Equacions i sistemes de segon grau

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Equacions i sistemes de segon grau"

Transcripción

1 Equacions i sistemes de segon grau 3 Equacions de segon grau. Resolució. a) L àrea del pati d una escola és quadrada i fa 0,5 m. Per calcular el perímetre del pati seguei els passos següents: Escriu l equació que planteja aquest problema: Quin grau té aquesta equació? Quina és la longitud d un dels costats del pati? Quin és el perímetre del pati? Una equació de segon grau és una epressió del tipus a + b + c = 0 en què a, b, i c són nombres reals i a 0. Si b 0 i c 0 es diu que l equació és completa. Vegem la resolució d equacions de segon grau incompletes, és a dir, quan b = 0 o c = 0. c 0 a c a + c = 0 a = c = ± Si > té dues solucions. Si c = 0 la solució és = 0. a c Si < 0 no té solució. a = 0 a + b = 0 a + b = 0 b a + b = 0 = ( ) a sempre tenen dues solucions. b) Resol les equacions següents: 4 96 = = 0 7 ( ) + 3( + ) =

2 3 Equacions i sistemes de segon grau. a) Considera l equació de segon grau ( 3) = 5. Per resoldre aquesta equació seguei els passos següents: Etreu l arrel quadrada en els dos termes. Has obtingut dues equacions de primer grau. Resol aquestes dues equacions. Comprova que les dues solucions trobades són solucions de l equació inicial. Resolució d equacions de segon grau particulars. r ( p + r) = = 0 p ( p + r)( q + s) = 0 ( q + s) = 0 = s q sempre tenen dues solucions. q o r q ( p + r) = q p + r = ± q = ± Si > té dues solucions. Si q = 0 té una solució doble. p Si q < 0 no té solució. b) Resol les equacions següents: ( 5 3)( + ) = = = 8

3 Equacions i sistemes de segon grau 3 3. a) Considera l equació següent: ( )( + 3) = 6. Fes el producte del primer membre. Escriu una equació equivalent a la trobada amb el segon membre igual a zero. Quin grau té aquesta equació? És una equació completa o incompleta? Per què? Vegem la resolució d equacions de segon grau completa, és a dir, a + b + c = 0, a, b, c 0. b b ac Aplicarem la fórmula general: = ± 4. a El nombre de solucions d una equació de segon grau depèn del signe del discriminant = b 4 ac. Si > 0, l equació té dues solucions diferents: b b 4ac = + a b Si = 0, l equació té una solució doble: = a. Si < 0, l equació no té solució. b b 4ac = a b) Resol l equació de segon grau obtinguda a l apartat a). c) Resol l'equació següent: ( + 3) 3 + = ( )( 5 6) 9

4 3 Equacions i sistemes de segon grau Suma i producte de les solucions 4. a) Resol les equacions de segon grau següents i completa la taula. Equació = 0 Solucions + = 8 = 0 = = = + = + 8 = 0 = = = + = = = = La suma i el producte de les dues solucions i d una equació de segon grau a + b + c = 0 compleien les propietats següents: b S = + = c P = = a a b) Resol mentalment les equacions de segon grau següents: Equació Solucions 5 = 0 = = = 0 = = = 0 = = + = 0 = = c) Troba dos nombres tals que la seva suma sigui 3 i el seu producte

5 Equacions i sistemes de segon grau 3 Sistemes d equacions de segon grau 5. a) Resol aquest sistema d equacions: + y = 7, seguint els passos indicats. + y = 5 Aïlla la variable de la primera equació. Substituei en la segona equació. Resol l equació de segon grau que has trobat. Substituei aquests valors en l epressió aïllada de. Les solucions del sistema són: = , y = i = , y = Un sistema és un sistema d equacions de segon grau quan, en aplicar algun mètode algèbric, ens porta a resoldre una equació de segon grau. Per resoldre sistemes de segon grau utilitzarem qualsevol dels mètodes algèbrics: substitució, reducció o igualació. b) Resol aquest sistema d equacions: + y = 3, seguint els passos indicats. 4 3y = 4 Multiplica la primera equació per 3. Suma aquesta equació amb la segona equació del sistema. Resol l equació de segon grau que has trobat. Substituei aquests valors en la primera equació i resol les equacions de segon grau obtingudes. Les solucions del sistema són: = , y = , = , y = = , y 3 = i 4 =......, y 4 = c) Quin mètode de resolució has fet servir en l apartat a)? I en l apartat b)?

