como base del triángulo (no olvide las unidades de su medida) 6. Cuántas cifras significativas tiene el número que resulta de su medición? 7. Determine el valor de la incertidumbre b de su medición 8. Qué criterio utilizó para determinar su b? 9. Ahora usted puede decir que la longitud de la base del triángulo muy probablemente estará entre b - b y b + b.; esto se simboliza con la expresión b ± b. Escriba el valor de la longitud de la base del triángulo usando esta notación Medidas 1. Trace la altura h del triángulo sobre la base que midió antes. Mida h ± h siguiendo el mismo procedimiento que empleó para medir la longitud de la base.. Use la relación (b x h)/ para encontrar la superficie S del triángulo (no olvide incluir las unidades) 3. Ahora debe determinar la incertidumbre S en la medida del área por tres métodos diferentes, a saber: a. Método del máximo error posible: i. Calcule los valores máximo y mínimo de las longitudes de la base y la altura, ellos permitirán definir los límites de los intervalos de alta probabilidad de cada variable. Calcule ahora los valores máximo S max y mínimo S min del área S del triángulo

6 El valor del área puede expresarse mediante el promedio S (S max + S min) / y el valor de la incertidumbre como S S max - S ii.

7 ii. Escriba el valor del área y su incertidumbre utilizando todas las cifras que le da su calculadora. Discuta este resultado. Es correcto el número de cifras significativas? iii. En el método que acaba de emplear se utilizan los valores máximo y mínimo para determinar la incertidumbre. Este método es bastante pesimista. Dada su simplicidad se usa una sola cifra significativa para expresar la incertidumbre. Para hallarla, lea el valor de S de izquierda a derecha como siempre se hace- y encuentre el primer dígito diferente de cero. Este dígito es el único que se retiene y todos los demás que le siguen se desechan. Su posición se denomina la posición retenida. Redondee el valor de S y escriba el resultado a continuación. iv. El valor de S que acaba de encontrar determina el número de cifras significativas de S: ubique en S el dígito que ocupa el mismo lugar de la posición retenida que acaba de hallar en el S. Deseche todos los dígitos que siguen hacia la derecha. Redondee el resultado y escriba el valor final para el área en la forma S ± S b. Método de propagación de la incertidumbre usando derivadas parciales Utilice el método que emplea las derivadas parciales dado por la ecuación () propuesto para la propagación de la incertidumbre del área. Redondee el resultado y escriba el valor final. S ± S c. Método de propagación de incertidumbres utilizando consideraciones estadísticas Utilice el método dado por la ecuación (3) para encontrar la incertidumbre del área. Redondee el resultado y escriba el valor final. S ± S Análisis Compare los tres métodos y discútalos. Conclusión Escriba el resultado de la discusión que llevó acabo. Utilice el método de propagación de la incertidumbre usando derivadas parciales para encontrar la expresión de la incertidumbre relativa cuando se trata de una medida indirecta que se calcula dividiendo dos cantidades medidas directamente, por ejemplo la velocidad de un móvil determinada como el cociente cambio de posición X sobre intervalo de tiempo t

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN CUARTO GRADO MATEMÁTICAS 4 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS 5 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

QUÉ ES UN NÚMERO DECIMAL?

QUÉ ES UN NÚMERO DECIMAL? QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Descripción: dos. función. decreciente. Figura 1. Figura 2

Descripción: dos. función. decreciente. Figura 1. Figura 2 Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función

Más detalles

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED Ahorradores inteligentes 100 AÑOS Descripción de la lección Conceptos Objetivos Los estudiantes calculan el interés compuesto para identificar las ventajas de

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

EJERCICIOS SOBRE : DIVISIBILIDAD

EJERCICIOS SOBRE : DIVISIBILIDAD 1.- Múltiplo de un número. Un número es múltiplo de otro cuando lo contiene un número exacto de veces. De otra forma sería: un número es múltiplo de otro cuando la división del primero entre el segundo

Más detalles

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN)

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) INTRODUCCIÓN Desde hace mucho tiempo, el hombre en su vida diaria se expresa, comunica, almacena información, la manipula, etc. mediante letras y números. Para

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Movimiento a través de una. José San Martín

Movimiento a través de una. José San Martín Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante

Más detalles

ACCIONES Y OTROS TÍTULOS DE INVERSIÓN

ACCIONES Y OTROS TÍTULOS DE INVERSIÓN ACCIONES Y OTROS TÍTULOS DE INVERSIÓN TASAS EFECTIVAS DE RENDIMIENTO ANUAL Y MENSUAL: Es aquélla que se emplea en la compraventa de algunos valores en el Mercado Bursátil o Bolsa de Valores. Estas tasas

Más detalles

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. 5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario binariooliverio J. Santana Jaria 2. El sistema de numeración Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Todos Curso 2006 2007 En numeración estamos decimal, familiarizados ya que

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Problemas con Proporciones

Problemas con Proporciones Estimados Padres de Familia y Personas Encargadas del Cuidado de los Niños, Esta carta tratará sobre el aprendizaje de su hijo sobre las matemáticas de séptimo grado con proporción y porcentaje. Usted

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS 3 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

A25. Informática aplicada a la gestión Curso 2005/2006 Excel Tema 7. Funciones avanzadas de Excel II

A25. Informática aplicada a la gestión Curso 2005/2006 Excel Tema 7. Funciones avanzadas de Excel II DEPARTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS ESCUELA SUPERIOR DE TECNOLOGÍA Y CIENCIAS EXPERIMENTALES A.D.E.M. Segundo Curso A25. Informática aplicada a la gestión Curso 2005/2006 Excel Tema 7. Funciones

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Selectividad Septiembre 2008 SEPTIEMBRE 2008

Selectividad Septiembre 2008 SEPTIEMBRE 2008 Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable

Más detalles

Lección 1. Representación de números

Lección 1. Representación de números Lección 1. Representación de números 1.1 Sistemas de numeración Empecemos comentando cual es el significado de la notación decimal a la que estamos tan acostumbrados. Normalmente se escribe en notación

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

Evaluación de la capacidad óptima de medida y alcance de la acreditación de un laboratorio de calibración

Evaluación de la capacidad óptima de medida y alcance de la acreditación de un laboratorio de calibración Evaluación de la capacidad óptima de medida y alcance de la acreditación de un laboratorio de calibración Fernández Pareja, Mª Teresa te_fer@topografia.upm.es Departamento de Ingeniería Topográfica y Cartografía

Más detalles

La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1

La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 SEI.2.A1.1-Solving Equations-Student Learning Expectation. La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 En esta lección aprenderemos

Más detalles

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN SOBRE LA MEDIDA DEL ARCO DE SEPARACIÓN DE DOS ESTRELLAS BINARIAS Cuando se trata de medir el arco comprendido entre la posición en la bóveda

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

XVI Olimpiada Colombiana de Computación Nivel Superior Prueba Final Dia 2

XVI Olimpiada Colombiana de Computación Nivel Superior Prueba Final Dia 2 XVI Olimpiada Colombiana de Computación Nivel Superior Prueba Final Dia 2 28 de Octubre de 2005 1. SUPERPALINDROMOS Un palíndromo es una palabra que se lee de igual forma de izquierda a derecha que de

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

MICROSOFT WORD 2007 AVANZADO. Unidad Didáctica Nº 1

MICROSOFT WORD 2007 AVANZADO. Unidad Didáctica Nº 1 MICROSOFT WORD 2007 AVANZADO Unidad Didáctica Nº 1 I Tablas A) Explicación conceptual y de uso de una tabla B) Creación de tablas C) Trabajo con tablas D) Formato de las tablas Ejercicio de Repaso Portal

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano Créditos académicos Ignacio Vélez Facultad de Ingeniería Industrial Politécnico Grancolombiano 11 de noviembre de 2003 Introducción Cuando se habla del sistema de créditos muchas personas consideran que

Más detalles

Módulo II - PowerPoint

Módulo II - PowerPoint Módulo II - PowerPoint Índice Copiando diapositivas Menú Edición... 2 Copiando diapositivas utilizando la barra de herramientas... 3 Copiando diapositivas utilizando el menú contextual... 3 Copiando diapositivas

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles