LA TRANSFORMADA DE LAPLACE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA TRANSFORMADA DE LAPLACE"

Transcripción

1 LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D d drivción : [ D f ( x) f ( x) L oprción I d ingrción : I [ f ( x ) L rnformción M g dfinid por : [ indo g(x) un función concr. x f ( )d M g f ( ) g ( ) ( ) En cd co, hy qu ignr lgun rricción l funcion f(x) l qu plic un rnformción dd. Aí, n l primr jmplo, f(x) db r drivbl n un ciro inrvlo, c. L r rnformcion cid on linl, dcir, qu vrificn : [ c f ( x ) c f ( x ) c [ f ( x ) + c [ f ( x ) c, R + c Un cl imporn dnro d l rnformcion linl, on l llmd rnformcion ingrl. S conidrn l funcion f(x) dfinid n un inrvlo finio o infinio x b y cog un función fij K(,x) d l vribl x y l prámro. Enonc l corrpondin rnformd ingrl á dd por : b [ f ( x ) K(, x ) f ( x )d x F( ) L función K(,x) llm núclo d l rnformción. S mur fácilmn qu linl, culquir qu l K(,x).

2 En l mmáic plicd udin vrio co pcil d rnformd ingrl, dpd l rolución d divro problm : rnformd d Fourir, rnformd d Fourir d no, ídm d cono, rnformd d Hnkl, d Mllin, c. S r d udir hor l rnformción d Lplc pcilmn indicd pr implificr l proco d rolvr problm d vlor inicil, cuy cucion difrncil n linl, y primordilmn cundo incluyn funcion diconinu. E muy uilizd n orí d circuio. An d nrr n u pliccion, v comnzr inroducindo rnformd d Lplc í como u propidd fundmnl y má úil.. DEFINICIÓN Y RANSFORMADAS DE ALGUNAS FUNCIONES ELEMENALES Dfinición S f() dfinid n (, ). S dfin l rnformd d Lplc d f(), como l función [f() F(), dfinid por l ingrl L [ f ( ) - f ( )d F( ) [ Dbrá xiir l ingrl impropi y dpndin dl prámro, dcir, dbrá r convrgn pr ciro vlor d. Sólo nonc podrá dcir qu xi l rnformd d Lplc d f(), o qu f() - rnformbl. No El prámro conidrrá quí rl. E o uficin pr l pliccion con cucion difrncil linl d coficin conn y lgun d coficin vribl. En oro co ncrio rbjr n l cmpo compljo, conidrndo como compljo. Ejmplo : S f(), d lim d lim λ lim λ λ λ [ λ λ

3 [, > pu l ingrl divrg pr No Si fu compljo, dcir, + i, nonc ( + i ) ( ) co in y l ingrl impropi nrior ólo convrg i >, dcir R () >. Ejmplo : S f(), [ d ( ) d E l co nrior cmbindo por -. Lugo: [, > Ejmplo 3: S f(), R, [ d [ x x x + d Lugo: G( + ) [ + Cmbio: x. Enonc: x i > > d x, d y En priculr : n [ n! > n N n+ [ > [, > Ejmplo 4: S f() co ó f() in [ co co d Ingrndo do vc por pr co, > + [ L > + Análogmn : [ i n, 3

4 Podrí obnr mjor í : rbjndo como n lo jmplo y, uiuyndo por i ( R), rul: i [ Por no: [ Lugo, pr R ( - i) >, dcir > i rl. i i + i + co R ( ) + i R + n Im ( ) + i Im + i [ [ i [ [ + +, >, > Ejmplo 5: S l función clón unidd u ( - ) o función d Hviid. u ( - ),, < ( > ) E [ u( ) u( ) d d En priculr: [ u [ ( ), >, > 3. EXISENCIA DE LA RANSFORMADA En lo jmplo nrior h vio por cálculo dirco qu l ingrl [ xi rlmn pr l funcion conidrd, n lgún inrvlo d vlor d. Pro o no ocurr í impr. Por jmplo, l ingrl impropi d [ no convrg pr ningún vlor d i f() ó f(), por crcr funcion dmido rápido cundo + o rpcivmn. Aforundmn xi l rnformd pr l myor pr d l funcion qu prcn n pliccion dond inrvinn cucion difrncil linl. S r hor d blcr un conjuno rzonbl d condicion qu grnicn l xinci d rnformd pr l funcion qu l cumpln. 4

5 ) Dfinición: S dic qu f() ccionlmn coninu ( o coninu rozo) n [, b I, i f() coninu n odo lo puno d I, xcpo quizá n un nº finio d llo, n lo qu f() dbrá nr lími lrl finio S dic qu f() ccionlmn coninu n [,, i lo n [,, > Si f() ccionlmn coninu n [α, β, ingrbl n [α, β f() α β b ) Dfinición S dic qu f() d ordn xponncil cundo fi, i xin conn α poiiv M, l qu: f ( ) < M > E dcir qu f() no crc má rápido qu un función d l form M α. Son por jmplo d ordn xponncil l funcion,, n, n b, co b, n, co b,.... No lo, pu crc má rápidmn qu α, culquir qu α y qu : lim lim ( ) c ) Noción S dignrá con l ímbolo A, l conjuno d funcion f(), l qu: Son ccionlmn coninu n [,) Son d ordn xponncil cundo 5

6 d ) orm d xinci Si f() A, nonc xi [f, myor qu un ciro α E dcir qu f() A condición uficin pr qu xi L [f() y dmá, l mno pr odo > α. Dmorción f() d ordn xponncil M, > y α R / f() < M α > f ( ) d convrg pu - f() ccionlmn coninu n [,. E - f() < M -(-α) > y α [ ( M α) ( ) M M d M d lim ( ) α λ α λ α i α Lugo f ( )d convrg bolumn i > α. Por no, xi [f() f ( ) d + f ( ) d i α No Pud dmorr dmá qu l dominio d dfinición d F() d l form ( o, ) ó [ o, ). No cumpl n gnrl l rcíproco dl orm, dcir qu l condición no ncri. por jmplo, f() -/ A, pu in diconinuidd infini n y por no no ccionlmn coninu n [,. Pro in rnformd, pu : [ -/ Γ( ) π, > Aí 6

7 4. PROPIEDAD DE LINEALIDAD Pr hblr d rnformción linl, dbn blcr prvimn lo pcio vcoril. A vidnmn un pcio vcoril rl con l dfinicion uul d um d funcion y produco por clr. S l conjuno d funcion rl dfinid n inrvlo ( o,) ó [ o,). mbién pcio vcoril rl, i dd do funcion F, G, dfin F+G n l form uul, n l inrcción d lo dominio d F y G. S conidrrán dmá como igul do funcion n i coincidn n un inrvlo d l form (α, ). Enonc plicción dl pcio vcoril A n l Con conidrcion, vrific : orm un oprdor linl, dcir : Si f, g in rnformd invr d Lplc pr > α, y, b R, nonc f+bg in rnformd pr > α y f()+bg() f() + b g() > α En fco : [ [ f + bg ( ) f ( ) + bg( ) d f ( ) d + b g( ) d [ [ f + b g F( ) + bg( ), > α c.q.d. Ejmplo 6: Clculr [ n co { } + > 4 ( + 4 ), E [ n [ [ co 7

8 Ejmplo 7: Clculr [ Ch y [ Sh [ Ch + + +, > Análogmn [ Sh, > 5. PROPIEDADES DE RASLACIÓN Y CAMBIO DE ESCALA ) Primr propidd d rlción: Si f A y [f() F(), > α, nonc [ f() F(-), - > α En fco : [ f() ( ) f ( ) d F( ) Ejmplo 8: Clculr [ co b - > α [ b [ b co co, + b + b ( ) > Ejmplo 9: Clculr [ [ [ 4! + 3 ( + 3) 5, > 3 b) Sgund propidd d rlción, < No prvi: L función u(-) f(-) l obnid por rldo d f( ), > f() unidd l drch, omndo dmá l vlor, pr < 8

9 Si f A y [f() F(), > α.>., nonc pr > : [f(-) u(-) () - F(), > α En fco : [ f u( ) f ( ) u( ) d f ( ) d (Cmbio x ) + ( x ) f ( x) d x F( ) c.q.d. No: Eo dplzmino urgn n l prácic cundo hy impo d rro n l limnción d nrgí im lécrico (l limnción ocurr n > ) El fcor - qu prc n l rnformd, llm fcor d rrdo Ejmplo : Clculr [ g indo g E g() f(-) u(-) con f() 3 3 Por no: [ g( ) [ ( ) ( ) < 3 ( ) > 3!, 4 > c) Cmbio d cl Si f A y [f() F(), ( > α), nonc [f() F, > α En fco: [ x f f x ( ) d ( ) f ( x) d x F 9

10 6. RANSFORMADA DE DERIVADAS E INEGRALES ) rnformd d drivd S f() coninu n (,) y d ordn xponncil α y f ccionlmn coninu n [,). Enonc [f () F() - f( + ), ( > α) S.D. Si cumpln l condicion nrior, lvo qu f() in diconinuidd por lo n >, nonc : [ f () F() - f( + ) - - [f( + )-f( - ) Análogo i xin vri diconinuidd por lo. S.D. Si f, f,..., f (n-) on coninu n (,) y d ordn xponncil α y f (n) ccionlmn coninu n [,), nonc : [f (n) () () n F() - n- f( + ) - n- f ( + ) - - f (n-) ( + ), ( > α) Aí pr n [f () [f - f ( + ) [ F() - f ( + ) - f ( + ) [f () F() - f ( + ) - f ( + ). En gnrl, inducción. Aquí inuy l uilidd d l rnformd d Lplc pr rolvr problm d vlor inicil. S rmplz l drivción rpco, por muliplicción por, rnformándo un cución difrncil con coficin conn, n un lgbric.

11 Ejmplo : Clculr [ n, undo l xp rion pr [ f Pr f() n : f () co, f () - n, f(), f () Lugo [ f L[ i n L[ i n L f f () f () L [ [ i n Por no : L [ i n L[ in L i n E dcir : [ +. b) rnformd d ingrl [ f ( x) dx Si f A, nonc [ f ( x) dx F( ) F( ) f ( x) dx Dmorción pr l co priculr n qu f coninu n [,): S f ( x) dx g( ). Enonc : g ( ) f ( ), g() y g() coninu n [,). Lugo [ g ( ) Por no: G() [ [ f ( ) F( ) G( ) F( ) f ( x) d x c.q.d. F( ) mbién: [ f ( x) d x [ f ( x) dx [ f ( x) dx f ( x) dx 7. MULIPLICACIÓN POR n Y DIVISIÓN POR ) Muliplicción por n Si f A y [ f ( > α), n F( ) ( > α), nonc [ f ( ) ( ) n n d d n F( )

12 Por r f A, pud morr qu plicbl l rgl d Libniz n lo qu igu: [ f ( ) d f ( ) d [ f ( ) d F d ( ) d. Libniz d f d d d Por inducción mur l fórmul gnrl pr l drivd n-éim. Ejmplo : Clculr [ n y [ co d d d d [ n [ n + ( + ), > d d d d [ co [ co +, > ( + ) b) Diviión por [ Si f A y f ( ) f lim ( ) finio + F( ), nonc f ( ) F( u) d u, i xi En fco: S g () f ( ) d. Enonc: f() g(). Lugo F() d G( ), d dond G() F( u) du. Como gún vrmo lim G( ), rul : [ c.q.d. G( ) F( u ) d u F( u ) d u F( u ) d u Ejmplo 3: Clculr x x d x x E d x [ x d

13 + d + ln + ln, > Ejmplo 4: Clculr I co6 co4 d co6 co4 E I [ co6 co4 d d ln ln ln ln 3 8. COMPORAMIENO DE F() EN Y (n ólo nuncido) ) Compormino d F() cundo fi Si f() A, nonc: lim F( ) b) orm d vlor inicil o primr orm ubrino Si f() A, nonc: lim F( ) lim f ( ), i xin o lími + c) orm d vlor finl o gundo orm ubrino Si f() A, nonc: lim F( ) lim f ( ) i xin finio o lími 3

14 Ejmplo 5: Comprobr l orm d vlor inicil pr l función 3 - co E F() [3-co 3 + f() lim F( ), lim f ( ) 9. RANSFORMADAS DE LAPLACE DE FUNCIONES ESPECIALES ) rnformd d funcion priódic Si f A y priódic con priodo, nonc: [ f ( ) f ( ) d En fco : [ E: ( n+ ) n n n f ( ) f ( ) d f ( ) d I ( x + n) ( n + ) ( x+ n ) n x n I f ( ) d f ( x + n) d x f ( x) d x n [ [ x f ( ) f ( x) d x x f ( x) d x c.q.d. < < Hllr f ( ) indo f ( ) < < Ejmplo 6: [ E: f ( ) d f ( ) d + d Lugo: [ f ( ) ( ) ( + ) ( + ) y con priodo 4

15 Pud hcr d oro modo, xprdo f() n érmino d l función clón. Evidnmn : f() u() - u(-) + u(-) - u( - 3) +..., > ( > ), rul : f ( ) Como [ u( ) [ [ b) Función clón unirio Y dfinió l función clón unirio ( o función d Hviid) como : < u( ) > ó u( ) < > ( > ) mbién blció qu : [ u( ) y [ u( ) L función clón, juno con l gund propidd d rlción o dplzmino, on muy úil n l rmino d funcion ccionlmn coninu. Ejmplo 7: Hllr [ f 3 < ( ), indo f ( ) < < 5 5 < E f() 3 u() - 4 u( - ) + 3 u( - 5) Lugo F( ) [ Ejmplo 8: Hllr [ g( ) u( ) Por l propidd gund d rlción : [ f ( ) u( ) [ f ( ) En l co dl jmplo, l f() l qu g () f (-) Por no : [ g( ) u( ) [ g( + ). f() g( + ). 5

16 c) Funcion impulo y función d () d Dirc S nind por función impulo I τ( ) < < τ l Iτ( ) τ > τ Pud rvir d modlo pr rprnr un furz o xcición d mgniud conn,,qu cú τ obr un im durn un impo τ, dd, proporcionndo l im un impulo ol unirio τ I τ( ) d S vrific : τ I τ ( )d d τ τ τ I ( ) d τ τ τ [ τ τ En l función impulo nrior, hcindo diminuir l impo τ durn l qu cú l furz o xcición τ, pud conidrr l iución qu produc cundo l furz impr un impulo unirio l im, n un impo rbirrimn pquño, prir d, lo qu podrí dignr como impulo unirio innáno n. (El impulo podrí no r unirio y n oro inn ) S uiliz id n im mcánico, circuio lécrico, c. Por jmplo, l golp d un mrillo, o un crg concnrd n un puno d un vig. Pr o co d furz violn d cor durción, o obr un pquñ cción, ul ur l llmd función dl d Dirc δ() o función impulo unirio innáno n. E un función ficici, proximd por I ( ) τ cundo τ +. No pud hblr d lim I ( ) pu no xi dicho limi, pro provchndo qu τ lim I τ ( ) d mdio d : τ + y [ τ τ τ τ lim I ( ) lim lim, dcrib δ() por τ τ τ τ δ( ) ; δ( ) d, [ δ( ) 6

17 No: Pr blcr l δ(), ul prir d l δ δ( x ) d x n n ( x) π nx, pr l cul mbién Lirlmn, no in nido lo nrior, pu i un función nul n odo lo puno, mno n uno, u ingrl n (-, ) nul. No por no δ() un función n l nido hbiul. E un co priculr d lo qu n l mmáic conoc como un función gnrlizd o diribución. Sin mbrgo l dcripción d δ() qu h hcho n l rcudro ulimo, ugir bin l id d l iución limi d I τ( ). Admá, r l juificcion mmáic mord por Lurn Schwrz, pud oprr con δ() n vri cuion obr ingrl y obr rnformd d Lplc, d mnr nálog lo blcido pr l funcion d l fmili A. mbién pud ur n form nálog l δ(-) pr dcribir un impulo unirio innáno n. E : δ( ) ; δ( ) d ; [ δ( ) S vrific mbién : δ( ) f ( )d f ( ) i f ( ) coninu n in rvlo qu conng Y δ( x ) d x u( ) No S obrv qu [ δ( ) cumpl qu lim [ ( ) No conrdic l propidd lim F( ), pu δ() A. δ 7

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. Cmbio d vribl.. Por prs.. Funcions rcionls Cono

Más detalles

Integrales 4.1. Tema 4. Integrales

Integrales 4.1. Tema 4. Integrales Ingrls. Tm. Ingrls Si f() s un función conocid, l cálculo difrncil sudi l mnr d drminr or función f '() qu llmmos función drivd d f(). En l m nrior sudimos ls rgls d drivción, sí como lguns d sus pliccions.

Más detalles

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS Tm 4: Onds plns lcrodinámic TMA 4 STUDIO D ONDAS PLANAS OMOGÉNAS Migul Ángl Solno Vér lcrodinámic Tm 4: onds plns TMA 4: STUDIO D ONDAS PLANAS OMOGÉNAS 4. Inroducción n l cpíulo 3 s hn dsrrolldo l cucions

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

3.11 Trasformada de Laplace de una función periódica 246

3.11 Trasformada de Laplace de una función periódica 246 3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles

MATEMATICA SUPERIOR APLICADA

MATEMATICA SUPERIOR APLICADA Mmáic Suprior y Aplicd Wilo Crpio Cácr // TRANSFORMADAS DE APACE MATEMATICA SUPERIOR APICADA Wilo Crpio Cácr Mmáic Suprior y Aplicd Wilo Crpio Cácr // TRANSFORMADAS DE APACE A mi qurido hijo... Mmáic Suprior

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 4 Coido INRODUCCIÓN.3 EMAS DE VARIABLE COMPLEJA 8 ANÁLISIS EN EL DOMINIO EMPORAL /REAL

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS Unidd. Ingrls Indfinids TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. mbio d vribl.. Por prs..

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Algunas aplicaciones de la transformada de Laplace en Cinética Química, Circuitos Eléctricos y Transferencia de Calor

Algunas aplicaciones de la transformada de Laplace en Cinética Química, Circuitos Eléctricos y Transferencia de Calor Algun pliccion d l rnformd d Lplc n inéic Químic, ircuio Elécrico y Trnfrnci d lor Eri Albrrán-Zvl, Fculd d Ingnirí, Dircción Acdémic d Ingnirí Químic, Univridd Tcnológic d México, mpu Aizpán,.P. 5999,

Más detalles

Tema 5 - EL VOLUMEN DE CONTROL

Tema 5 - EL VOLUMEN DE CONTROL Tm 5 - EL VOLUMEN DE CONTROL ÍNDICE. TRANSICIÓN DE MASA DE CONTROL A VOLUMEN DE CONTROL...5.. CONSERVACIÓN DE LA MASA EN UN VOLUMEN DE CONTROL...5.4. DESARROLLO DEL BALANCE DE MATERIA...5.4. EXPRESIÓN