6 3 Equacions i sistemes de segon grau 6. a) Resol aquest sistema d equacions: y = + y = 3 33 En general, el millor mètode algèbric per resoldre sistemes d equacions de segon grau és el de substitució, encara que podem trobar-nos davant situacions particulars en què resulta més ràpid utilitzar un dels altres dos mètodes. b) Resol els sistemes d equacions de segon grau següents: + 3y = 5 ( 7)( y + ) = 3 y = y = 677 ( 4) + ( y 3) = 8 4( 3) 8( y + 5) = 84 3

7 Equacions i sistemes de segon grau 3 Equacions biquadrades 7. a) El producte de dos nombres és 75 i la diferència entre els seus quadrats és 66. Planteja el sistema per resoldre aquest problema: Aïlla la variable de l equació de primer grau i substituei-la a l equació de segon grau: Arregla l equació obtinguda, eliminant el denominador i passant tots els termes al matei costat de l igual: L equació obtinguda és de grau, els eponents de la variable són i Una equació de quart grau s anomena biquadrada si té l epressió algebraica: a 4 + b + c = 0, en què a, b i c són nombres reals i a 0. Si fem el canvi d incògnita = t podem transformar aquesta equació biquadrada en l equació de segon grau at + bt + c = 0 i ens permet resoldre l equació. t b b 4ac b b 4ac = +, t = + a a = ± t, = ± t b) Acaba de resoldre el sistema de l apartat a): c) Resol les equacions biquadrades següents: = 0 ( 3) = ( )( + ) 4 33

8 3 Equacions i sistemes de segon grau Equacions irracionals 8. a) Resol l equació següent: + 3 =, seguint els passos indicats. Aïlla l arrel en el primer membre: Per treure l arrel eleva al quadrat els dos membres de la igualtat: Resol l equació de segon grau obtinguda: Comprova si els valors obtinguts són solució de l equació inicial: Dels dos valors obtinguts, el valor és una solució real i el valor és una solució fictícia, és a dir, no complei la igualtat. Les equacions irracionals són aquelles que tenen la incògnita sota el signe radical. Per eemple: + 5 =. Per resoldre aquestes equacions hem d aïllar primer l arrel en un dels termes i després elevem els dos termes al quadrat. Resolem l equació de segon grau obtinguda. Al final s haurà d esbrinar si les solucions obtingudes són solucions de l equació irracional, ja que, a vegades, en elevar al quadrat els dos membres s hi pot introduir una equació fictícia. b) Resol les equacions irracionals següents. En aquest cas hauràs d elevar al quadrat l'equació dues vegades: = 5 34

9 Equacions i sistemes de segon grau 3 Altres tipus d equacions 9. a) Observa les equacions següents, digues de quin grau són i aplica els passos indicats per resoldre-les: = 0 Grau: Aïlla el terme amb : 4 6 = 0 Grau: Aïlla el terme amb : Aplica l arrel cúbica als dos membres: Aplica l arrel quarta als dos membres: La solució és: = 0 Grau: Etreu el factor comú : Les solucions són: ( 4 6) ( 5 405) = 0 Grau: Iguala cada factor del producte a zero: Iguala cada factor del producte a zero i resol: Soluciona cada equació obtinguda: Les solucions són: Les solucions són: Per resoldre alguns tipus d equacions que no són ni de primer ni de segon grau es poden utilitzar diferents mètodes algèbrics: Etracció de factor comú. Igualació dels factors d un producte a zero. Aïllament i aplicació d arrels. 35

10 3 Equacions i sistemes de segon grau b) Resol les equacions següents: = = 0 = 3 3 ( 3 5)( 4 3) = ( 3) 9 = ( 3)( + 3) ( 4) 5 = 3 36

11 Equacions i sistemes de segon grau 3 Resolució de problemes 0. a) El jardí de la Paula té forma de rectangle. Per tancar-lo ha utilitzat 4 m de filat i la diagonal mesura 5 m. Quina és l àrea del jardí? Per trobar-la seguei els passos següents: Fes un dibui de la situació geomètrica que planteja el problema. Identifica les incògnites: és la longitud de y és la longitud de Planteja l equació que et proporciona la condició del perímetre: Planteja l equació que et proporciona la condició de la diagonal: Resol el sistema de segon grau obtingut: L àrea del jardí és A vegades per resoldre problemes s ha de plantejar i resoldre una equació de segon grau, un sistema de segon grau o bé altres tipus d equacions. Els passos per resoldre aquests problemes són: Lectura comprensiva del tet, identificació de les incògnites. Traducció del tet al llenguatge algèbric i plantejament de les equacions o sistemes d equacions. Resolució de les equacions o sistemes. Comprovació que les solucions són coherents amb l enunciat. b) En Miquel compra per als seus fills llibretes per valor de 30. Si cada llibreta hagués costat 50 cèntims menys, n hauria pogut comprar 3 més. Quantes llibretes ha comprat? Quin és el preu de cada llibreta? 37

12 3 Equacions i sistemes de segon grau Activitats finals d avaluació 3. Les solucions de l equació són: a) 8 3 i 8 3 b) 8 3 i 0 c) 8 3 i 0 d) 4 3 i 0 4 = 0. Els signes de les dues solucions de l equació + 0 = 0 són: a) Tots dos positius. b) Tots dos negatius. c) Un positiu i l altre negatiu. 3. L equació = 0 té: a) Dues solucions. b) Una solució doble. c) No té solucions. 4. Les solucions de l equació ( 5) = 49 són: a) i b) i c) i d) i 5. El discriminant de l equació = 0 és: a) = 93 b) = 57 c) = 93 d) = L equació que té com a solucions 4, 3, i és: a) = 0 b) = 0 c) ( + 4)( 3)( ) = 0 d) ( 4)( + 3)( + ) = 0 7. Les solucions del sistema següent són: y = 4 + y = 33 a) =, y = 4; =, y = 4 3 =, y3 = 4 = y, 4 b) =, y = 4; =, y = 4 3 =, y3 = 4 =, y4 = 8. Comprova si = 0 és solució de les equacions següents: 4 5 = = = = Sí/no 9. Quina és l àrea d un rectangle si sabem que un dels costats mesura cm més que l altre i la diagonal fa cm més que el costat petit? a) 3+ 3 cm b) cm c) 4 cm d) 3 cm 0. Si sumem una unitat a l arrel d un nombre obtenim la meitat del nombre menys tres unitats. Quin és aquest nombre? a) 6 i 5 b) No té solució c) 6 d) 6 38

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

Tema 2: Equacions i problemes de segon grau.

Tema 2: Equacions i problemes de segon grau. Tema : Equacions i problemes de segon grau..1. Les equacions de n grau. Equacions del tipus x + 5x - 3 0, on la incògnita x es troba elevada al quadrat, diem que són equacions de segon grau. Exemples:

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

DE FORMA ALGEBRAICA CERTES SITUACIONS

DE FORMA ALGEBRAICA CERTES SITUACIONS EXPRESSAR OBJECTIU DE FORMA ALGEBRAICA CERTES SITUACIONS NOM: CURS: DATA: LLENGUATGE NUMÈRIC I LLENGUATGE ALGEBRAIC El llenguatge en què intervenen nombres i signes d operacions l anomenem llenguatge numèric.

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

TEMA 4: Equacions exponencials i logarítmiques

TEMA 4: Equacions exponencials i logarítmiques TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats

Más detalles

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA Definició d'equació. Equacions de primer grau amb una incògnita 1. EQUACIONS: DEFINICIONS Equació: igualtat entre dues expressions algebraiques. L'expressió de l'esquerra de la igualtat rep el nom de PRIMER

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Dossier de sistemes d'equacions lineals. / Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: k b a k b a Coeficients de les incògnites:

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

Unitat didàctica 2. Polinomis i fraccions algebraiques

Unitat didàctica 2. Polinomis i fraccions algebraiques Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

8. Reflexiona: Si a<-3, pot se a<0?

8. Reflexiona: Si a<-3, pot se a<0? ACTIVITATS 1. Expressa amb nombres enters: a) L avió vola a una altura de tres mil metres b) El termòmetre marca tres graus sota zero c) Dec cinc euros al meu germà 2. Troba el valor absolut de: -4, +5,

Más detalles

TEMES TREBALLATS A 3r d'eso

TEMES TREBALLATS A 3r d'eso TEMES TREBALLATS A r d'eso. Repàs de n d'eso. Nombres racionals. Equacions. Sistemes d'equacions de r grau. Funcions. Geometria en l'espai Recordeu que a part dels apunts teniu d'altres documents per preparar

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut.

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut. Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques MS Àlgebra i uncions I Nom: Grup: ) Resol les següents equacions: a) 7+ 3+ c) 3 +

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

Equacions de primer i segon grau

Equacions de primer i segon grau Equacions de primer i segon grau Les equacions de primer i segon grau Equacions de primer grau amb una incògnita Exemple 3x 5 = x + 5 és una equació de primer grau amb una incògnita: és una equació perquè

Más detalles

POLINOMIS i FRACCIONS ALGEBRAIQUES

POLINOMIS i FRACCIONS ALGEBRAIQUES POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8

Más detalles

Prova de competència matemàtica

Prova de competència matemàtica PROVES DE QUALIFICACIO DE NIVELL 3 Prova de competència matemàtica Nombres naturals: jerarquia d operacions: La jerarquia es: 1. parèntesi 2. multiplicacions i divisions 3. sumes i restes a) 25 : 5 + 3.

Más detalles

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció eponencial La funció eponencial és de la forma f () = a, on a > 0, a 1 El valor a s anomena base de la funció eponencial.

Más detalles

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA 1. INTRODUCCIÓ. IES L ASSUMPCIÒ d El http://ww w.ieslaasuncion.org Observa l arbre genealògic de Lluïsa: Rebesavis Besavis Iaios Pares Lluïsa Hi ha ocasions en les que per a resoldre un problema es necessari

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

Unitat didàctica 5. Funcions elementals II

Unitat didàctica 5. Funcions elementals II Unitat didàctica 5. Funcions elementals II Et convé recordar Com s obtenen punts d una funció Per a la funció = +, calcula els punts següents: a) D abscissa = (, 8) b) D abscissa = (, ) c) D ordenada 0

Más detalles

6Solucions a les activitats de cada epígraf

6Solucions a les activitats de cada epígraf PÀGINA 4 Pàg. Les equacions són igualtats algebraiques (amb nombres i lletres) que permeten establir relacions entre valors coneguts (dades) i valors desconeguts (incògnites). Aprenent a manejar-les, disposaràs

Más detalles

La porció limitada per una línia poligonal tancada és un

La porció limitada per una línia poligonal tancada és un PLA Si n és el nombre de costats del polígon: El nombre de diagonals és La suma dels seus angles és 180º ( n 2 ). La porció limitada per una línia poligonal tancada és un Entre les seves propietats destaquem

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

6. Potències i arrel quadrada

6. Potències i arrel quadrada 43 6. Potències i arrel quadrada 1. POTÈNCIES Completa la taula següent en el quadern: 1 2 3 4 5 6 7 8 9 10 1 4 49 1 2 3 4 5 6 7 8 9 10 1 4 9 16 25 36 49 64 81 100 a) 5 600 b) 0,00795 11. Tenim una finca

Más detalles

EQUACIONS. 4. Problemes d equacions.

EQUACIONS. 4. Problemes d equacions. EQUACIONS 1. Conceptes bàsics. 1.1. Definició d igualtat algebraica. 1.. Propietats de les igualtats algebraiques. 1.. Definició d identitat. 1.4. Definició d equació. 1.5. Membres i termes d una equació.

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

TEMA 4 : Programació lineal

TEMA 4 : Programació lineal TEMA 4 : Programació lineal 4.1. SISTEMES D INEQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITA La solució d aquest sistema és l intersecció de les regions que correspon a la solució de cadascuna de les inequacions

Más detalles

EQUACIONS DE PRIMER GRAU

EQUACIONS DE PRIMER GRAU 1.- Resol les equacions següents: a) x 6x + 10 b) 6x + 1 + 4x c) 5x + -10 d) 6(x 1) 4(x ) e) 1-4x + 6x f) 5(x ) + 4 (5x 1) + 1 g) 8( 10 x ) -6 h) 11 (x + 7) x (5x 6) i) 6( 7 x ) 8( 6 x ) j) ( 1) + 5x 1

Más detalles

DOSSIER DE RECUPERACIÓ 3r ESO

DOSSIER DE RECUPERACIÓ 3r ESO DOSSIER DE RECUPERACIÓ 3r ESO INS MARIANAO. Departament de matemàtiques La correcta realització d aquest dossier, i la posterior entrega el dia de l examen puntuarà un 20% de la nota total. Les activitats

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal

Más detalles

Igualdad. 2x + 3 = 5x 2. Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x Cierta. 2x + 2 = 2 (x + 1) 2x + 2 = 2x = 2

Igualdad. 2x + 3 = 5x 2. Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x Cierta. 2x + 2 = 2 (x + 1) 2x + 2 = 2x = 2 Cfgm Equacions 0 Ecuacions Igualdad Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 5x 2 Una igualdad puede ser: Falsa: 2x + 1 2 (x + 1) 2x + 1 2x + 2 1 2. Cierta 2x + 2 2

Más detalles

Generalitat de Catalunya Departament d Educació Departament de Matemàtiques. Curs SES Pla Marcell. L àlgebra: nombres i lletres

Generalitat de Catalunya Departament d Educació Departament de Matemàtiques. Curs SES Pla Marcell. L àlgebra: nombres i lletres 2 Full de treball A Màgia i matemàtiques? Li has demanat alguna vegada a un amic que li pots endevinar un nombre fen diverses operacions? A.1 Comencem amb un exemple, agafa la calculadora i: a) Pensa un

Más detalles

( ) ( 6 5) (

( ) ( 6 5) ( r d ESO EXERCICIS DE REPÀS 1. Determina el representant canònic de cadascun dels següents nombres racionals: 420 60 b) 12 14 c) 512 1024 d) 54 180 e) 117 247 2. Fes les següents operacions de nombres racionals

Más detalles

SOLUCIONARI Unitat 2. Comencem. Exercicis

SOLUCIONARI Unitat 2. Comencem. Exercicis SOLUCIONARI Unitat Comencem Representa en paper mil limetrat la funció f() + 4. Traça amb la màima cura possible la recta tangent a la paràbola en el punt P(, ). Mesura amb un transportador l angle que

Más detalles

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot LES FRACCIONS Termes d una fracció: a b Numerador Denominador 1.- ELS TRES SIGNIFICATS D UNA FRACCIÓ 1.1. Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació

Más detalles

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que

Más detalles

Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 3 ÀREES I VOLUMS. Unitat 3 ÀREES I VOLUMS

Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 3 ÀREES I VOLUMS. Unitat 3 ÀREES I VOLUMS 70 Unitat 3 ÀREES I VOLUMS què treballaràs? En acabar la unitat has de ser capaç de: Reconèixer unitats de mesura d una àrea. Interpretar fórmules d àrees de figures planes. Aplicar fórmules d àrees de

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell Curs de preparació per a la prova d accés a cicles formatius de grau superior Matemàtiques BLOC : FUNCIONS I GRÀFICS AUTORA: Alícia Espuig Bermell Bloc : Funcions i gràfics Tema 7: Funcions... Tema 8:

Más detalles

SOLUCIONARI Unitat 1

SOLUCIONARI Unitat 1 SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La

Más detalles

CRITERIS DE CORRECCIÓ I PROVA CORREGIDA Matemàtiques AVALUACIÓ DIAGNÒSTICA EDUCACIÓ SECUNDÀRIA OBLIGATÒRIA

CRITERIS DE CORRECCIÓ I PROVA CORREGIDA Matemàtiques AVALUACIÓ DIAGNÒSTICA EDUCACIÓ SECUNDÀRIA OBLIGATÒRIA CRITERIS DE CORRECCIÓ I PROVA CORREGIDA Matemàtiques AVALUACIÓ DIAGNÒSTICA EDUCACIÓ SECUNDÀRIA OBLIGATÒRIA Curs 2012-2013 AVALUACIÓ DIAGNÒSTICA EDUCACIÓ SECUNDÀRIA OBLIGATÒRIA: Quadre resum de les respostes.

Más detalles

4. PROBLEMES AMB EQUACIONS

4. PROBLEMES AMB EQUACIONS 4. PROBLEMES AMB EQUACIONS Molts problemes matemàtiques es poden resoldre amb ajuda d'equacions. Donar una mecànica per la resolució és difícil, doncs òbviament cada problema té la seva estratègia, però

Más detalles

Equacions i sistemes. de primer grau

Equacions i sistemes. de primer grau Equacions i sistemes de primer grau 1. Equacions de primer grau amb una incògnita. Resolució. Equacions de primer grau amb dues incògnites. Sistemes de dues equacions de primer grau amb dues incògnites.

Más detalles

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES Suma de monomis. 1. Realitza les següents operacions: + 8 4 9 9 6 + 4 5 5 1 + 4 4 4 11 7 f) 6 7 1 8. Realitza les següents operacions: 1 + 5 5 + 1 y + y + y

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 55 Activitat 1 Dels nombres següents, indica quins són enters. a) 4 b) 0,25 c) 2 d) 3/5 e) 0 f) 1/2 g) 9 Els nombres enters són: 4, 2, 0 i 9. Activitat 2 Si la

Más detalles

Expressions algebraiques

Expressions algebraiques 7 Expressions algebraiques Objectius En esta quinzena aprendràs a: Utilitzar lletres per representar nombres desconeguts. Trobar el valor numèric d una expressió algebraica. Sumar, restar i multiplicar

Más detalles

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: 2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels UNITAT POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels Què treballaràs? E acabar la uitat has de ser capaç de... Resoldre operacios amb potècies.

