ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M."

Transcripción

1 ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas, idicadores de cotamiació, etc) lo más completo es, evidetemete, estudiar la població etera. Pero esto suele requerir demasiado tiempo y demasiado diero. Otras veces, el estudio de u elemeto es destructivo, co lo cual es imposible hacer u aálisis de toda la població (os quedaríamos si població). Por tato, ormalmete, os coformaremos co u coocimieto parcial de la població. Esto lo coseguiremos observado uos cuatos elemetos y viedo cómo es o cuáto vale e ellos esa característica que os iteresa. Este cojuto de elemetos que observamos es lo que llamaremos ua muestra de la població. El objetivo básico de la Estadística Descriptiva para ua variable es hacer ua descripció lo más secilla posible de los resultados obteidos e la muestra. Esta descripció se hará mediate represetacioes gráficas y mediate resúmees uméricos. Este capítulo está dedicado a hacer u estudio descriptivo de lo obteido e ua muestra cocreta, cuado os iteresamos e ua sola característica, es decir, e ua sola variable estadística o variable respuesta. Estas variables puede ser de dos tipos: cualitativas y cuatitativas. 2 Variables cualitativas Ua variable respuesta es cualitativa cuado sólo puede clasificarse e categorías o uméricas. Ejemplos de variables cualitativas so el color de los ojos de las persoas de ua ciudad, la Facultad o Escuela e la que está matriculados los estudiates de ua Uiversidad, etc. E este caso sólo podemos hacer represetacioes gráficas. Su objetivo es dar ua idea visual secilla de la muestra obteida. Naturalmete, hay ua gra variedad de represetacioes gráficas: diagramas de barras, diagramas de sectores,... Todas ellas so muy secillas de compreder y de iterpretar. 1

2 3 Variables cuatitativas Ua variable respuesta X es cuatitativa cuado toma valores uméricos. So las más iteresates ya que co ellas podemos obteer resúmees uméricos que o teía setido para las variables cualitativas. Es muy habitual distiguir dos tipos de variables cuatitativas que idicamos a cotiuació: Discretas: Sólo puede tomar u cojuto fiito o umerable de valores (geeralmete valores eteros). Cotiuas: Puede tomar cualquier valor e u itervalo (fiito o ifiito). Si embargo, es coveiete resaltar que para la mayoría de las cosas que vamos a hacer es irrelevate si la variable es discreta o cotiua. Utilizaremos la siguiete otació, tato para variables discretas como para variables cotiuas: : Tamaño de la muestra = Número de elemetos observados. x 1,..., x : Represeta los valores de la variable respuesta obteidos e la muestra (puede haber repeticioes). A veces, al estudiar variables cotiuas, o dispoemos de los datos origiales sio que os da los datos agrupados e ua serie de itervalos o clases A 1,..., A k. E este caso, la otació sería: : Tamaño de la muestra = Número de elemetos observados. x 1,..., x k : Represetates de las clases A 1,..., A k (geeralmete, los putos medios de los itervalos). 1,..., k : Número de observacioes detro de cada clase (frecuecias absolutas). f 1,..., f k : Frecuecias relativas detro de cada clase (f i = i /). Por supuesto, si se puede, es preferible utilizar los datos origiales a usar los datos agrupados e uas clases artificiales. Ituitivamete, los datos origiales cotiee más iformació que los datos agrupados. 2

3 4 Resúmees uméricos Defiició.- La media muestral es ua medida de cetralizació que se defie como: x = 1 x i Cuado se trate de ua variable cotiua co los datos agrupados, usaremos: x = 1 k k i x i = f i x i Es decir, es como si el valor x i hubiera aparecido i veces. Pero isistimos e que si los datos está si agrupar, o tiee mucho setido agruparlos. Defiició.- La mediaa muestral es otra medida de cetralizació cuya idea es la siguiete: La mediaa, M, es el valor de la muestra que deja el 50% de los datos por debajo (so meores) y el 50 % de los datos por ecima (so mayores). Por tato, para hallar la mediaa de ua muestra ordeamos las observacioes de meor a mayor y teemos dos posibilidades: Si el úmero de observacioes es impar, la mediaa es el valor cetral. Si el úmero de observacioes es par, la mediaa es el puto medio de los dos valores cetrales. Si se trata de ua variable cotiua co los datos agrupados, se puede hallar el itervalo mediaa, es decir, la clase e la que se ecuetra la mediaa. Después, se puede hacer ua iterpolació, co el objetivo de hallar el valor aproximado de la mediaa. La idea de la mediaa se puede exteder a los cuartiles: Defiició.- El primer cuartil, Q 1, es el valor de la muestra que deja el 25% de los datos por debajo (so meores) y el 75% de los datos por ecima (so mayores). El tercer cuartil, Q 3, es el valor de la muestra que deja el 75% de los datos por debajo (so meores) y el 25% de los datos por ecima (so mayores). El método para hallar Q 1 y Q 3 es aálogo al empleado para hallar la mediaa. 3

