Tema 8 Integral definida

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 8 Integral definida"

Transcripción

1 Tem 8 Integrl definid ) Integrl definid Se y = f() un función ositiv y continu en el intervlo (, ). Consideremos el trecio mitilíneo, S, determindo or f(), f(), f() y el eje OX y dividmos el intervlo (, ) en n rtes igules, trzndo sus ordends corresondientes f() y = f() f() S n =, = n Sen : S re del trecio mitilíneo s Sum de los rectángulos interiores s i e Sum de los rectángulos eteriores n n n i ( ) ( ) ( n) i i n e n i i s f f f f s f ( ) f ( ) f ( ) f lim se si f ( ) f limse si lim f ( ) f n n n n lim s s lim s lim s como s S s lim S lim s lim s e i e i i e e i n n n n n n este límite se reresent or f ( ) d y se lee integrl definid entre y de efe de diferencil de siendo: = límite inferior de integrción y = límite suerior de integrción

2 ) Relción entre l integrl definid e indefinid En el trecio mitilíneo hcemos fij l scis inicil y vrile l scis finl medinte. de este modo, el áre es un función de y l llmmos S() Áre rectángulo interior = f() Áre rectángulo suerior = f() ( + ), entonces: f() < S() < f() S Dividiendo or : + S S f ( ) f lim f d S f d d S f d S f d Por tnto, el áre es un función rimitiv de f() ) Regl de Brrow. Vlor de l integrl definid Se f ( ) d F( ) C En el trecio mitilíneo hcemos fij l y vrile l medinte. Se S( ) f ( ) d F( ) C Si =, el áre vle cero. S( ) f ( ) d F( ) C C F( ) sustituyo el vlor de S( ) f ( t) dt F( ) F( ) hciendo =. S( ) f ( ) d F( ) F( ) F( ) Ejemlo: 9 7 d ) Proieddes de l integrl ) El vlor de l integrl definid deende de los límites de integrción y no de l vrile indeendiente: f ( ) d F( ) f ( t) dt F( t) ) Si se invierten los límites de integrción, cmi el signo de l integrl ero no el vlor soluto. c) Si c y d son dos untos intermedios del intervlo (, ), entonces: c d f ( ) d f ( ) d f ( ) d f ( ) d c d Desrrollndo el segundo miemro de l iguldd, otenemos:

3 F( ) c F( ) d F( ) F c F F d Fc () F F d F F c d 5) Integrl definid or sustitución l resolver un integrl definid or sustitución, hy que cmir los límites de integrción. Ejemlo: 7 dt 7 7 d ln t ln 7 ln ln t t t t 7 dt d 6) Integrl definid or rtes Pr l integrl or rtes, hllmos l integrl indefinid y desués sustituimos: f d u v v du 7) Áres de recintos limitdos or dos línes Consideremos l suerficie S limitd or ls dos gráfics, entonces: suerficie S suerficie cb db f d f d S f g d y = g() S B y = f() Pr hllr los límites de integrción se resuelve el sistem formdo or ls dos ecuciones. Ejercicios: ) Hll or integrción el áre del triángulo que determin l rect + 5y =, l cortr con los ejes coordendos ) Hll or integrción el áre de un círculo de rdio r = sen t = ; t = + y = r = r sen t y = r - d = r costdt = r sen t = ; t =

4 r r d r r sen t r cost dt r cos t dt = - = - = = é ù æö ( cos t) dt t sen t ê ú çè ø r r r r = - = - = = = ë û c) Hll el áre limitd or ls línes y = ; y = d) Hll el áre limitd or l curv y e el eje OX, l ordend en = y l ordend en el máimo e) Hll el áre de l orción de lno comrendid entre l curv y = ++6 y su tngente en el unto = y f) Hll el áre limitd or ls gráfics de ls funciones: f y g g) Hll el áre limitd or ls línes: f e, y =, = = h) Hll el áre limitd or l función i) Hll el áre limitd or l curv j) Hll el áre del recinto limitdo or ls curvs sen k) Hll el áre comrendid entre l rect = y ls curvs l) Hll: d 5 6 m) Hll: ln d f cos, el eje OX y ls rects = y = π f y ls rects = y = ½ f y ls rects =, y =, = π y, y 8 n) Hll el áre comrendid entre y el eje OX y ls rects =, f, f, f, f o) Determinr f() siendo que ) Se tiene sen d y cos d Not: Hllr: +, y otener los vlores de y q) Hllr el áre del recinto limitdo or ls curvs y, y 5 8) Volumen de un cuero de revolución Dividimos el intervlo (, ) en n rtes igules y trzmos sus ordends corresondientes. El volumen engendrdo or l suerficie B l girr 6º lrededor del eje OX es igul l sum de los volúmenes engendrdos or los infinitos rectángulos. Cd uno de ellos engendr un cilindro de ltur d y rdio de l se f(). El volumen de un cilindro elementl viene ddo or: : dv f d V f d Ejemlos: ) Hll or integrción el volumen de un

5 cono de rdio r y ltur h ) Volumen de un esfer de rdio r 9) Longitud de un rco de curv ln Se» B un rco de l curv y = f(), y en él un rco elementl dl (rco de longitud infinitmente equeño) en el límite l longitud de un rco y su cuerd se confunden dl d B dy d + dy d ædyö dl = d + dy = = + ç d = + y d d çèd ø l = + y d Ejercicios: ) Hllr l longitud de l circunferenci de rdio r t F = dt y desués resolver F() ) Clculr; ( ) c) Dd l función ( ) 8 f = + + ; hllr y r que l curv se or el unto (, 6) y dmit en ese unto un tngente horizontl. Hllr el áre engendrd or l curv el eje OX y ls rects =, = d) Hllr: - d - y = + + c, hllr y c r que resente un máimo en =, un e) Dd l función ( ) mínimo en = y clculr el áre limitd or l curv y el eje OX y = - y el eje OX f) Hllr el áre limitd or l curv ( ) Hllr l longitud del rco de l ráol =8y comrendido entre = y =

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

EJERCICIOS TEMA 2 CÁLCULO INTEGRAL EN UNA VARIABLE

EJERCICIOS TEMA 2 CÁLCULO INTEGRAL EN UNA VARIABLE EJERCICIOS TEMA CÁLCULO INTEGRAL EN UNA VARIABLE EJERCICIOS TEMA EJERCICIOS TEMA INTEGRAL INDEFINIDA Ejercicio Clculr e ; b) 7 ; c) m n Solución: e + C; b) 7 ln 7 + C; c) Si n m = ; ln jj Si n m 6= (n=m)+

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo

Más detalles

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de, Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

CA LCULO Hoja 11. Integrales triples. Aplicaciones.

CA LCULO Hoja 11. Integrales triples. Aplicaciones. CA LCULO Hoj.. Clculr ls siguientes integrles triles en los recintos indicdos: () xzy x yzdxdydz, = (x, y, z) R : x, y, z. () zxy (d) y dxdydz, = (x, y, z) R : x, y, z. (c) π. z y zx zx dxdydz, con el

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contenido: Integrl definid: (1º) Aplicción:

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

TREN DE PASAJEROS TREN DE MERCANCÍAS (en horas)

TREN DE PASAJEROS TREN DE MERCANCÍAS (en horas) Unidd. L integrl definid Resuelve Págin Dos trenes Un tren de psjeros un tren de mercncís slen de l mism estción, por l mism ví en idéntic dirección, uno trs otro, csi simultánemente. Ests son ls gráfics

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. LONGITUDES, AREAS Y VOL UMENES. Un trtmiento mlio de l integrl ermite el clculo de longitudes de curvs, res de suercies (lns y lbeds) y de volumenes. Con nuestro conocimiento

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinción de Mtemátic II (MAT) Primer semestre de 3 Semn : Lunes de Junio Viernes 4 de Junio CÁLCULO Contenidos Clse : Método de ls cs cilíndrics. Clse : Áres de suerficies de revolución. CLASE.. Método

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Tema V: CALCULO DE INTEGRALES

Tema V: CALCULO DE INTEGRALES http://selectividd.intergrnd.com Tem V: CALCULO DE INTEGRALES.- CONCEPTO DE PRIMITIVA DE UNA FUNCION: Como hemos visto hst hor, l derivción es un técnic prtir de l cul dd un función culquier f() podemos

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CSTILL Y LEÓN / JUNIO. LOGSE / MTEMÁTICS II / EXMEN COMPLETO Se proponen dos pruebs, B. Cd un de ells const de dos problems, PR- PR-, de cutro cuestiones, C-, C-, C- C-4. Cd problem tendrá un puntución

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

EJERCICIOS DE INTEGRACIÓN DEFINIDA

EJERCICIOS DE INTEGRACIÓN DEFINIDA EJERCICIOS DE INTEGRACIÓN DEFINIDA. Definición de función integrble. Primers propieddes. Clculr ls integrles de ls siguientes funciones en los intervlos que se indicn: ) f(x) = [x] en [, n], con n N. b)

Más detalles

f x dx F(x) b = F(b) F(a) De esta manera se define la Integral definida 14. Propiedades de la integral definida

f x dx F(x) b = F(b) F(a) De esta manera se define la Integral definida 14. Propiedades de la integral definida Sugerencis pr quien imprte el curso Anteriormente se clculron lguns áres emplendo solmente fórmuls de l geometrí pln pr otener áres de triángulos, rectángulos y trpecios; Se utilizó tmién l proimción numéric.

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

4. PRUEBA DE SELECTIVIDAD-MODELO

4. PRUEBA DE SELECTIVIDAD-MODELO Pruebs de Selectividd de Ciencis PRUEB DE SELECTIVIDD-MODELO-- OPCIÓN : ) Hll l longitud de los ldos del triángulo isósceles de áre máim cuo perímetro se m Perímetro b h h re h ( ) Derivmos : bse crece

Más detalles

Cálculo de volúmenes II: Método de los casquetes cilíndricos

Cálculo de volúmenes II: Método de los casquetes cilíndricos Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr

Más detalles

INTEGRAL DEFINIDA 1.INTRODUCCIÓN E DEFINICIÓN

INTEGRAL DEFINIDA 1.INTRODUCCIÓN E DEFINICIÓN INTEGRAL DEFINIDA.INTRODUCCIÓN E DEFINICIÓN A ide de prtid pr introducción do concepto de integrl definid é o intento de resolver o seguinte prolem: Dd unh función f continu f> en [, ], Cl é áre d reión

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles

Más detalles

y ) = 0; que resulta ser la

y ) = 0; que resulta ser la º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles