SIMULACION. Modelos de. Julio A. Sarmiento S.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co"

Transcripción

1 SIMULACION Modelos de Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana

2 Escenarios Diferentes niveles de análisis de riesgo de un negocio Sensibilidad Simulación Pérdida máxima

3 Escenarios Consiste en observar los resultados de un proyecto, con diferentes valores en las variables de entrada. Por ejemplo: Ventas, crecimiento de ventas, aumento de costos. Excel trae una potente herramienta para el manejo de escenarios llamada administración de escenarios.

4 Escenarios 1. Definir el nombre de las celdas que desea cambiar en el escenario: Debe comenzar por una letra y no puede tener espacios

5 2. Crear el escenario Escenarios

6 Escenarios 2. Crear el escenario Dé un nombre al escenario que desea crear. Seleccione las celdas a las cuales desea cambiar el valor

7 Escenarios 2. Crear el escenario Aparecerán las celdas que definió como cambiantes, con el valor inicial, el cual será cambiado por los parámetros deseados en el escenario

8 Escenarios 2. Crear el escenario: Se repite la operación para crear diferentes escenarios El escenario queda almacenado en el administrador

9 Escenarios 3. Ver los resultados del escenario Si elige Mostrar los valores originales serán cambiados por los del escenario seleccionado. Si elige Resumen se creará una hoja nueva, en donde aparecerán los resultados de los escenarios creados.

10 Escenarios 3. Ver los resultados del escenario Este cuadro de dialogo solo aparecerá cuando elija la opción resúmen, elija las celdas de las cuales quiere ver el reultado

11 Escenarios 3. Ver los resultados del escenario: Los resultados se muestran en una nueva hoja llamada Resumen de escenarios

12 Sensibilidad Al cambiar un 1% de una variable, En qué porcentaje cambia el VPN (resultado)? Este análisis sirve para focalizar los esfuerzos de pronóstico en las variables más significativas para el proyecto.

13 Probabilidad Es el número de veces que se repite un resultado cuando sucede un evento específico. Supónga un experimento cualquiera, por ejemplo, el lanzamiento de un dado. El conjunto de todos los resultados posibles se llama universo o espacio de la muestra, en este caso los números de 1 a 6 en el lanzamiento del dado. Y la probabilidad es el número de veces (frecuencia) que cae un número específico, por ejemplo el número 3.

14 Probabilidad Si se hacen, por ejemplo 100 lanzamientos (n), de los cuales 16 tuvieron resultado el número 3 en otras palabras, hubo 16 ocurrencias exitosas del resultado deseado (m). E y P(E) denota la probabilidad de ocurrencia de dicho resultado; la relación entre el número de resultados exitosos m y el número de resultados posibles n, es una medida aproximada de la probabilidad de ese resultado, es decir: P m ( E) = = = 0.16 = 16% n

15 El valor esperado El valor esperado o esperanza matemática es el promedio ponderado de todos los posibles valores por sus respectivas probabilidades. Función en Excel: SUMAPRODUCTO Donde X lo que vamos a invertir en un activo respectivo del portafolio Donde R 1 i n r p = X r i = 1 i i es la porcion expresada en % de es el retorno histórico del activo a anlizar. = Sumatoria del producto anterior

16 Probabilidad Es el número de veces que se repite un resultado cuando sucede un evento específico.

17 Un ejemplo... Se le preguntó a 30 personas sobre si estarían dispuestos a hacer un salto de Bungee Jumping desde el último piso de la torre Colpatria. Las respuestas se encuentran en el archivo de Excel: Cuál es la probabilidad que al preguntarle a otra persona conteste que si saltaría?

18 Un ejemplo... Distribución de Frecuencia Resultado # de Frecuencia Frecuencia observaciones Relativa Acumulada si 18 60% 60% no 12 40% 100% Total %

19 El valor esperado El valor esperado o esperanza matemática es el promedio ponderado de todos los posibles valores por sus respectivas probabilidades.

20 Simulación Montecarlo Se simula múltiples ocasiones un evento y se observa su resultado. Sirve cuando hay dos o más variables que se comportan de manera independiente. Utiliza los números aleatorios para hacer la simulación.

21 Simulación Montecarlo Consiste en hacer la Simulación de algún evento, por ejemplo: Preguntar a una persona si compra o no nuestra esponja de fique. Se trata entonces de no salir a preguntar y en su lugar usar los números aleatorios. Imagine que tiene una bolsa con números de 1 a 100. Recuerde que se definió que el 40% de las personas dijeron que no, entonces, vamos a asignar los números de 1 a 40 al NO y del 41 al 100 al SI. Esto significa, que si sale una bola con el # 16 significa que se le preguntó a una persona que dijo que NO y si sale el número 89, la persona preguntada dijo que SI.

22 Simulación Montecarlo Cómo Agrupar información: n: Intevalos Una manera de visualizar la información de una muestra es tabularla o mostrar la gráfica de los valores obtenidos. EJEMPLO Suponga que se hace una muestra 6,400 viviendas de un país. La muestra indica que en las viviendas el número de habitaciones es de 1, 2, 3, 4, 5 ó 6.

23 Simulación Montecarlo Cómo Agrupar información: n: Intevalos No de habitaciones Frecuencia Frecuencia relativa Frecuencia acumulada Intervalo % 15.16% % 39.77% % 60.84% Intervalo % 10.39% 78.59% 88.98% % % Total % Intervalo: Característica que se usa para dividir las observaciones Frecuencia: Número de observaciones que se repiten dentro de un rango. Frecuencia relativa: Frecuencia dividida entre el total de observaciones. Frecuencia acumulada: Número de observaciones con un valor inferior o igual al rango.

24 Simulación Montecarlo Cómo Agrupar información: n: Intevalos Cuántos intervalos La respuesta es que esto depende de los datos que se desee analizar y no deben ser, ni muchos, ni pocos. Se puede considerar que entre 5 y 15 intervalos sería razonable. En cuanto al punto medio de cada intervalo, es preferible considerar un número entero.

25 Simulación Montecarlo Cómo usar la información disponible para simular? Usando INTERVALOS Formas de usar la información histórica para simular Usando la distribución n de los datos

26 Simulación Montecarlo SI NO 80 27

27 Simulación Montecarlo Usando INTERVALOS para simular Promedio Mínimo Máximo Diferencia No de clases Intervalo =PROMEDIO(B10:B52) =MIN(B10:B52) =MAX(B10:B52) =B56-B55 6 =B57/B58 =CONTAR.SI($B$10:$B$52;"<="&B64) Desde Hasta Punto medio Frecuencia 3,109 3,240 3, ,240 3,371 3, ,371 3,502 3, ,502 3,632 3, ,632 3,763 3, ,763 3,894 3,829 9

28 Simulación Montecarlo Usando INTERVALOS para simular

29 Simulación Montecarlo Usando INTERVALOS para simular El aleatorio generado La columna de la matriz de intervalos que se quiere que aparezca como resultado. La matriz de resultado de los intervalos. EN ESTE ORDEN

30 Simulación Montecarlo Usando INTERVALOS para simular Otra forma de usar los intervalos.

31 Simulación Montecarlo Usando INTERVALOS para simular La distribución DISCRETA se usa para simular intervalos Se va a simular 1 Variable Se van a hacer 1000 escenarios Rango donde está la matriz de intervalos. En este orden.

32 Simulación Montecarlo Cómo Agrupar información: n: Distribución La distribución es la forma cómo se agrupan los datos de una muestra. Uniforme Normal

33 Simulación Montecarlo Cómo Agrupar información: n: Distribución Triangular Lognormal

34 Simulación Montecarlo Usando DISTRIBUCIONES para simular La distribución QUE DESEA PARA SIMULAR Se va a simular 1 Variable Se van a hacer 1000 escenarios Los parámetros variarán dependiendo del tipo de distribución

EVALUACION. De Riesgo. Julio A. Sarmiento S.

EVALUACION. De Riesgo. Julio A. Sarmiento S. EVALUACION De Riesgo http://www.javeriana.edu.co/cursad/modulo.finanzas Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana Julio Alejandro Sarmiento

Más detalles

EXCEL FINANCIERO INTRODUCCION. Julio A. Sarmiento S. www.javeriana.edu.co/decisiones/julio. Julio A. Sarmiento S.

EXCEL FINANCIERO INTRODUCCION. Julio A. Sarmiento S. www.javeriana.edu.co/decisiones/julio. Julio A. Sarmiento S. EXCEL FINANCIERO INTRODUCCION www.javeriana.edu.co/decisiones/julio Profesor - investigador Departamento de administración Pontificia Universidad Javeriana Conceptos básicos* Libros En Microsoft Excel,

Más detalles

Construcción de Escenarios

Construcción de Escenarios Construcción de Escenarios Consiste en observar los diferentes resultados de un modelo, cuando se introducen diferentes valores en las variables de entrada. Por ejemplo: Ventas, crecimiento de ventas,

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Investigación Operativa Práctica 6: Simulación Guión práctico: Generación de Números Aleatorios y Simulación Monte Carlo Curso 08/09 Objetivo: Aprender

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación ÍNDICE DE CONTENIDOS Capítulo 1 Presentación Capítulo 2 Introducción al proceso de decisión bajo riesgo e incertidumbre 2.1. Resumen del capítulo 2.2. Introducción 2.3. El concepto de riesgo e incertidumbre

Más detalles

Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones. Banco Central de Reserva del Perú

Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones. Banco Central de Reserva del Perú Simulación de Curvas de Rendimiento empleando Componentes Principales: Una aplicación para los Fondos de Pensiones Banco Central de Reserva del Perú - Gonzalo Chávez - Paul Zanabria 1 Introducción La proyección

Más detalles

PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión

PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión PROSAP-UTF/ARG/017/ARG Desarrollo Institucional para la Inversión ESTUDIO DE AMPLIACIÓN DEL POTENCIAL DE IRRIGACIÓN EN ARGENTINA Metodología de Simulación Montecarlo Julio 2014 Anexo: Metodología de Simulación

Más detalles

Una breve introducción a Excel c

Una breve introducción a Excel c Una breve introducción a Excel c Martes 22 de febrero de 2005 Curso de Formación continua en Matemáticas UAM Curso 2004/2005 1. Introducción Excel c es una aplicación de hojas de cálculo electrónicas:

Más detalles

SIMULACIÓN VERSUS OPTIMIZACIÓN:

SIMULACIÓN VERSUS OPTIMIZACIÓN: SIMULACIÓN MONTE CARLO Procesos Químicos II La idea básica de la simulación es la construcción de un dispositivo experimental, o simulador, que actuará como (simulará) el sistema de interés en ciertos

Más detalles

Introducción a la Estadística con Excel

Introducción a la Estadística con Excel Introducción a la Estadística con Excel En el siguiente guión vamos a introducir el software Excel 2007 y la manera de trabajar con Estadística Descriptiva. Cargar o importar datos En Excel 2007 podemos

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

2.3.1. Riesgo vs. Incertidumbre

2.3.1. Riesgo vs. Incertidumbre 1 Presentación En la actualidad, tanto managers, funcionarios como analistas deben desenvolverse dentro de un contexto cada vez más complejo, dinámico y cambiante; por ende, las decisiones que se tomen

Más detalles

LECCIÓN 4ª Operaciones Numéricas

LECCIÓN 4ª Operaciones Numéricas REALIZAR OPERACIONES NUMERICAS LECCIÓN 4ª Operaciones Numéricas Excel es una hoja de cálculo y, como su nombre indica, su función fundamental es trabajar con grandes volúmenes de números y realizar cálculos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Taller de Probabilidad y Simulación

Taller de Probabilidad y Simulación Taller de Probabilidad y Simulación Probabilidad I Departamento de Matemáticas UAM, curso 2007-2008 Pablo Fernández Gallardo (pablo.fernandez@uam.es) 1. Una breve introducción a Excel 1.1. Introducción

Más detalles

F3 La temperatura media máxima F4 La temperatura media mínima F5 La media de las temperaturas media del mes

F3 La temperatura media máxima F4 La temperatura media mínima F5 La media de las temperaturas media del mes Realizar los siguientes ejercicios en hojas independientes del mismo fichero. Modificar el nombre de cada hoja según el ejercicio con el que se corresponda. Ejercicio 1. Se dispone de la temperatura media

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Introducción a la hoja de cálculo Excel @ Joaquín Delgado Departamento de Matemáticas UAM-iztapalapa e-mail: jdf@xanum.uam.mx

Introducción a la hoja de cálculo Excel @ Joaquín Delgado Departamento de Matemáticas UAM-iztapalapa e-mail: jdf@xanum.uam.mx Introducción a la hoja de cálculo Excel @ Joaquín Delgado Departamento de Matemáticas UAM-iztapalapa e-mail: jdf@xanum.uam.mx Indice 1. Qué es la hoja de cálculo? 2. El menú principal 3. Aritmética simple.

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Simulación Monte Carlo

Simulación Monte Carlo Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Probabilidad y Simulación

Probabilidad y Simulación Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo

Más detalles

Charla No 3: Fórmulas de mayor uso.

Charla No 3: Fórmulas de mayor uso. 1 Charla No 3: Fórmulas de mayor uso. Objetivos generales: Explicar el uso de las funciones de mayor uso en MS-Excel Objetivos específicos: Autosuma. Asistente de fórmulas. Max y Min. Buscarv Contar Si

Más detalles

Manual SGTContable - Versión 12 o superior. TESORERIA: CAPITULO 4. Conciliación Bancaria

Manual SGTContable - Versión 12 o superior. TESORERIA: CAPITULO 4. Conciliación Bancaria TESORERIA: CAPITULO 4 Conciliación Bancaria Por medio de esta opción podrá conciliar todas las cuentas bancarias que tiene disponible en cada Empresa. Este proceso está disponible a partir de la versión

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

APLICACIONES CON SOLVER OPCIONES DE SOLVER

APLICACIONES CON SOLVER OPCIONES DE SOLVER APLICACIONES CON SOLVER Una de las herramientas con que cuenta el Excel es el solver, que sirve para crear modelos al poderse, diseñar, construir y resolver problemas de optimización. Es una poderosa herramienta

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

Empresarial y Financiero NIVEL AVANZADO

Empresarial y Financiero NIVEL AVANZADO Curso de Excel Empresarial y Financiero NIVEL AVANZADO Rosa Rodríguez SESION 2: INDICE ANALISIS DE SENSIBILIDAD (3h) Validación de datos n Restricciones a la entrada de datos n Lista Dependiente n Administrador

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

SIMULACIÓN. Orientaciones para la solución del examen de Febrero 2011, Segunda Semana

SIMULACIÓN. Orientaciones para la solución del examen de Febrero 2011, Segunda Semana Orientaciones para la solución del examen de Febrero 2011, Segunda Semana Se pretende estudiar mediante simulación el funcionamiento del servicio de lavado de coches descrito a continuación. Los coches

Más detalles

ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL

ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL RESUMEN Teresa García López 1 El trabajo que aquí se presenta continúa con la serie de documentos

Más detalles

Hoja1. Distribución de. Porcentajes

Hoja1. Distribución de. Porcentajes Hoja1 1.56 1.74 1.53 1.69 1.73 1.63 1.58 1.51 1.66 1.56 1.61 1.52 1.48 1.59 1.63 1.72 1.65 1.57 1.67 1.63 1.64 1.49 1.63 1.71 1.6 1.55 1.54 1.49 1.5 1.56 1.53 1.66 1.76 1.61 1.71 1.68 1.54 1.55 1.76 1.51

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

Análisis estadístico con Microsoft Excel

Análisis estadístico con Microsoft Excel Análisis estadístico con Microsoft Excel Microsoft Excel ofrece un conjunto de herramientas para el análisis de los datos (denominado Herramientas para análisis) con el que podrá ahorrar pasos en el desarrollo

Más detalles

Programación en R para Estadística. Simulación

Programación en R para Estadística. Simulación Programación en R para Estadística 1 de 2 Programación en R para Estadística Simulación J. Elías Rodríguez M. Facultad de Matemáticas Universidad de Guanajuato XXIII Foro Nacional de Estadística 11 de

Más detalles

10.4. Autoformatos y estilos

10.4. Autoformatos y estilos Introducción y edición de números y fórmulas Listas Estilo y Color 10.4. Autoformatos y estilos Una de las herramientas de las últimas versiones de programas de Microsoft es el autoformato. Con él se pueden

Más detalles

Instructivo Applet en Geogebra grafica frecuencia relativa Lanzamiento de dos dados n veces

Instructivo Applet en Geogebra grafica frecuencia relativa Lanzamiento de dos dados n veces Instructivo Applet en Geogebra grafica frecuencia relativa Lanzamiento de dos dados n veces Por: Jesús Evenson Pérez Arenas Indicador: Introducir el concepto de probabilidad haciendo una cantidad de lanzamientos

Más detalles

ANALISIS DE DATOS CON EXCEL

ANALISIS DE DATOS CON EXCEL 1 ANALISIS DE DATOS CON EXCEL 1 USAR FORMULAS Y FUNCIONES PARA CALCULAR VALORES Las funciones son fórmulas predefinidas que ejecutan cálculos utilizando valores específicos, denominados argumentos, en

Más detalles

PRIMERA PARTE LAS PRIMERAS PLANILLAS

PRIMERA PARTE LAS PRIMERAS PLANILLAS PRIMERA PARTE LAS PRIMERAS PLANILLAS El objetivo de este capítulo es tener una primera aproximación al programa. Conocerle la cara: cómo se ve, para qué sirve, cuáles son y cómo se usan las principales

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

Curso Excel 97. Introducción

Curso Excel 97. Introducción Curso Excel 97 Introducción Este curso está concebido para gestores, personas administrativas, técnicas o directivas, que realizan trabajos con cálculos numéricos, (presupuestos, financiaciones, amortizaciones,

Más detalles

CURSO DE INTRODUCCION

CURSO DE INTRODUCCION CURSO DE INTRODUCCION A CRYSTAL BALL Cnel R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar http//www.mgmconsultores.com.ar

Más detalles

Tutorial de Moodle. Actividad Cuestionario

Tutorial de Moodle. Actividad Cuestionario Tutorial de Moodle Actividad Cuestionario Cuestionario Para qué sirve? El Cuestionario es una actividad autoevaluable, en la cual la nota se calcula automáticamente. Sirve al alumno como autoevaluación

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP.

Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP. Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP Sinopsis El presente artículo muestra los resultados de un problema de

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

Análisis de riesgo e incertidumbre

Análisis de riesgo e incertidumbre Análisis de riesgo e incertidumbre Eduardo Contreras Enero 2009 Introducción a riesgo e incertidumbre Dos Conceptos: Riesgo:» Información de naturaleza aleatórea, las probabilidades de ocurrencia de eventos

Más detalles

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver Leire Aldaz, Begoña Eguía y Leire Urcola Índice del tema Introducción Buscar Objetivo

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Financiación Francisco Pérez Hernández Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid Objetivo del curso: Dentro del contexto de Economía de la

Más detalles

CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL

CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL MICROSOFT EXCEL. FÓRMULAS Y FUNCIONES. 6 HORAS Ampliar los conocimientos sobre funciones de Microsoft Excel de forma completa y avanzada, con el fin de mejorar

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Operación de Microsoft Excel. Una lista o una base de datos de Microsoft Excel.

Operación de Microsoft Excel. Una lista o una base de datos de Microsoft Excel. Tablas dinámicas Una tabla dinámica es una tabla interactiva que contiene campos, la que se usa para resumir y analizar los datos de múltiples filas de información de una tabla o de una lista original.

Más detalles

Práctica 1 Aprendiendo a utilizar Microsoft Excel.

Práctica 1 Aprendiendo a utilizar Microsoft Excel. Práctica 1 Aprendiendo a utilizar Microsoft Excel. Objetivo: Que el alumno se familiarice con la forma de trabajar en Excel. Que realice un libro de trabajo con hojas de cálculo en el cual introducirá

Más detalles

DIAGRAMA DE TALLO Y HOJA

DIAGRAMA DE TALLO Y HOJA DIAGRAMA DE TALLO Y HOJA Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios

Más detalles

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE INVENTARIO Y PROCESO Objetivos del capítulo Desarrollar una herramienta de software de planeación de inventario con los datos obtenidos del capítulo

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008.

Examen de la asignatura Estadística aplicada a las ciencias sociales Profesor Josu Mezo. 9 de junio de 2008. Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008. Pregunta nº 1 (5 puntos). En una base de datos sobre los países del mundo se incluyen una

Más detalles

Microsoft Excel. LA HOJA DE TRABAJO El gran área formada por cuadrículas constituye la hoja de trabajo de la hoja de cálculo.

Microsoft Excel. LA HOJA DE TRABAJO El gran área formada por cuadrículas constituye la hoja de trabajo de la hoja de cálculo. Microsoft Excel Diferentes partes de la pantalla Veamos ahora las diferentes partes de la pantalla comenzando por la parte superior. La Barra de Título. La barra azul de arriba muestra el nombre del programa

Más detalles

Aplicación de los modelos de credit scoring para instituciones microfinacieras.

Aplicación de los modelos de credit scoring para instituciones microfinacieras. Econ. Reynaldo Uscamaita Huillca Aplicación de los modelos de credit scoring para instituciones microfinacieras. OBJETIVO Proporcionar al ejecutivo del sistema financiero un modelo solido que permita tomar

Más detalles

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial.

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial. UNIVERSIDAD DE ORIENTE NÚCLEO DE MONAGAS POST GRADO EN CIENCIAS ADMINISTRATIVAS MENCIÓN FINANZAS FINANZAS INTERNACIONALES Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

HERRAMIENTAS DE APOYO PARA LA IMPLEMENTACIÓN DE LA GESTIÓN POR PROCESOS EN EL MARCO DE LA POLÍTICA NACIONAL DE MODERNIZACIÓN DE LA GESTIÓN PÚBLICA

HERRAMIENTAS DE APOYO PARA LA IMPLEMENTACIÓN DE LA GESTIÓN POR PROCESOS EN EL MARCO DE LA POLÍTICA NACIONAL DE MODERNIZACIÓN DE LA GESTIÓN PÚBLICA HERRAMIENTAS DE APOYO PARA LA IMPLEMENTACIÓN DE LA GESTIÓN POR PROCESOS EN EL MARCO DE LA POLÍTICA NACIONAL DE MODERNIZACIÓN DE LA GESTIÓN PÚBLICA Documento elaborado por la de la Presidencia del Consejo

Más detalles

Análisis de datos estadísticos usando Ms. Excel

Análisis de datos estadísticos usando Ms. Excel Análisis de datos estadísticos usando Ms. Excel Fundamentos de informática Ing. Patricia Mores - Dra. Sonia Benz 2010 Qué es el análisis estadístico? Es extraer o deducir de un conjunto de datos resultados

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

Introducción al @RISK 5.7

Introducción al @RISK 5.7 Introducción al @RISK 5.7 Javier Ordóñez, PhD Director de Soluciones Personalizadas Riesgo» Riesgo: Un escenario en donde existe una posibilidad de desviación respecto de un resultado deseado o esperado»

Más detalles

MANUAL DE USUARIO HERRAMIENTAS INFORMÁTICAS PARA ESTUDIAR Y SIMULAR DESPACHOS ECONÓMICOS CON DIVERSAS FUENTES DE GENERACIÓN

MANUAL DE USUARIO HERRAMIENTAS INFORMÁTICAS PARA ESTUDIAR Y SIMULAR DESPACHOS ECONÓMICOS CON DIVERSAS FUENTES DE GENERACIÓN MANUAL DE USUARIO HERRAMIENTAS INFORMÁTICAS PARA ESTUDIAR Y SIMULAR DESPACHOS ECONÓMICOS CON DIVERSAS FUENTES DE GENERACIÓN CONTACTO: SEBASTIÁN MORALES GÓMEZ Ingeniero Electricista smorales@colombiaelectrica.com

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

a) Presente la información en una tabla de distribución de frecuencias b) Determine e interprete: n 4

a) Presente la información en una tabla de distribución de frecuencias b) Determine e interprete: n 4 7 Anexo Nº 2 Creación de una tabla de distribución de frecuencias Ejemplo 1 Los siguiente datos corresponden a la variable X = número de hijos medido en los 50 trabajadores de cierta fábrica 1 2 3 2 4

Más detalles

ECONOMETRÍA FINANCIERA

ECONOMETRÍA FINANCIERA ECONOMETRÍA FINANCIERA CONTENIDO 1 2 3 4 5 6 7 Objetivo Introducción Las betas Financieras Capital Asset Pricing Model CAPM Arbitrage Princing Model APT Predicción con el Método de Montecarlo Solución

Más detalles

Manual Consultas Web - PC Sistel Ver 486R4+ - USUARIO JEFATURA

Manual Consultas Web - PC Sistel Ver 486R4+ - USUARIO JEFATURA PCSISTEL Ver 486R4+ Diseñado y Desarrollado por Visual Soft S.A.C. Todos los Derechos reservados. 2006 Este producto y su respectiva documentación así como el nombre PCSISTEL se encuentra debidamente registradas

Más detalles

SOLUCIÓN CASO GESTIÓN DE COMPRAS

SOLUCIÓN CASO GESTIÓN DE COMPRAS SOLUCIÓN CASO GESTIÓN DE COMPRAS Comenzamos por abrir un libro de trabajo y lo guardaremos con el nombre Compras. 1) En primer lugar resolveremos el primer apartado en la hoja 1 del libro de trabajo procediendo

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Microsoft Excel 97 y 2000

Microsoft Excel 97 y 2000 Microsoft Excel 97 y 2000 Trucos para la hoja de cálculo de Office Formato a texto y datos 1 Cambio del tamaño y el tipo de letra por defecto Por defecto, Excel siempre sacará el mismo tipo de letra y

Más detalles

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Problemas de Probabilidad y Estadística (1)

Problemas de Probabilidad y Estadística (1) Problemas de Probabilidad y Estadística (1) Sebastian Grynberg 31 de agosto de 2009 Índice 1. Espacios de probabilidad (nociones básicas) 1 1.1. Urnas y bolas.................................. 1 1.2. Monedas.....................................

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR Juan Mascareñas Universidad Complutense de Madrid Versión inicial: mayo 1998 - Última versión: mayo 2008 - El valor en riesgo (VaR), 2 - El método histórico, 3 - El método varianza-covarianza, 6 - El método

Más detalles

Tabla dinámica. Vamos a crear una tabla dinámica a partir de un conjunto de datos.

Tabla dinámica. Vamos a crear una tabla dinámica a partir de un conjunto de datos. Tabla dinámica Una tabla dinámica consiste en el resumen de un conjunto de datos, atendiendo a uno o varios criterios de agrupación, representado como una tabla de doble entrada que nos facilita la interpretación

Más detalles

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE 1. Fórmulas utilizadas en la simulación de la evolución del precio de una acción

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

Crystal Ball 7.2. Guía de Inicio

Crystal Ball 7.2. Guía de Inicio Crystal Ball 7.2 Guía de Inicio Este manual, y el software que se describe en él, se proveen bajo licencia y sólo se autoriza su uso o copia de conformidad con los términos y condiciones del contrato de

Más detalles

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas...

Módulo II - Excel. Identificando tipos de datos... 2. Introduciendo datos en las celdas... 3. Llenando automáticamente las celdas... Módulo II - Excel Índice Identificando tipos de datos... 2 Introduciendo datos en las celdas... 3 Llenando automáticamente las celdas... 4 Seleccionando un rango de celdas... 5 Seleccionando una fila o

Más detalles