4 Podemos aplicar las defiicioes ateriores para calcular mediaa y cuartiles e los dos siguietes casos: (a) (b) Defiició.- La moda muestral de ua variable discreta es ua medida de cetralizació que se defie como el valor que aparece más repetido e la muestra. La moda es meos iteresate como medida de cetralizació por varias razoes: o tiee setido para variables cotiuas (habría que agrupar), puede o ser u valor cetral, puede haber ua moda e cada extremo, etc. Defiició.- La variaza muestral es ua medida de dispersió que se defie como: v x = 1 (x i x) 2 Para calcular la variaza suele ser más cómodo usar la siguiete expresió que obteemos desarrollado el cuadrado: v x = 1 i x) (x 2 = 1 ( x 2 i 2 x = 1 ( ) x 2 i x 2 ) x i + x 2 Si se trata de ua variable cotiua co los datos agrupados, usaremos la expresió: v x = 1 k i (x i x) 2 =... = 1 ( k ) i x 2 i x 2 Observació: La defiició que se ha dado de variaza muestral correspode a la idea atural de medir la dispersió cuadrática media y, por este motivo, dividimos por (úmero total de datos). Es muy frecuete ecotrar textos y paquetes iformáticos e los que, e la defiició de variaza muestral, se divide por 1, e vez de por. Esto tiee su justificació e la Iferecia Estadística (cuado se busca estimadores isesgados), pero o e la Estadística Descriptiva. Por supuesto, si es grade, la diferecia etre dividir por ó por 1 es muy pequeña. 4

5 Defiició.- La desviació típica (o desviació stadard) muestral es ua medida de dispersió que se defie como la raíz cuadrada positiva de la variaza muestral. Co la desviació típica medimos la dispersió e las uidades origiales, ya que la variaza os da la media de los cuadrados de las desviacioes a la media muestral. 5 Represetacioes gráficas Se puede hacer distitas represetacioes gráficas co los datos de ua variable cuatitativa X. Tambié so secillas de compreder, auque requiere algo más de explicació que las represetacioes gráfica de variables cualitativas. Veremos alguas de las más iteresates, comezado por los diagramas de tallos y hojas: Defiició.- El procedimieto para costruir u diagrama de tallos y hojas es como sigue: 1. Redodear los datos a u úmero coveiete de cifras sigificativas, de modo que el perfil que obtegamos sea iformativo. 2. Colocarlos e ua tabla co dos columas separadas por ua líea, de la siguiete forma: (a) Todas las cifras meos la última se escribe a la izquierda de la líea (forma el tallo). (b) La última cifra se escribe a la derecha (forma la hoja). 3. Cada tallo defie ua clase y se escribe sólo ua vez. El úmero de hojas represeta la frecuecia de dicha clase. Otra represetació secilla muy utilizada es el diagrama de caja y bigotes (box-plot): Defiició.- E primer lugar, obteemos la mediaa, M, el primer cuartil, Q 1, el tercer cuartil, Q 3, y los valores míimo y máximo de las observacioes. La versíó mas secilla de diagrama de cajas y bigotes cosiste e dos cosas: 5

6 a) U rectágulo vertical (caja) que comieza e Q 1, termia e Q 3, y tiee ua líea cetral e M. b) Dos líeas (bigotes) que parte de Q 1 y Q 3 y llega, respectivamete, al míimo y al máximo. Este diagrama os da ua idea rápida de la cocetració y de la simetría de los datos. Otra represetació iteresate para variables cuatitativas cotiuas co los datos agrupados es el histograma: Defiició.- Dispoemos de los datos agrupados e k itervalos, cada uo co ua achura a i, i = 1,..., k. El histograma cosiste e costruir sobre cada itervalo u rectágulo cuya área represete la frecuecia (absoluta o relativa) de dicho itervalo. De ese modo, si pesamos por ejemplo e frecuecias absolutas, la altura, h i, de cada rectágulo sería: Área = i = a i h i h i = i a i 6 Ejemplo E 1778, H. Cavedish realizó ua serie de 29 experimetos co objeto de medir la desidad de la tierra. Sus resultados, tomado como uidad la desidad del agua, fuero: Queremos aalizar estos datos descriptivamete. E primer lugar, podemos represetar los datos sobre la variable estadística X= Desidad de la tierra co u diagrama de tallos y hojas: 6

7 Ordeado los datos de meor a mayor, la mediaa sería el dato que ocupa el puesto decimoquito: M = 5, 46. Procediedo de maera aáloga, el primer cuartil, Q 1, sería el puto medio de los datos que ocupa los puestos séptimo y octavo: Q 1 = (5, , 3)/2 = 5, 295 Aálogamete, el tercer cuartil, Q 3, sería el puto medio de los datos que ocupa los puestos 22 y 23: Q 3 = (5, , 62)/2 = 5, 615 Podemos calcular tambié la media y la desviació típica: x = 1 1 xi = 5, 448; Desviació típica = (xi x) 2 0, 22 Podemos observar que la media y la mediaa so muy similares; esto es cosecuecia de la simetría que se puede apreciar e el diagrama de tallos y hojas. Podemos abordar tambié el aálisis descriptivo que haríamos e el caso de que os hubiera dado los datos agrupados e ua serie de clases. Por ejemplo, supogamos que la iformació que teemos viee resumida (co algua simplificació) e la siguiete tabla : Clases x i i (5,10; 5,30] 5,20 8 (5,30; 5,40] 5,35 4 (5,40; 5,50] 5,45 5 (5,50; 5,60] 5,55 4 (5,60; 5,80] 5,70 8 7

8 Co esta iformació agrupada, tedríamos: x = 1 i x i = 5, 45; Desviació típica = 1 1 ( ) i (x i x) 2 = i x 2 i x 2 = 0, Lógicamete, existe pequeñas diferecias co respecto a lo que se obtuvo co los datos si agrupar. 8

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta?

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta? TEMA 5 ESTADÍSTICA Estadística obteció, estudio e iterpretació de grades masas de datos Població es el cojuto de todos los elemetos que cumple ua determiada característica. Muestra es cualquier parte de

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene Existecia. El pricipio de los casilleros. Si queremos colocar 3 bolillas e cajas, es evidete que e algua caja deberemos colocar al meos dos bolillas. Lo mismo ocurre si e lugar de 3 bolillas tuviésemos

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

Apuntes De Análisis Numérico.

Apuntes De Análisis Numérico. Aputes De. Prof. Alberto Agarita. Departameto De Ciecias Básicas, Uidades Tecológicas de Satader. y P 1 (x) P 2 (x) P 3 (x) P i (x) P (x) P(x) I 1 I 2 I 3 I x 1 x 2 x 3 x 4 x 1 x x P(x) = P 1 (x) P 2 (x)

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA ESTADISTICA Y PROBABILIDAD (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA Eero 2015 0 INTRODUCCION Los juegos de azar o quizá la ecesidad de medir la

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

Introducción a las sucesiones. y series numéricas

Introducción a las sucesiones. y series numéricas UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Itroducció a las sucesioes y series uméricas Ramó Bruzual Marisela Domíguez Caracas, Veezuela

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

1. Ley de Grandes Números

1. Ley de Grandes Números La Ley de Grades Números Pablo Lessa 9 de octubre de 2014 1. Ley de Grades Números Te hago ua preguta persoal: Si estás jugado a la ruleta apostado e cada turo por egro o rojo y ves que sale 6 veces seguidas

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra.

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra. UNIDAD 9 Iferecia estadística. Distribucioes muestrales la Estadística se distigue dos partes perfectamete difereciadas. Ua de ellas se cooce co el ombre de Estadística Descriptiva y tiee como objetivo

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

4. CONCEPTO BASICOS DE PROBABILIDADES

4. CONCEPTO BASICOS DE PROBABILIDADES 4. CONCEPTO BASICOS DE PROBABILIDADES Dr. http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 41 4.1 Espacio Muestral y Evetos 4.1.1 1 Experimetos Aleatorios y Espacios

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Herramientas de Control de Procesos

Herramientas de Control de Procesos Autor del presete maual: Edgardo Ojeda Barcos Profesor de Cotrol de Calidad y Estadística Iacap Uiversidad Tecológica de Chile Liceciado e Orgaizació Idustrial Uiversidad Argetia de La Empresa Postgrado

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO DOCUMENTO TÉCNICO N 64 Versió 0.1 MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO CONCEPTOS GENERALES MINISTERIO SECRETARÍA GENERAL DE LA PRESIDENCIA Este documeto es parte de ua serie de guías

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS MUESTRAS Y ESTIMACIONES EN LA ESO Itroducció Cómo debe seleccioarse la muestra para que sea represetativa de

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles