Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO"

Transcripción

1 Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo Camargo Simeón Casanova Trujillo Departamento de Matemátias Estadístia Faultad de Cienias Exatas Naturales Universidad Naional de Colombia Manizales Colombia Artile Info Artile histor: Reeived: 3 enero 3 Reeived in revised: 3enero 3 Aepted: febrero 3 Available online: 4 febrero 3 ABSTRACT: In this paper we generalize the proedure to find the frequen equation for a quadrati setional area bar to find the equation of frequen for the osine ase The solution is obtained using the fsolve Matlab funtion Kewords: vibration frequenies axial movement osine area RESUMEN: En este artíulo se generaliza el proedimiento usado para enontrar la euaión de freuenia de una barra on área seional uadrátia on el fin de enontrar la euaión de freuenia para el aso oseno PALABRAS CLAVE: freuenias de vibraión movimiento axial área oseno INTRODUCCIÓN Con auda de las arateristias de vibraión se puede onoer el omportamiento de ierta estrutura vibrante Además se pueden estimar parámetros fisios (Ram 6) de daño en el aso de una barra on grietas (Singh 9) El heho de variar el área seional de una estrutura puede audar a reduir el peso mejorar la fuerza estabilidad de la misma (Eisenberger 99) En la literatura a se han enontrado las freuenias para el aso en que el área seional es lineal uadrátia exponenial Cuando el área es onstante estas freuenias han sido reportadas en (Timoshenko 937) Eisenberger en (Eisenberger 99) enuentra las freuenias de una barra on área seional lineal polinomial de grado usando el llamado método del elemento exato Serge en Revista NOOS Vol No 3 febrero de 3 Universidad Naional de Colombia Sede Manizales ISSN

2 Revista NOOS Volumen (3) Pág 5 (Abrate 995) usa un ambio de variable en la euaión de movimiento enuentra la euaión de freuenia en el aso uadrátio x En este artíulo se trabaja el aso en que el área seional es oseno haiendo una generalizaión del método usado por Abrate en (Abrate 995) Se onsidera el aso oseno en lugar de una seno pues tiene maor sentido tener una estrutura ua base es más grande que su superfiie Para enontrar las freuenias de vibraión de la estrutura se hae uso de la funión fsolve de Matlab tomando omo valores iniiales las freuenias de vibraión de una barra on área seional onstante ASPECTOS TEORICOS Suponga que () se puede expresar omo d [ ( ] 3 ( dx Expandiendo las euaiones () (3) se obtiene: 4 5 A' ( ' Con E u ' ( ' ' ( ) ( ) u x x Comparando las euaiones (4) (5) se llega a: 6 A' ( ' ( ( Ilustraión Barra on parámetros físios no onstantes Se onsidera una barra axialmente vibrante de longitud en el aso en que la densidad es onstante área seional variable ua euaión de movimiento es: L omo se muestra en la Ilustraión d du d U E dx dx dt p( E q( donde son larigidez axial masa por unidad de longitud de la barra respetivamente U x t sin t Si entones () se onvierte en: d d E dx dx Es deir 7 ' ( ' ( La soluión de la euaión (6) viene dada por: En partiular si 8 e d De (7) se puede ver que Si 9 se obtiene: ( d x ) resulta: ( ' ( ) ( x ) ( depende de Los asos en los uales a han sido estudiados en (Abrate 995) (Ram Y M 994) orresponden al aso en que el área seional de la barra es uadrátia exponenial respetivamente Revista NOOS Vol No 3 febrero de 3 Universidad Naional de Colombia Sede Manizales ISSN

3 Revista NOOS Volumen (3) Pág 6 ÁREA COSENO En esta seión se onsidera el aso que no se ha trabajado en la literatura el ual orresponde a Si ourre esto entones ( se puede esribir de la siguiente manera: ( os x sin x Con Se onsidera primero el aso en que ( os( por tener forma dereiente De esta manera Tomando onvierte en os ( v( ( d v v dx ua soluión es la euaión (3) se x sin x v( os La onfiguraión de la barra nos permite obtener las siguientes ondiiones de frontera: En el aso en que un extremo sea fijo el otro libre se tiene La ondiión por tanto ) ( ) Así v( sin implia que x ' Por otro lado omo entones es deir 3 v ( os x v' ( ' ( v( v ( ( De esta manera se obtiene: sin v( ) L 4 v' ( sin( os( Evaluando (4) resulta x L en (3) e igualándola a Ltan L tan En onseuenia satisfae L tan L L tanl En el aso en que los dos extremos sean fijos o ambos sean libres se tiene que: L sin Si la onfiguraión es libre-fija obtenemos: os L Con base en lo anterior se obtienen las siguientes proposiiones: Proposiión : Los valores exatos de las freuenias de vibraión de una barra de longitud que tiene un extremo fijo el otro os ( libre on área seional rigidez densidad onstante están dadas por: 5 L tan L tan L L Proposiión : Los valores exatos de las freuenias de vibraión de una barra de longitud que tiene ambos extremos fijos on área seional rigidez densidad onstante están dadas por: 6 os ( sin L Proposiión 3: Los valores exatos de las freuenias de vibraión de una barra de longitud que tiene un extremo fijo el otro sin ( libre on área seional rigidez densidad onstante satisfaen la siguiente euaión: 7 L tan L ot L L Revista NOOS Vol No 3 febrero de 3 Universidad Naional de Colombia Sede Manizales ISSN

4 Revista NOOS Volumen (3) Pág 7 Las freuenias de vibraión para otras onfiguraiones de la barra satisfaen la misma euaión que uando el área es os ( 3 ILUSTRACIÓN NUMÉRICA En esta seión se implementa la funión fsolve on valores iniiales las freuenias de vibraión de una barra on área seional densidad rigidez onstante para obtener la soluión de la euaión de freuenia orrespondiente a una barra on un extremo fijo el otro libre área seional os ( longitud variando Es onoido que las freuenias de una barra on un extremo fijo el otro libre área seional densidad rigidez onstante satisfaen la siguiente euaión: 4 i i en el aso en que ambos extremos están fijos las freuenias de vibraión satisfaen: i i Las Tablas se obtuvieron usando la funión fsolve de Matlab orresponden a las primeras ino freuenias de vibraión de una barra de área seional sin ( os ( on diferentes onfiguraiones mediante variaión del parámetro Tabla : Freuenias de vibraión de una barra fijo-libre os ( Freuenia = = = = Tabla : Freuenias de vibraión de una barra on ambos lados fijos os ( Freuenia = = = = Tabla 3: Freuenias de vibraión fijo-libre sin ( Freuenia = = = = CONCLUSIONES La vibraión de una barra no uniforme ha sido enontrada haiendo uso de un ambio de variable En una barra on área seional oseno o seno las freuenias de vibraión son las mismas uando ambos extremos están fijos o libres En la onfiguraión de la barra fijo-libre uando el área es osenoidal a medida que se inrementa el valor del parámetro algunas freuenias de vibraión se van pareiendo a las freuenias de una barra on área seional onstante Cuando el área seional es senoidal el parámetro no tiene algún efeto sobre las freuenias de vibraión de la barra Revista NOOS Vol No 3 febrero de 3 Universidad Naional de Colombia Sede Manizales ISSN

5 Revista NOOS Volumen (3) Pág 8 REFERENCIAS Abrate S (995) Vibration of Non- Uniform Rods and Beams Journal of Sound and Vibration Eisenberger M (99) Exat Longitudinal Vibration Freuenies of a Variable Cross-Setion Rod Applied Aoustis Ram K V (6) Transendental Inverse Eigenvalue Problem AIAA Journal 4 Ram Y M (994) An inverse mode problem for the ontinuous model of an axiall vibrating rod ASME Journal of Applied Mehanis Singh K V (9) Transendental inverse eigenvalue problems in damage Mehanial Sstems and Signal Proessing Timoshenko S (937) Vibration Problems in Engineering D Van Nostrand Compan Revista NOOS Vol No 3 febrero de 3 Universidad Naional de Colombia Sede Manizales ISSN

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

Tema 2: Elección bajo incertidumbre

Tema 2: Elección bajo incertidumbre Tema : Eleión bajo inertidumbre Ref: Capítulo Varian Autor: Joel Sandonís Versión:..0 Javier López Departamento de Fundamentos del Análisis Eonómio Universidad de Aliante Miroeonomía Intermedia Introduión

Más detalles

11 Efectos de la esbeltez

11 Efectos de la esbeltez 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas

Más detalles

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Universidad de Buenos Aires - Faultad de Cienias Eonómias CRECIMIENTO ECONÓMICO NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Por: los integrantes del urso 1 Año 2012 1 Las presentes notas de lase

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Universidad Naional del Callao Esuela Profesional de Ingeniería Elétria Faultad de Ingeniería Elétria y Eletrónia Cilo 2008-B ÍNDICE GENERAL INTRODUCION... 2 1. OBJETIVOS...3 2. EXPERIMENTO...3 2.1 MODELO

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

FRANQUICIAS ESTOCÁSTICAS

FRANQUICIAS ESTOCÁSTICAS FRNQUICIS ESTOCÁSTICS ngel Vegas Montaner. Universidad de lalá. angel.vegas@uah.es Roberto Esuder Vallés. Universidad de Valenia. Roberto.Esuder@uv.es Julián Oliver Raboso. Universidad Pontifiia Comillas.

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1 DETERMINAION DEL VALOR DE LA UOTA Y EL RONOGRAMA DE PAGOS DE REDITOS HIPOTEARIOS Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

Ángulo de desfase en un circuito RC Fundamento

Ángulo de desfase en un circuito RC Fundamento Ángulo de desfase en un iruito RC Fundaento En un iruito de orriente alterna, están situados en serie una resistenia variable R V y un ondensador. Debido a que las aídas de tensión en ada eleento no están

Más detalles

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO 1 Tema 8 íneas de Transmisión: análisis iruital y transitorio Eletromagnetismo TEMA 8: INEAS DE TRANSMISIÓN: ANÁISIS CIRCUITA Y TRANSITORIO Miguel Angel Solano Vérez Eletromagnetismo Tema 8 íneas de transmisión:

Más detalles

LIXIVIACION DE MINERALES MEDIANTE PILAS Y BATEAS

LIXIVIACION DE MINERALES MEDIANTE PILAS Y BATEAS LIXIVICION DE MINERLES MEDINTE PILS Y TES Fabián Cárdenas, Mauriio Díaz, Carlos Guajardo, María elén Oliva Universidad de Chile Estudiantes de ingeniería en minas Departamentos de Ingeniería de Minas Tupper

Más detalles

El Concreto y los Terremotos

El Concreto y los Terremotos Por: Mauriio Gallego Silva, Ingeniero Civil. Binaria Ltda. mgallego@binaria.om.o Resumen Para diseñar una edifiaión de onreto reforzado que sea apaz de resistir eventos sísmios es neesario tener ontrol

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5.1 Introduión La valoraión de la reatividad se puede enfoar bajo tres puntos de vista diferentes:

Más detalles

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales Congreso Anual 010 de la Asoiaión de Méxio de Control Automátio. Puerto Vallarta, Jaliso, Méxio. Diseño e Implementaión de Controladores Digitales Basados en Proesadores Digitales De Señales Barrera Cardiel

Más detalles

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD.

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. Tema 5. Estrutura de la Tierra y anomalías de la gravedad. 5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. 5. Estrutura interna de la Tierra y gravedad asoiada. El avane en el onoimiento interno

Más detalles

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 GASES Y VAPORES: los términos gas y vapor se utilizan muha vees indistintamente, pudiendo llegar a generar alguna onfusión.

Más detalles

6. Acción de masas y dependencia del potencial químico con la concentración

6. Acción de masas y dependencia del potencial químico con la concentración 6 Aión de masas y dependenia del potenial químio on la onentraión Tema: Dependenia del potenial químio on la onentraión y apliaiones más importantes 61 El onepto de aión de masas Desde hae muho tiempo

Más detalles

Determinación de Módulos de Young

Determinación de Módulos de Young Determinaión de Módulos de Young Arrufat, Franiso Tomás franiso@arrufat.om Novik, Uriel Sebastián Tel: 861-15 Frigerio, María Paz mapazf@hotmail.om Sardelli, Gastón osmo80@iudad.om.ar Universidad Favaloro,

Más detalles

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad T El GPS y la teoría de la atividad Eduardo Huerta(*), arlos Galles(**), Andrés Greo(**) y Aldo Mangiaterra(*) (*) DEPARTAMENTO DE GEOTOPOARTOGRAFÍA (**) DEPARTAMENTO DE FÍSIA FAULTAD DE IENIAS EXATAS,

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por

Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por Consmo ahorro e inertidmbre Un individo vive a lo largo de dos periodos t=. En t= s ingreso es ierto m ; en t= es inierto por ej. si mantiene el trabajo s ingreso es qe si va al paro. Lo qe pede haer el

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1 DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido.

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido. INGENIERÍA HIDRÁULICA Y AMBIENTAL VOL. XXIII No. 3 Modelaión del flujo en una ompuerta a través de las pérdidas de energía relativas de un salto idráulio sumergido. Primera Parte INTRODUCCIÓN El análisis

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl nstituto N S T de T Eonomía U T O D E E C O N O M Í A T E S S d e M A Í S T E R DOCUMENTO DE TRAAJO ¾¼¼ ÒØÖ ËØÓ ÇÔØ ÓÒ ÐÓ ÙØ ÚÓ Ô Ö ÓÑÔ Ò Ö Ù ÖÞÓ Ò ÙÒ Å ÖÓ Ñ ØÖ ÁÒ ÓÖÑ Ò Ð Ö Ó Ï Ò Ù Ë Ô Ð Öº www.eonomia.pu.l

Más detalles

Tema 2 La elección en condiciones de incertidumbre

Tema 2 La elección en condiciones de incertidumbre Ejeriios resueltos de Miroeonomía. Equilibrio general y eonomía de la informaión Fernando Perera Tallo Olga María Rodríguez Rodríguez Tema La eleión en ondiiones de inertidumbre http://bit.ly/8l8ddu Ejeriio

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

independiente de la cantidad de masa y es propio de cada sustancia c =.

independiente de la cantidad de masa y es propio de cada sustancia c =. Tema 7 Termodinámia 7.. Calorimetría y ambios de fase. 7... Capaidad alorífia y alor espeífio. La temperatura de un uerpo aumenta uando se añade alor o disminuye uando el uerpo desprende alor. (Por el

Más detalles

La solución de algunas EDO de Riccati

La solución de algunas EDO de Riccati Revista digital Matemática, Educación e Internet (http://tecdigital.tec.ac.cr/revistamatematica/). Vol 15, No 2. Marzo Agosto 2015. ISSN 1659-0643 La solución de algunas EDO de Riccati José Alfredo Jiménez

Más detalles

Optimising a two-echelon capacity-constrained material requirement manufacturing system using a linear programming model

Optimising a two-echelon capacity-constrained material requirement manufacturing system using a linear programming model INGENIERÍA E INVESTIGACIÓN VOL. 30 No. 1, ABRIL DE 2010 (168-173) Apliaión de un modelo de programaión lineal en la optimizaión de un sistema de planeaión de requerimientos de materiales (MRP) de dos esalones

Más detalles

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo.

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo. Físia relatiista. Meánia uántia Página de 4 FÍSICA º BACHILLERATO ELEMENTOS DE FÍSICA RELATIVISTA SISTEMA DE REFERENCIA Punto, o onjunto de puntos, respeto al ual desribimos el moimiento de un uerpo. ONDAS

Más detalles

13 Mediciones en fibras ópticas.

13 Mediciones en fibras ópticas. 13 Mediiones en fibras óptias. 13.1 Introduión: 13.1.1 Historia El uso de señales visuales para las omuniaiones de larga distania ya se realizaba por el año 1794 uando se transmitían mensajes de alerta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

Ciclo Económico y Desempleo Estructural en la Economía Española

Ciclo Económico y Desempleo Estructural en la Economía Española Cilo Eonómio y Desempleo Estrutural en la Eonomía Española Rafael Doméneh a yvítorgómez b a Universidad de Valenia b Ministerio de Eonomía y Haienda Otubre, 4. Resumen Este trabajo propone un nuevo método

Más detalles

Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD

Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD Compilado, redatado y agregado por el Ing. Osar M. Santa Cruz - 010 Cap. 3.1.TRANSMISIÓN DE MODULACIÓN DE AMPLITUD INTRODUCCION Las señales de informaión deben ser transportadas entre un transmisor y un

Más detalles

COLEGIO DE BACHILLERES FÍSICA MODERNA I TEORÍA DE LA RELATIVIDAD ESPECIAL. Autores: María Isabel Villaseñor Díaz

COLEGIO DE BACHILLERES FÍSICA MODERNA I TEORÍA DE LA RELATIVIDAD ESPECIAL. Autores: María Isabel Villaseñor Díaz COLEGIO DE BACHILLERES FÍSICA MODERNA I FASCÍCULO 4. TEORÍA DE LA RELATIVIDAD ESPECIAL Autores: María Isabel Villaseñor Díaz 1 COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógia María Elena Huesa

Más detalles

ÁCIDO BASE QCA 09 ANDALUCÍA

ÁCIDO BASE QCA 09 ANDALUCÍA ÁCIDO BASE QCA 9 ANDALUCÍA.- El ph de L de disoluión auosa de hidróxido de litio es. Calule: a) Los gramos de hidróxido que se han utilizado para prepararla. b) El volumen de agua que hay que añadir a

Más detalles

Diseño y Construcción de un Robot Seguidor de Línea Controlado por el PIC16F84A

Diseño y Construcción de un Robot Seguidor de Línea Controlado por el PIC16F84A 8º Congreso Naional de Meatrónia Noviembre 26-27, 2009. Veraruz, Veraruz. Diseño y Construión de un Robot Seguidor de Línea Controlado por el PIC16F84A Medina Cervantes Jesús 1,*, Reyna Jiménez Jonattan

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

COMPARATIVA ENTRE UN ENLACE PUNTO A PUNTO TDM Y SCM

COMPARATIVA ENTRE UN ENLACE PUNTO A PUNTO TDM Y SCM Comparativa entre un enlae punto a punto TDM y SCM COMARATIVA ETRE U ELACE UTO A UTO TDM Y SCM Dados ambos sistemas SCM/ y TDM/ que se muestras en las figuras a y b, y que inorporan una serie de dispositivos

Más detalles

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN INOTERMS 2010 DEFINIIÓN Las operaiones omeriales internaionales tienen su origen en un ontrato de ompraventa realizado entre importador y exportador, en el ual se estipulan las láusulas por las que se

Más detalles

Ciclones. 1.- Descripción.

Ciclones. 1.- Descripción. Cilones 1.- Desriión. Los ilones son equios meánios estaionarios, amliamente utilizados en la industria, que ermiten la searaión de artíulas de un sólido o de un líquido que se enuentran susendidos en

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA MANUAL D PRÁCTICAS D LABORATORIO D HIDRÁULICA 7 4 MDIDORS N RÉGIMN CRÍTICO 4 OBJTIVOS Verifiar la presenia del régimen rítio del flujo, en la zona de máima estrangulaión (la garganta) de una analeta Venturi

Más detalles

Riesgos en seguros y en actividades de inversión. Módulo 6 Riesgos en seguros y en actividades de inversión

Riesgos en seguros y en actividades de inversión. Módulo 6 Riesgos en seguros y en actividades de inversión Módulo 6 Riesgos en seguros y en atividades de inversión 1 Titulo: Coneptos básios del riesgo. Introduión El riesgo es inherente al hombre, está íntimamente relaionado on su propia existenia. La naturaleza

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

Evaluación de la Birrefringencia de una Fibra Óptica Monomodo Usando el Método de Barrido Espectral, Estudio Comparativo de Dos Metodologías

Evaluación de la Birrefringencia de una Fibra Óptica Monomodo Usando el Método de Barrido Espectral, Estudio Comparativo de Dos Metodologías Simposio de Metrología 8 Santiago de Querétaro, Méxio, al 4 de Otubre Evaluaión de la Birrefringenia de una Fibra Óptia Monomodo Usando el Método de Barrido Espetral, Estudio Comparativo de Dos Metodologías

Más detalles

... 8.2. Comportamiento de Multiplicadores.

... 8.2. Comportamiento de Multiplicadores. AfUALlZAION DE MATRIES DE INSUMO-RODUTO ON EL METODO RAS plladas a la subrutina RAS onviene haer algunas observaiones.respeto al omportanúento de los multipliadores a través de las iteraiones. En el proeso

Más detalles

DISEÑO DEL SISTEMA DE CALENTAMIENTO SOLAR DE AGUA

DISEÑO DEL SISTEMA DE CALENTAMIENTO SOLAR DE AGUA UNIDD DE POYO TÉCNICO PR EL SNEMIENTO BÁSICO DEL ÁRE RURL DISEÑO DEL SISTEM DE CLENTMIENTO SOLR DE GU usiiado or: Centro Panameriano de Ingeniería Sanitaria y Cienias del mbiente Área de Desarrollo Sostenible

Más detalles

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10 0. La fusión nulear en el Sol produe Helio a partir de Hidrógeno según la reaión: 4 protones + 2 eletrones núleo He + 2 neutrinos + nergía Cuánta energía se libera en la reaión (en MeV)? Datos: Masas:

Más detalles

Aplicación de la Ordenanza Solar Térmica: un balance positivo

Aplicación de la Ordenanza Solar Térmica: un balance positivo CUADERNO CENTRAL 37 Apliaión de la Ordenanza Solar Térmia: un balane positivo Ana Portnoy TEXTO Carlos Amieiro Diretor de Serviios Ténios Agenia de Energía de Barelona GRÁFICOS La Cuina Gràfia El agotamiento

Más detalles

Cap. 6.1.- MODULACIÓN ANGULAR

Cap. 6.1.- MODULACIÓN ANGULAR Copilado, anexado y redatado por el Ing. Osar M. Santa Cruz - 2010 Cap. 6.1.- MODULACIÓN ANGULAR La FM se onsideró uy al prinipio del desarrollo de las radioouniaiones. Iniialente, se pensó que la FM podría

Más detalles

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica Universidad de Costa Ria Faultad de Ingeniería Esuela de Ingeniería Elétria IE 0502 Proyeto Elétrio Diseño e implementaión de un laboratorio virtual en DSP para omuniaiones usando Matlab y Simulink Por:

Más detalles

LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO

LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO LOCALIZACIÓN DE FALLAS EN VIGAS DE FUNDACION DE HORMIGÓN ARMADO Patriia N. Domínguez a, Claudio J. Orbanih a,b, Néstor F. Ortega a a Departamento de Ingeniería Universidad Naional del Sur Av. Alem 153

Más detalles

8 Redistribución de los Momentos

8 Redistribución de los Momentos 8 Redistribuión de los Momentos TULIZIÓN PR EL ÓIGO 00 En el ódigo 00, los requisitos de diseño unifiado para redistribuión de momentos ahora se enuentran en la Seión 8.4, y los requisitos anteriores fueron

Más detalles

TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA

TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA Luis N. Lanteri Se desea agradeer a Glenn Otto los omentarios y sugerenias reibidos. No obstante, el ontenido

Más detalles

Un cortadito, por favor!

Un cortadito, por favor! Introduión a las Cienias Experientales Carrera de Cienias Eonóias Otoño 2001 Un ortadito, por favor! Sherzo sobre la ley de enfriaiento de Newton Martín M. Saravia, Carlos Tahi y Diego Vogelbau saravia@latinsurf.o

Más detalles

1. Funciones matriciales. Matriz exponencial

1. Funciones matriciales. Matriz exponencial Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales. Funiones matriiales. Matriz exponenial.. Funiones vetoriales Sea el uerpo IK que puede ser IC ó IR y sea I IR un intervalo. Entones

Más detalles

IMPLEMENTACION DE UN RECUPERADOR DE SINCRONISMO EN UNA FPGA PARA UNA SEÑAL BPSK (BIT SYNCHRONIZER)

IMPLEMENTACION DE UN RECUPERADOR DE SINCRONISMO EN UNA FPGA PARA UNA SEÑAL BPSK (BIT SYNCHRONIZER) IMPLEMENTACION DE UN RECUPERADOR DE SINCRONISMO EN UNA FPGA PARA UNA SEÑAL BPSK (BIT SYNCHRONIZER) Bra Ezequiel, Ferreyra Pablo, Ferreyra Riardo, Marqués Carlos, Jorge Naguil Departamento de Eletrónia,

Más detalles

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.- 1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta

Más detalles

Cuadernos del CIMBAGE Nº8 (2006) 97-128

Cuadernos del CIMBAGE Nº8 (2006) 97-128 Cuadernos del CIMBAGE Nº8 (006) 97-8 ANÁLISIS DE COMPORTAMIENTO DE CUENTAS CORRIENTES EN ENTIDADES BANCARIAS MEDIANTE EL USO DE FUZZY CLUSTERING Y ANÁLISIS DISCRIMINANTE PARA LA ADMINISTRACIÓN DE RIESGO

Más detalles

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN Alberto Gómez-Lozano Universidad Cooperativa de Colombia Sede Ibagué Doumentos de doenia Course Work oursework.u.e.o No. 5. Nov, 05 http://d.doi.org/0.695/greylit.6

Más detalles

Radiobiología Revista electrónica

Radiobiología Revista electrónica Radiobiología Revista eletrónia ISSN 1579-3087 http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/radiobiologia.ht http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/nueros/rb4(2004)74-77.pdf Radiobiología

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

Desde el 2 de Octubre de 2013 hasta el 30 de Octubre de 2015, o hasta que se agote el presupuesto global para el programa de ayudas.

Desde el 2 de Octubre de 2013 hasta el 30 de Octubre de 2015, o hasta que se agote el presupuesto global para el programa de ayudas. RESUMEN DEL (PAREER) PROGRAMA DE AYUDAS PARA LA REHABILITACIÓN ENERGÉTICA DE EDIFICIOS RESIDENCIALES (USO VIVIENDA Y HOTELERO) A TRAVÉS DE IDAE, RELATIVO A LAS ACTUACIONES DE ENVOLVENTE TÉRMICA OBJETO

Más detalles

Modelización matemática y simulación numérica de una válvula reguladora de presión de gas natural - 1 -

Modelización matemática y simulación numérica de una válvula reguladora de presión de gas natural - 1 - Modelizaión matemátia y simulaión numéria de una válvula reguladora de presión de gas natural - 1 - RESUMEN El presente proyeto surge de la neesidad de expliar el funionamiento erróneo de una válvula reguladora

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMNTOS DE MÁQUINAS TORNILLO DEPARTAMENTO DE AERONÁUTICA FACULTAD DE INGENIERÍA UNLP

MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMNTOS DE MÁQUINAS TORNILLO DEPARTAMENTO DE AERONÁUTICA FACULTAD DE INGENIERÍA UNLP MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMNTOS DE MÁQUINAS TORNILLO DEPARTAMENTO DE AERONÁUTICA FACULTAD DE INGENIERÍA UNLP Prof: Ing Pablo L Ringegni MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS

Más detalles

ANALISIS PRELIMINAR DE TRANSFERENCIA DE CALOR EN UNA ESTUFA LORENA PRELIMINARY ANALYSIS OF HEAT TRANSFER ON LORENA STOVE

ANALISIS PRELIMINAR DE TRANSFERENCIA DE CALOR EN UNA ESTUFA LORENA PRELIMINARY ANALYSIS OF HEAT TRANSFER ON LORENA STOVE al 4 DE SEPTIEMBRE, 00 MONTERREY, NUEVO LEÓN, MÉXICO ANALISIS PRELIMINAR DE TRANSFERENCIA DE CALOR EN UNA ESTUFA LORENA Vera Romero Iván, y Aguillón Martínez Javier Eduardo. Posgrado de Ingeniería, Energía,

Más detalles

Guía de conexión. Instalación de la impresora de forma local (Windows) Qué es la impresión local?

Guía de conexión. Instalación de la impresora de forma local (Windows) Qué es la impresión local? Página 1 de 7 Guía de onexión Instalaión de la impresora de forma loal (Windows) Nota: Al instalar una impresora onetada loalmente, si el CD Software y doumentaión no admite el sistema operativo, se dee

Más detalles

PRÁCTICA 14 DESPLAZAMIENTO DEL EQUILIBRIO QUÍMICO: EFECTO DE LA CONCENTRACIÓN Y DE LA TEMPERATURA

PRÁCTICA 14 DESPLAZAMIENTO DEL EQUILIBRIO QUÍMICO: EFECTO DE LA CONCENTRACIÓN Y DE LA TEMPERATURA PRÁCTICA 14 DESPLAZAMIENTO DEL EQUILIBRIO QUÍMICO: EFECTO DE LA CONCENTRACIÓN Y DE LA TEMPERATURA OBJETIVOS Fijar el onepto de equilibrio químio mediante el estudio experimental de distintas mezlas de

Más detalles

DISEÑO DE PERFILES AERODINÁMICOS

DISEÑO DE PERFILES AERODINÁMICOS INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD TICOMAN INGENIERÍA AERONÁUTICA DISEÑO DE PERFILES AERODINÁMICOS TESIS QUE PARA OBTENER EL TITULO DE: INGENIERO

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

Manual de instrucciones

Manual de instrucciones SISTEMA DE SOFTWARE DE BORDADO Manual de instruiones Visítenos en http://solutions.brother.om donde hallará onsejos para la soluión de problemas así omo la lista de preguntas y respuestas más freuentes.

Más detalles

3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS

3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS 3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS En todo lo que sigue no hay ambios en la masa del sistema termodinámio que estamos estudiando, o en otras alabras el número de moléulas del sistema

Más detalles

Fernando Martínez García 1 y Sonia Navarro Gómez 2

Fernando Martínez García 1 y Sonia Navarro Gómez 2 Análisis de la Operaión Estable de los Generadores de Relutania Autoexitados, bajo Condiiones Variables en la Carga, la Capaidad de Exitaión y la Veloidad Fernando Martínez Garía y Sonia Navarro Gómez

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

Análisis de correspondencias

Análisis de correspondencias Análisis de orrespondenias Eliseo Martínez H. 1. Eleiones en París Hemos deidido presentar un legendario ejemplo para expliar el objetivo del Análisis de Correspondenia. Este ejemplo se enuentra en el

Más detalles

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA Objetivos OS SINDICATOS Y A NEGOCIACIÓN COECTIVA 1. Comprender por qué surgen los sindiatos y que papel desempeñan en el merado de trabajo 2. Aprender a identifiar las distintas teorías eonómias que explian

Más detalles

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz.

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz. Espeializaión aión sin daño y onstruión de paz Espeializaión aión sin daño y onstruión de paz Fortaleimiento organizaional, un aporte a la onstruión de paz. Módulo Espeializaión aión sin daño y onstruión

Más detalles

671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU

671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU 671 CIMENTACIONES POR PILOTES DE HORMIGÓN ARMADO MOLDEADOS IN SITU 671.1 DEFINICIÓN Se definen omo imentaiones por pilotes de hormigón armado moldeados in sit u las realizadas mediante pilotes de hormigón

Más detalles

9.0 10.5 11.0 9.7 8.7 11.6 10.3 10.1 8.0 8.5 9.8

9.0 10.5 11.0 9.7 8.7 11.6 10.3 10.1 8.0 8.5 9.8 APLICACIONES ESTADÍSTICAS AL MERCADEO PRUEBAS DE HIPÓTESIS. EJERCICIOS Pruebas t para la meia. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ = 00, Ha: µ 00 muestra aleatoria e seis elementos

Más detalles

Estrategias De Ventas

Estrategias De Ventas Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas

Más detalles

2. Generalidades sobre receptores

2. Generalidades sobre receptores . Generalidades sobre reeptores.1 Modulaiones analógias La modulaión es la operaión que onvierte la señal pasa-bajo original (o señal en banda base) en un señal pasa-banda entrada en la freuenia portadora

Más detalles

DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA

DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA L. Álvarez Miño, D. Fajardo Fajardo Universidad Nacional de Colombia, Sede Manizales A. A. 127 RESUMEN En

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las tenologías de la Informaión y Comuniaión apliadas a la enseñanza de las Matemátias Parte III Patriia Cabrera M. Para dar ontinuidad a esta serie de artíulos, que tienen

Más detalles

ELEMENTOS DE FÍSICA RELATIVISTA. Introducción a la teoría de la Relatividad

ELEMENTOS DE FÍSICA RELATIVISTA. Introducción a la teoría de la Relatividad Físia de º de Bahillerato. Introduión a la Físia Relatiista Franiso Martínez Naarro 1. INTRODUCCIÓN ELEMENTOS DE FÍSICA RELATIVISTA Introduión a la teoría de la Relatiidad La Relatiidad, es la teoría desarrollada

Más detalles

TEMA IV: PLASTICIDAD. DISLOCACIONES 4.1 PARADOJA DEL LÍMITE ELÁSTICO. CONCEPTO DE DISLOCACIÓN.

TEMA IV: PLASTICIDAD. DISLOCACIONES 4.1 PARADOJA DEL LÍMITE ELÁSTICO. CONCEPTO DE DISLOCACIÓN. TEMA IV: PLASTICIDAD. DISLOCACIONES 4. Paradoja del límite elástio. Conepto de disloaión. 4. Clasifiaión y araterizaión de las disloaiones. 4.3 Propiedades de las disloaiones. 4.4 Movimiento y multipliaión

Más detalles

FUNDAMENTOS PARA LA FORMULACIÓN DE UNA METODOLOGÍA GENERAL PARA ESTIMAR LA PRODUCCIÓN DE SEDIMENTOS EN CUENCAS

FUNDAMENTOS PARA LA FORMULACIÓN DE UNA METODOLOGÍA GENERAL PARA ESTIMAR LA PRODUCCIÓN DE SEDIMENTOS EN CUENCAS FUNDAMENTOS PARA LA FORMULACIÓN DE UNA METODOLOGÍA GENERAL PARA ESTIMAR LA PRODUCCIÓN DE SEDIMENTOS EN CUENCAS Hetor Daniel Farias, Luis Alejandro Olmos Instituto de Reursos Hídrios (IRHi-FCEyT-UNSE) Av.

Más detalles

11. INTRODUCCIÓN A LA FÍSICA RELATIVISTA Y A LA FÍSICA CUÁNTICA.

11. INTRODUCCIÓN A LA FÍSICA RELATIVISTA Y A LA FÍSICA CUÁNTICA. Físia moderna 3 11. INTRODUCCIÓN A LA FÍSICA RELATIVISTA Y A LA FÍSICA CUÁNTICA. Desarrollamos la unidad de auerdo on el siguiente hilo ondutor: 1. Qué limitaiones presenta la físia lásia en el ámbito

Más detalles