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles

Medicamentos de liberación modificada. Introducción a la farmacocinética de los Sistemas de Liberación Controlada. Dra. Mónica Millán Jiménez

Medicamentos de liberación modificada. Introducción a la farmacocinética de los Sistemas de Liberación Controlada. Dra. Mónica Millán Jiménez Mdicmntos d librción modificd Introducción l frmcocinétic d los Sistms d Librción Controld r. Mónic Millán Jiménz CINÉTICA E OSIS MÚLTIPLE Estdo stcionrio. Fctor d cumulción Mrgn trpéutico Control d concntrcions

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Medicamentos de liberación modificada

Medicamentos de liberación modificada Mdicmnos d librción modificd Inroducción l frmcocinéic d los Sisms d Librción onrold Dr. Mónic Millán Jiménz Mdicmnos d librción modificd FORMAS FARMAÉUTIAS DE LIBERAIÓN INMEDIATA DOSIS ÚNIA DOSIS MÚLTIPLE

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

E S I S QUE PARA OBTENER EL GRADO DE: MAESTRO EN CIENCIAS ECONÓMICAS

E S I S QUE PARA OBTENER EL GRADO DE: MAESTRO EN CIENCIAS ECONÓMICAS INSIUO POLIÉCNICO NACIONAL ESCUELA SUPERIOR DE ECONOMÍA SECCIÓN DE ESUDIOS DE POSGRADO E INVESIGACIÓN. DIVERSAS MEODOLOGÍAS PARA VALUAR BONOS CUPÓN CERO E S I S QUE PARA OBENER EL GRADO DE: MAESRO EN CIENCIAS

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Integrales impropias.

Integrales impropias. Tem Inegrles impropis.. Inroducción. En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Dom(f) = [, ] es un conjuno codo. f: [, ] IR esá cod en [, ]. Si lgun de ess condiciones

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE TEMA TRANSFORMADA DE APACE MOTIVACIÓN En ma anrior aprndió cómo rolvr cuacion difrncial linal con coficin conan uja a condicion dada llamada d fronra o condicion inicial S rcordará qu l méodo coni n nconrar

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: Fcultd d Contdurí Administrción. UNAM Apliccions d l intgrl Autor: Dr. José Mnul Bcrr Espinos MATEMÁTICAS BÁSICAS APLICACIONES DE LA INTEGRAL Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl.

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 59 Memáics I : Cálculo inegrl en IR Tem 5 Inegrles impropis 5. Inroducción En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] IR esá cod

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 L rnsformd de Lplce 6.7 Teorem de Convolución y l del de Dirc En el nálisis de sisems lineles, como en los sisems vibrorios (mecánicos y elécricos), uno de los objeivos es conocer l respues

Más detalles

entrada DPST-NA Ninguno 2 canales Auto-reset Inversa 24 Vc.a./Vc.c. G9SB-2002-A 4 1 canal ó 2

entrada DPST-NA Ninguno 2 canales Auto-reset Inversa 24 Vc.a./Vc.c. G9SB-2002-A 4 1 canal ó 2 MÓDULO DE RELÉ DE SEGURIDAD Módulo de relé de seguridd de diseño ultrdelgdo Modeloscon2ó3polosenunnchode17.5 mm. Disponibles modelos de nchur 22.5 mm con3polos. Homologciones EN pendiente (probdo TÜV).

Más detalles

CAPITULO II FUNCIONES VECTORIALES

CAPITULO II FUNCIONES VECTORIALES CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Ecuaciones Integradas de Velocidad

Ecuaciones Integradas de Velocidad Químic Fíic I Velocidd de Rección Ecucione Inegrd de Velocidd Reccione de Primer Orden e Pr un rección del io P, l ecución diferencil de velocidd d d k k (donde k k ). Inegrndo e oiene d d [ ] d k d k.

Más detalles

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS Mdrid. Se M el uno medio de un cuerd P Q de un circunferenci. Por M se rzn ors dos cuerds AB y CD: L cuerd AD

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

r o F e l i p e - U n t e s t i g o f i e l d e Hombres y Mujeres Ordinarios... Poder Superordinario

r o F e l i p e - U n t e s t i g o f i e l d e Hombres y Mujeres Ordinarios... Poder Superordinario H r o d f Hombr y Mujr Ordinrio... Podr Suprordinrio 46 F i p - U n t t i g o f i C u r r íc u o h r o d F 2 0 1 2 www.miionrington.org Ningun prt d t currícuo podrá r rpubicd in prmio. Siént ibr d rproduciro

Más detalles

2) El eje y, la curva Solución:

2) El eje y, la curva Solución: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl. Por l nturlz d st concpto, pud plicrs tnto n Gomtrí, n Físic, n Economí incluso n Biologí. Por sólo

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 5 Fundmenos de Memáics : Cálculo inegrl en R Cpíulo Inegrles impropis En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] R esá cod en [,

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR SUPERINTENDENCI DE NCOS Y SEGUROS REPULIC DEL ECUDOR Inrucivo para la aplicación del Concepo de Valor en Riego (Var), para la eimación de la Liquidez erucural requerida por la Iniucione Financiera OCTURE

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

6.7 Teorema de Convolución y la delta de Dirac 409

6.7 Teorema de Convolución y la delta de Dirac 409 6.7 Teorem de Convolución y l del de Dirc 49 6.7 Teorem de Convolución y l del de Dirc En el nálisis de sisems lineles, como en los sisems vibrorios (mecánicos y elécricos), uno de los objeivos es conocer

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

INTEGRAL DE RIEMANN-STIELTJES

INTEGRAL DE RIEMANN-STIELTJES Prof. Enrique Meus Nieves Docorndo en Educción Memáic. INTEGRAL DE RIEMANN-STIELTJES L inegrl de Riemnn-Sieljes es un exensión del concepo de Inegrl de Riemnn que permie mplir el poencil de es herrmien.

Más detalles

= = = 13.7 = 12.8 = = (Regla de la cadena)

= = = 13.7 = 12.8 = = (Regla de la cadena) i f(z), l derivd dey de f(x) con repecto e define como 2. h donde AZ. derivd tmbién e deign por (x). El proceo eguido pr hllr e llm diferencición. AZ En iguiente on funcione de b, c, contnte [con retriccione

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

N a v i d a d. r o. U n a v i r g e n t e n d r a u n b e b e. d e. Hombres y Mujeres Ordinarios... Poder Superordinario

N a v i d a d. r o. U n a v i r g e n t e n d r a u n b e b e. d e. Hombres y Mujeres Ordinarios... Poder Superordinario N v i d d H r o d f Hombr y Mujr Ordinrio... Podr Suprordinrio 2 U n v i r g n t n d r u n b b C u r r íc u o h r o d F 2 0 1 2 www.miionrington.org Ningun prt d t currícuo podrá r rpubicd in prmio. Siént

Más detalles

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio 0. Ls gus de un río de 400 m de nchur se desplzn con un elocidd de 8 m/s. Un brc cruz el río de orill orill, mneniéndose perpendiculr l corriene. L brc se muee con un elocidd consne de 0 m/s. Clculr: )

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

G9SB. Módulo de relé de seguridad de diseño ultradelgado. Módulo de relé de seguridad. Modelos disponibles. Composición de la referencia

G9SB. Módulo de relé de seguridad de diseño ultradelgado. Módulo de relé de seguridad. Modelos disponibles. Composición de la referencia Módulo de relé de seguridd Módulo de relé de seguridd de diseño ultrdelgdo Modelos con 2 ó 3 polos en un ncho de 17,5 mm. Disponibles modelos de nchur 22,5 mm con 3 polos. Cumple los estándres EN. (Aprobción

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles