El lugar importa. Antes de 10, eran 20

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El lugar importa. Antes de 10, eran 20"

Transcripción

1 A diferencia de otros sistemas de numeración de la antigüedad, los números mayas se formaban sólo con tres signos: el punto, que representa el uno; la raya, que simbolizaba el cinco; y el cero, representado por un caracol. Estos sencillos símbolos, aunados a su sistema posicional, hicieron posible que los miembros de esta cultura realizaran operaciones con millones y billones. Cómo lo hacían? Echa un vistazo! Los conocimientos matemáticos de los mayas fueron aplicados con ventajoso acierto al comercio, la construcción, el calendario, la mitología y la astronomía. La difusión de esta disciplina a las clases populares se hacía por medio del imxlah (sistema para sacar cuentas), que consistía en realizar cálculos sobre una cuadricula trazada en cualquier superficie plana y utilizando maíces, palos y caracolillos como elementos que sustituían al punto, la raya y el cero, respectivamente. El empleo de los granos de maíz para efectuar cuentas parece corroborarse gracias a diversas fuentes. Pedro Sánchez de Aguilar relata que los mayas echaban suerte con un gran puño de maíz, y es muy ilustrativo leer en el Popol-Vuh el pasaje en que los abuelos cósmicos, Ixpiyacoc e Ixmucane, antes de emprender la tarea de formar a la raza humana, hacen su pronóstico a base de misteriosos cálculos en los que emplean los granos de maíz de tzitle.

2 González, V. (2012). Numeración maya: tejido de filosofía, religión y matemática [Versión electrónica], Ciencia Compartida, 0, Recuperado el (día) de (mes) de (año), de (dirección electrónica). El lugar importa Antes de 10, eran 20 Los mayas usaban un sistema vigesimal, es decir, de base 20; para entender el por qué habría que acudir a las raíces lingüísticas. La cantidad veinte se denota con la palabra Hun Ulinic, cuya expresión se utilizaba para indicar ser humano ; así, ser humano y veinte es lo mismo. Si tomamos en cuenta que para escribir un número uno los mayas usaban en ocasiones como símbolo un dedo, tenemos que cinco son los dedos en cada mano y pie, y cuatro las extremidades del hombre; si multiplicamos cinco por cuatro nos da veinte, que forman la unidad humana. Por otro lado -según el Popul Vuh- la pareja, mujer y hombre, se unen, combinan sus brazos, en veinte entrelazado, lleno de amor para establecer una nueva entidad, que a su vez representa un nuevo veinte, lleno de esperanzas que serán utilizadas en bien de la humanidad y para gloria de todas las energías cósmicas. El veinte es el dos convertido en uno. En un sistema de numeración posicional se da valor a los signos numéricos de acuerdo al lugar que ocupan en el espacio escrito. En el caso de los mayas, partiendo del criterio de que el Sol tiene a diferentes niveles distintas valoraciones, se establece una escala en la que los valores irán de menor a mayor, de abajo hacia arriba, porque cuando el sol está más alto -o sea en el cenit- adquiere una mayor significación según la ceremonia maya de que se trate, debido a que el sol llega al cenit en el mes de mayo, momento preciso para el inicio de la siembra del maíz. De esta forma, lo que está en la línea a nivel inferior debe multiplicarse por uno, es decir, que los valores del punto (1) y raya (5) se mantienen. Lo que se encuentra en el nivel superior debe multiplicarse por veinte, de manera que el punto toma el valor de veinte y la raya valdrá cien. En el tercer nivel todo se multiplica por 400, ya que es el resultado de 20 por 20: el punto tendrá el valor de 400 y la raya de 2000, y así hasta el infinito. Ordenar los numerales por unidades, veintenas, veintenas de veintenas, etc., dándole a cada punto o barra este valor múltiplo con solo ocuparse la primera, segunda, tercera o cuarta posición en una columna, trajo la necesidad de crear un símbolo que llenara los espacios de la columna en los que no hubiese un numeral.

3 Uno, dos, tres por el cero! El cero es uno de los magníficos productos del intelecto humano: son dos las veces que se inventó este número, una en el mundo maya y otra en la India; los especialistas ubican el hallazgo maya mil años antes que en Asia. El cero para los mayas no es negación, no es la nada, por el contrario, el cero es principio, categoría llena, es positivo. No significa no hay, sino que significa todo está. En donde aparece la categoría cero, queda representado que las cantidades están completas y que debe pasarse al siguiente eslabón o categoría matemática. El cero se encuentra en los códices representado por un puño cerrado; visto de frente, el puño cerrado simboliza que los dedos (numerales, porque con ellos empezó a contar el hombre) están retenidos en un espacio cerrado: es decir, están contenidos, integrados y completos. Por contraparte, se ha defendido el punto de vista de que el símbolo del cero es una concha de caracol; la concha es un elemento muy frecuente en la epigrafía Mesoamericana y se le ha establecido una relación conceptual con la muerte. Ambas hipótesis sobre la naturaleza del símbolo maya del cero pueden ser correctas; el puño cerrado declara que nada sobra, que todo está contenido dentro de la mano, que el conjunto está completo; la concha de caracol anuncia que el ciclo de vida ha terminado y que solo queda la huella geológica que nos informa que existió y se completó. El Tepeu Gukumatz,(deidad que representa el principio del universo, es el padre y madre en uno mismo) como expresión matemática, como cero, es el que indica que todo lo espiritual está completo, que hay que pasar a crear la nueva dimensión, la material, la del hombre, las plantas, los animales y los minerales. El cero también toma la representación de la flor, o sea, del sol, ya que el astro rey es desde el punto de vista íntimo, la representación absoluta de la energía cósmica. La flor es vida, de ella surge el fruto y la semilla.

4 Otros números importantes En relación con el número dos, tenemos las categorías humanas básicas, la mujer y el hombre. En la tierra este número sagrado se representa con la época de sequía o muerte de la naturaleza y la época de lluvia o retoño de ésta; para el cosmos, el sol y la luna definen el día y la noche. Cuentas, cuentas... Con respecto al cuatro, hay que señalar que el hombre tiene el mismo número de extremidades, la tierra o la naturaleza tiene cuatro estaciones, el sol en el cosmos tiene cuatro posiciones solsticiales, la luna cuatro fases. El periodo de cuarenta días fue también muy importante en la matemática y en el calendario mayas. Cuarenta días son dos meses de veinte días, pero en el nivel esotérico representa a la pareja ya tomando en cuenta las ocho extremidades. Los números mayas representan una verdadera comunión entre las matemáticas y lo artístico, uniendo caligrafía, arte y cálculo como ningún otro pueblo en el mundo. De los puntos y rayas se pasa a la expresión numérica por medio de cabezas -los famosos números cefalomorfos- y cifras expresadas con cuerpos humanos enteros, conocidos como números antropomorfos. Son varias las figuras llenas de belleza que configuran los números sagrados y las cantidades mágicas de los dos calendarios, el religioso de 260 días y el civil de 365. Para las operaciones más comunes, es probable que resultase suficiente un tablero de nueve cuadros. Para efectuar la suma -bucxocil o cuch-xocil- sólo tenían que colocar sus granos de maíz y palitos en los casilleros correspondientes del tablero, luego los juntaban en una columna y, si era necesario, simplificaban el resultado tomando en cuenta que, según su sistema posicional, cinco puntos en cualquiera de las posiciones es igual a una línea en la misma posición y cuatro líneas en el primer lugar de abajo hacia arriba es equivalente a un punto en la segunda posición, cuatro líneas en segunda posición es equivalente a un punto en tercera posición, etc. Cuando efectuaban la resta (chichan-cunah) se colocaba el minuendo en la primera columna del tablero y se pasaba a la segunda columna la cantidad de granos de maíz y palitos que representaban el sustraendo (tomados de la primer columna) recordando que si no tenemos suficientes en la casilla izquierda, podemos bajar de la casilla inmediata superior un grano de maíz que se convierte en cuatro palitos en la casilla inferior.

5 En la multiplicación conocida por los mayas como dzaac-xoc- a lo largo del margen izquierdo y superior del tablero se colocan los marcadores correspondientes a los multiplicadores, llenando las casillas con los productos parciales de la fila por columna y finalmente sumando los productos sobre la traza del tablero. La división involucraba un procedimiento parecido, aunque con un nivel de complejidad más alto. Llegar al concepto de la divisibilidad numérica les permitió tener conocimiento de los números primos y de allí pudieron calcular el máximo común divisor y el mínimo común múltiplo, mismos que se encuentran en varias páginas del códice de Dresde -el cual habla de tiempo, astronomía, astrología segundo nacimiento, calendario, profecías, encendido del fuego nuevo, pesca, matrimonio, negocios con el karma, mitología y la Madre Divina-, así como las potencias y raíces de los números, lo que les facilitó el procesamiento de grandes cantidades. Números para divertirse Entre los mayas era popular un juego llamado patolli (que se asemeja a lo que ahora conocemos como serpientes y escaleras ), el cual consiste en pintar un cuadrado que es cruzado con dos diagonales dobles; en el punto de intersección queda un cuadrado pequeño dividido en cuatro partes iguales y cada aspa se divide en doce casillas. Los jugadores se sientan en pequeños bancos,

6 uno entre cada dos aspas y arrojan colorines, esos frijolitos de color rojo encendido; los colorines deben caer en las casillas, pues si quedan fuera se pierde el juego. El número de casillas totales es 52, que son los años que tiene un ciclo maya. El objetivo es recorrer el tablero para volver al punto inicial, y gana el primero que lo logre; de esta forma, el número de jugadas debe arrojar un cómputo astronómico-cíclico. Ahora bien, el tablero o cuadricula venía a representar la urdimbre matemática del universo, sobre la que se asienta el conocimiento humano y, por esta razón, aparece en los muros del cuadrángulo de las Monjas y la Casa del Gobernador en Uxmal, a la vez que forma las cresterías de los templos y observatorios mayas. Para terminar, hay que señalar que cuando los mayas realizaban descubrimientos científicos, si estos entraban en contradicción teológica, era necesario establecer nuevas pautas o hacer un ajuste en el concepto y la ceremonia, de manera que las viejas ideas no se desechaban, sino que se acomodaban al nuevo conocimiento para formar una cosmovisión renovada. Así, la religión nunca fue obstáculo para la ciencia y esta funcionó de forma concatenada como vía de desarrollo espiritual. El desarrollo científico nunca se apartó de la espiritualidad del pueblo...pero eso, en algún momento que está perfectamente identificado, cambió por completo.

3- Matemáticas. 3.2 El Cero maya. 3.1 Sistema vigesimal

3- Matemáticas. 3.2 El Cero maya. 3.1 Sistema vigesimal 2009 energía 9 (140) 12, FTE de México 3- Matemáticas 3.1 Sistema vigesimal En Mesoamérica surgió el sistema numérico vigesimal, con números de posición y la aplicación del cero (0). Las mayas alcanzaron

Más detalles

Veamos el uso de la base 20:

Veamos el uso de la base 20: MATEMÁTICA MAYA Las fascinantes, rápidas y divertidas matemáticas de los mayas. L. F. Magaña. Marzo 2006. Aparentemente la civilización maya fue la primera cultura en el mundo en conocer la abstracción

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

PARTE 3 SISTEMAS DE NUMERACION

PARTE 3 SISTEMAS DE NUMERACION PARTE 3 SISTEMAS DE NUMERACION Cuántos camellos hay?. Para responder a esta pregunta hay que emplear el número. Serán cuarenta? Serán cien? Para llegar al resultado el beduino precisa poner en práctica

Más detalles

Resumen. Contexto geográfico e histórico

Resumen. Contexto geográfico e histórico ARITMÉTICA MAYA: UN APORTE AL CURRICULO Claudia María Lara Galo ADEMATE Agrupación de Educadoras de Matemática. Guatemala claudialaragalo@yahoo.com Campo de Investigación: Etnomatemáticas-Factores afectivos-

Más detalles

Multiplicar con rectas

Multiplicar con rectas Multiplicar con rectas Resumen AUTORIA INMACULADA GIL LEÓN Y JUAN PORTERO BELLIDO TEMÁTICA MATEMÁTICAS ETAPA ESO Multiplicar con rectas consiste en una novedosa e intuitiva técnica, que animamos a los

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

JUEGOS INFANTILES: JUEGO DE LA OCA COLECCIÓN DE JUEGOS INFANTILES EL JUEGO DE LA OCA

JUEGOS INFANTILES: JUEGO DE LA OCA COLECCIÓN DE JUEGOS INFANTILES EL JUEGO DE LA OCA COLECCIÓN DE JUEGOS INFANTILES EL JUEGO DE LA OCA Miguel González García Año 2010 INDICE 1. Introducción: origen e historia del juego. 2. Descripción del material 3. Modalidades reglas de juego 4. Referencias

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Universidad de la Frontera

Universidad de la Frontera Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

Sistema vigesimal maya. Pseudónimo: Chac mool. Área: Matemáticas. Categoría: Local. Modalidad: Investigación Experimental

Sistema vigesimal maya. Pseudónimo: Chac mool. Área: Matemáticas. Categoría: Local. Modalidad: Investigación Experimental Universidad Nacional Autónoma de México Sistema Vigesimal Maya Sistema vigesimal maya Pseudónimo: Chac mool Área: Matemáticas Categoría: Local Modalidad: Investigación Experimental Introducción: El sistema

Más detalles

Las matemáticas tras el fin del mundo maya

Las matemáticas tras el fin del mundo maya Antonio José Durán, catedrático de Análisis Matemático, hablará sobre ello mañana en la Residencia de Estudiantes de Madrid Las matemáticas tras el fin del mundo maya El próximo 21 de diciembre tendrá

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Un viaje por los diversos métodos de multiplicar

Un viaje por los diversos métodos de multiplicar Un viaje por los diversos métodos de multiplicar Allan Porras Aguilar 1 allanpa88@hotmail.com Carlos Monge Madriz 2 carlos-mm27@hotmail.com Resumen: Este taller tiene como objetivo ofrecer a los docentes

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Curso de Especialización en Educación Montessori para Niños de 6 a 9 años

Curso de Especialización en Educación Montessori para Niños de 6 a 9 años Santo Domingo, enero-diciembre 2011 Susanna Belussi - Las Terrenas Índice Notas personales Capítulo I Memorización de las cuatro operaciones Introducción inicial Adición a) Introducción b) Descripción

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

UNIVERSIDAD BOLIVARIANA DE VENEZUELA

UNIVERSIDAD BOLIVARIANA DE VENEZUELA Introducción: El análisis de la LOGICA DIGITAL precisa la consideración de dos aspectos diferentes: el proceso lógico, que es la base teórica de los computadores, calculadoras, relojes digitales, etc.

Más detalles

INTEGRANTE: FELIPE ZUÑIGA N. FECHA: 01 / 06 / 2004.- PROFESORA: ALONDRA ZUÑIGA H. UNIDAD: SISTEMAS DE NUMERACION - 1 -

INTEGRANTE: FELIPE ZUÑIGA N. FECHA: 01 / 06 / 2004.- PROFESORA: ALONDRA ZUÑIGA H. UNIDAD: SISTEMAS DE NUMERACION - 1 - INTEGRANTE: FELIPE ZUÑIGA N. FECHA: 01 / 06 / 2004.- PROFESORA: ALONDRA ZUÑIGA H. UNIDAD: SISTEMAS DE NUMERACION - 1 - INDICE PAGINA 1.PORTADA PAGINA 2...INDICE PAGINA 3...INTRODUCCION PAGINA 4...SISTEMA

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza Las cuatro operaciones En la Escuela Básica por Francisco Rivero Mendoza 1 Conociendo los números Antes de pasar a estudiar los correspondientes algoritmos de la suma y la resta, es preciso desarrollar

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Sistema Binario. Sonia Alexandra Pinzón Nuñez. Ingeniera de Sistemas

Sistema Binario. Sonia Alexandra Pinzón Nuñez. Ingeniera de Sistemas Sistema Binario Ingeniera de Sistemas Tecnología en Sistematización de Datos Facultad Tecnológica - Universidad Distrital Sistemas Numéricos (Posicionales) Como en todo sistema de numeración, el valor

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

Ruleta: Reglas del Juego de la Ruleta

Ruleta: Reglas del Juego de la Ruleta Ruleta: Reglas del Juego de la Ruleta Como único objetivo este juego tiene el saber en que casillero exactamente con el color y número caerá la bola. Dichos jugadores se enfrentarán a un "croupier" denominado

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

2 Potencias y radicales

2 Potencias y radicales 89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias

Más detalles

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 6

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 6 COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 25 Mes 03 Año 2015 META DE COMPRENSIÓN: Las estudiantes desarrollarán comprensión acerca de la evolución histórica de los sistemas de numeración, para ubicar

Más detalles

Colegio Agustiniano Campestre Amor y Ciencia La mejor alternativa de Formación Integral GUIA DIDÁCTICA AGUSTINIANA

Colegio Agustiniano Campestre Amor y Ciencia La mejor alternativa de Formación Integral GUIA DIDÁCTICA AGUSTINIANA Colegio Agustiniano Campestre Amor y Ciencia La mejor alternativa de Formación Integral GUIA DIDÁCTICA AGUSTINIANA PGA FR 08 Versión 06 2014 08 23 ÁREA Y/O ASIGNATURA: MATEMÁTICAS GRADO: SEXTO PERIODO:

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

El juego mejor pagado: La ruleta

El juego mejor pagado: La ruleta El juego mejor pagado: La ruleta Con esta guía podrás entender todo el juego de la ruleta, desde lo más básico los tipos de apuesta, los pagos de cada apuesta y estrategias que te ayudarán a sacarle provecho

Más detalles

Quadice REGLAS DEL JUEGO

Quadice REGLAS DEL JUEGO Quadice REGLAS DEL JUEGO PARA COMENZAR EL JUEGO Acción Cada jugador tira los dados y suma los números. El estudiante que obtenga el número mayor es #; el jugador con el segundo número más alto es el número

Más detalles

El Sistema de numeración Romano utiliza letras para escribir los números: I V X L C D M. uno cinco diez cincuenta cien quinientos mil

El Sistema de numeración Romano utiliza letras para escribir los números: I V X L C D M. uno cinco diez cincuenta cien quinientos mil BLOQUE 1. NÚMEROS Y OPERACIONES CAPÍTULO 1.2. REPRESENTACIÓN ESCRITA DE LOS NÚMEROS La necesidad de comunicación entre los seres humanos ha llevado desde antiguo a la invención y uso de signos para contar,

Más detalles

Sistema de numeración maya

Sistema de numeración maya @ Sistema de numeración maya La civilización maya tuvo un gran desarrollo cultural y matemático, ya que creó un sistema de numeración vigesimal, es decir, que su base es el número 20 y las cantidades se

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

Ruleta Americana Aprender a jugar

Ruleta Americana Aprender a jugar Ruleta Americana Aprender a jugar La ruleta es el más famoso juego de azar de los casinos de todo el mundo, cuyo nombre viene del término francés roulette, que significa rueda pequeña. Su uso como elemento

Más detalles

Los números naturales

Los números naturales 1 Los números naturales Objetivos En esta quincena aprenderás a: Leer y escribir números mediante el sistema de numeración decimal. Utilizar los símbolos de desigualdad. Redondear números naturales. Realizar

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

Estrategias en Juegos

Estrategias en Juegos Estrategias en Juegos Reglas comunes a todos los juegos, salvo que se indique lo contrario: Torres Los juegos son para dos jugadores. Cada jugador mueve por turnos, según las reglas del juego. No puede

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25 2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo

Más detalles

Juegos pąrą el ĄulĄ. La guerra de cartas

Juegos pąrą el ĄulĄ. La guerra de cartas Juegos pąrą el ĄulĄ Los chicos comienzan a jugar cuando son bebés, a través del vínculo que establecen entre la realidad y sus fantasías. Ese jugar inicial no sabe de pautas preestablecidas, no entiende

Más detalles

Los números enteros. Objetivos. Antes de empezar

Los números enteros. Objetivos. Antes de empezar 3 Los números enteros Objetivos En esta quincena aprenderás a: Utilizar números enteros en distintos contextos. Representar y ordenar números enteros. Hallar el valor absoluto y el opuesto de un número

Más detalles

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13.

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13. Ejercicios de números naturales con soluciones 1 Tres amigos han juntado 40 para comprar un regalo a otro amigo. El primero puso 12 y el segundo, 3 más que el primero. Cuánto puso el tercero? El primero

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS 64 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS Ilustraciones: Banco de imágenes del INTEF 65 Índice 1. NÚMEROS ENTEROS 1.1. NÚMEROS POSITIVOS, NEGATIVOS Y CERO 1.2. DONDE APARECEN LOS NÚMEROS NEGATIVOS 1.3. QUE

Más detalles

Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS

Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS Las categorías en las que se clasifican los números enteros son numerosas y atienden a diversos criterios, siendo los

Más detalles

TEMA 4. Sistema Sexagesimal. Sistema Octal (base 8): sistema de numeración que utiliza los dígitos 0, 1, 2, 3, 4, 5,

TEMA 4. Sistema Sexagesimal. Sistema Octal (base 8): sistema de numeración que utiliza los dígitos 0, 1, 2, 3, 4, 5, TEMA 4 Sistema Sexagesimal 4.0.- Sistemas de numeración Son métodos (conjunto de símbolos y reglas) ideados por el hombre para contar elementos de un conjunto o agrupación de cosas. Se clasifican en sistemas

Más detalles

1Calculadora USO DE LA CALCULADORA

1Calculadora USO DE LA CALCULADORA USO DE LA CALCULADORA Pág. 1 Se ofrece aquí un material didáctico preparado para ser empleado directamente por los alumnos y las alumnas, que comprende explicaciones y actividades dirigidas al aprendizaje

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

COMBINACIONES página 29 COMBINACIONES

COMBINACIONES página 29 COMBINACIONES página 29 DEFINICIÓN: Dados n elementos, el número de conjuntos que se pueden formar con ellos, tomados der en r, se llaman combinaciones. Por ejemplo, sean cuatro elementos formar con esos cuatro elementos

Más detalles

LA DUALIDAD PAR-IMPAR. 1. En una reunión de 25 personas. Puede ser que cada una se salude dándose la mano con todas las demás excepto con una?

LA DUALIDAD PAR-IMPAR. 1. En una reunión de 25 personas. Puede ser que cada una se salude dándose la mano con todas las demás excepto con una? NOTAS Un sencillo principio matemático que da mucho más juego del que parece a primera vista es la simple distinción entre los números pares e impares. Conviene tener presente las siguientes propiedades,

Más detalles

3º Sesión NAIPES Y SUMA-100. I. Algo Sencillo para comenzar:

3º Sesión NAIPES Y SUMA-100. I. Algo Sencillo para comenzar: 3º Sesión NAIPES Y SUMA-100 I. Algo sencillo para comenzar. II. La barajada perfecta! III. El juego del Suma-100 IV. Poker Matemático I. Algo Sencillo para comenzar: Vamos a comenzar con un ejercicio de

Más detalles

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24 1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

EL TABLERO. El tablero está dividido en sesenta y cuatro (64) casillas o escaques alternando los colores blancos con los negros.

EL TABLERO. El tablero está dividido en sesenta y cuatro (64) casillas o escaques alternando los colores blancos con los negros. EL TABLERO El tablero es el campo de batalla donde dos ejércitos, uno de color blanco y otro de color negro, se enfrentan, dirigidos cada uno por un rey. El tablero está dividido en sesenta y cuatro (64)

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo Curso Taller de Matemáticas Olímpicas Principio Fundamental del Conteo La forma más sencilla y tradicional de contar cosas suele ser con los diagramas de árbol; al final, todo se reduce a sumas y multiplicaciones.

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

FICHA TÉCNICA. imitar. Era una técnica poco conocida, incluso en México, en la década del 60, época en que se realiza el mural.

FICHA TÉCNICA. imitar. Era una técnica poco conocida, incluso en México, en la década del 60, época en que se realiza el mural. ... Y N O H A Y B E L L E Z A C O M O L A B E L L E Z A D E A M É R I C A E N S U S I N F I E R N O S, E N S U S C E R R O FICHA TÉCNICA Dimensiones Paño central: 20 x 6m. Paños laterales: 7,6 x 6 m cada

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

INSTRUCCIONES PARA CUMPLIMENTAR EL ACTA OFICIAL DE VOLEIBOL 2005 / 2006

INSTRUCCIONES PARA CUMPLIMENTAR EL ACTA OFICIAL DE VOLEIBOL 2005 / 2006 INSTRUCCIONES PARA CUMPLIMENTAR EL ACTA OFICIAL DE VOLEIBOL 2005 / 2006 EDICIÓN ACTUALIZADA AL 01 DE OCTUBRE DE 2005 Por RAFAEL GODOY CTNA REUNIÓN ANUAL 2005-1 - I. INTRODUCCIÓN La anotación del partido

Más detalles

TEMPORALIZACIÓN DE MATEMÁTICAS CURSO 2015/16 2º PRIMARIA

TEMPORALIZACIÓN DE MATEMÁTICAS CURSO 2015/16 2º PRIMARIA TEMPORALIZACIÓN DE MATEMÁTICAS CURSO 2015/16 2º PRIMARIA TEMA 1 14 SEPTIEMBRE AL 2 OCTUBRE LECTURA. QUÉ SABEMOS. Clase de danza y Sin semáforos. - Contar del 0 al 99. - Unidad y decena. Descomposición

Más detalles

Sistemas numéricos. Aurelio Sanabria Taller de programación

Sistemas numéricos. Aurelio Sanabria Taller de programación Sistemas numéricos Aurelio Sanabria Taller de programación II semestre, 2015 Sistemas numéricos Son un conjunto de reglas y símbolos que permiten construir representaciones numéricas. Los símbolos son

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

Lección 18: Plano car tesiano. Mapas y planos

Lección 18: Plano car tesiano. Mapas y planos GUÍA DE MATEMÁTICAS II 9 Lección 8: Plano car tesiano. Mapas y planos Mapas y planos La siguiente figura es un plano de una porción del Centro Histórico de la Ciudad de México. En él se ha utilizado la

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

TALLERES DE INFORMÁTICA

TALLERES DE INFORMÁTICA TALLERES DE INFORMÁTICA El juego de los códigos secretos para la transmisión de mensajes. Pensamiento computacional 1 (3p) Reglas para la construcción de códigos binarios: Solamente se pueden usar dos

Más detalles

Juegos. Juegos con monedas. Febrero 2007, pp. 67-73. Grupo Alquerque de Sevilla

Juegos. Juegos con monedas. Febrero 2007, pp. 67-73. Grupo Alquerque de Sevilla 54, pp. 67-73 Juegos con monedas Juegos C uando nos enfrascamos con nuestros alumnos en la resolución de problemas (no nos referimos a meros ejercicios repetitivos) debemos activar la capacidad de sorpresa

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

Líneas abiertas y cerradas

Líneas abiertas y cerradas Líneas abiertas y cerradas Observa al hombre de las cavernas, está empezando a pintar. Delínea con color azul las líneas abiertas y con color rojo las cerradas Dibuja en tu cuaderno líneas abiertas y cerradas.

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

UNIDAD 2. LOS NÚMEROS RACIONALES.

UNIDAD 2. LOS NÚMEROS RACIONALES. IES Prof. Juan Bautista Matemáticas º (Ver. ) Unidad : Los números racionles UNIDAD. LOS NÚMEROS RACIONALES. Unidad : Los números racionales Al final deberás haber aprendido... Usar y operar con fracciones

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA

CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA Traducción Adriana Rabino Original Fran Tapson 2004, ver http://www.cleavebooks.co.uk/trol/trolxe.pdf La idea es utilizar un material en general

Más detalles

QUÉ ES UN NÚMERO DECIMAL?

QUÉ ES UN NÚMERO DECIMAL? QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y

Más detalles

Operaciones combinadas

Operaciones combinadas Operaciones combinadas ESCRITURA SIMPLIFICADA DE SUMAS Y RESTAS Para simplificar la escritura de una serie de sumas y restas de números enteros, por ejemplo (+5) + (-) - (-8) - (+7), se siguen estos pasos:.

Más detalles

Potencias y Raíces. 100 Ejercicios para practicar con soluciones

Potencias y Raíces. 100 Ejercicios para practicar con soluciones Potencias y Raíces. 00 Ejercicios para practicar con soluciones Cuál es el área de un cuadrado cuyo lado mide cm? Expresa el resultado en forma de potencia. El área de un cuadrado es: A Por tanto, el área

Más detalles

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos La imaginación es más importante que el conocimiento. Albert Einstein Unidad 6 Suma y resta d e monomios y polinomios Objetivos mat emát ic as 1 Introducción C uando estábamos en primaria la maestra nos

Más detalles