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

GENERALITAT DE CATALUNYA SISTEMES D EQUACIONS DEPARTAMENT D EDUCACIÓ DEPARTAMENT DE MATEMÀTIQUES. CURS SES PLA MARCELL

GENERALITAT DE CATALUNYA SISTEMES D EQUACIONS DEPARTAMENT D EDUCACIÓ DEPARTAMENT DE MATEMÀTIQUES. CURS SES PLA MARCELL 1 2 3 Full de treball A: Recordem les equacions A.1 A la web http://mathsnet.net/algebra/equation.html tens un joc que et permet recordar els conceptes bàsics que vam treballar l any passat sobre les equacions.

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015 Oficina d Accés a la Universitat Pàgina 1 de 12 Sèrie 5 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D En vermell comentaris per al professorat Construcció d una escultura 3D 1/8 Es disposen en grups de tres o quatre i se ls fa lliurament del dossier. Potser és bona idea anar donant per parts, segons l

Más detalles

I.E.S. Cirviànum Matemàtiques Segon Curs d E.S.O. EQUACIONS EQUACIONS DE PRIMER GRAU. Per resoldre equacions de primer grau cal seguir aquests passos:

I.E.S. Cirviànum Matemàtiques Segon Curs d E.S.O. EQUACIONS EQUACIONS DE PRIMER GRAU. Per resoldre equacions de primer grau cal seguir aquests passos: DE PRIMER GRAU Per resoldre equacions de primer grau cal seguir aquests passos: Treure parèntesis Traslladar totes les a un cantó de l igual Agrupar ambdós costats de l igual (les i els nombres) Aïllar

Más detalles

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R)

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R) 1 1 3 FUNCIONS LINEALS I QUADRÀTIQUES 3.1- Funcions constants Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) k

Más detalles

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients 4 Polinomis Objectius En aquesta quinzena aprendràs: A treballar amb expressions literals per obtenir valors concrets en fórmules i equacions en diferents contextos. La regla de Ruffini. El teorema del

Más detalles

QUADERN DE TREBALL. Transformacions d expressions algebraiques. Graduat en Educació Secundària. Mòdul comú

QUADERN DE TREBALL. Transformacions d expressions algebraiques. Graduat en Educació Secundària. Mòdul comú Graduat en Educació Secundària Mòdul comú 5 Transformacions d expressions algebraiques Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia Generalitat de Catalunya Departament d Educació QUADERN

Más detalles

FITXA 1: Angles rectes, aguts i obtusos

FITXA 1: Angles rectes, aguts i obtusos FITXA 1: Angles rectes, aguts i obtusos A.1. OBSERVA AQUESTA FIGURA I FES EL QUE S INDICA: Pinta n de blau els costats. Assenyala n de vermell el vèrtex. Pinta n de groc l obertura. A.2. DIBUIXA EL QUE

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 005 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Unitat 5. Resolució d equacions

Unitat 5. Resolució d equacions Unitat 5. Resolució d equacions Curs d Anivellament de Matemàtiques Montserrat Corbera / Vladimir Zaiats montserrat.corbera@uvic.cat / vladimir.zaiats@uvic.cat c 01 Universitat de Vic Sagrada Família,

Más detalles

XX 7 d abril de 2016 Nivell: 1r batx.

XX 7 d abril de 2016 Nivell: 1r batx. XX 7 d abril de 2016 Nivell: 1r bat. Qüestions de punts: 1. Si D = 6 2014 7 2015 8 2016, quin és el residu de la divisió de D entre 21? ) 0 B) 2 C) D) 7 E) 14 2. En la figura, el triangle és equilàter

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 85 Activitat 1 Calcula l àrea de la figura prenent com a unitat d àrea la quadrícula que hi ha indicada: Activitat Ens referirem a la unitat d àrea amb el símbol

Más detalles

TEMA 5 : Derivades. Tècniques de derivació. Activitats

TEMA 5 : Derivades. Tècniques de derivació. Activitats TEMA 5 : Derivades. Tècniques de derivació Activitats. Calculeu, mitjançant la definició de derivada, la derivada de les funcions següents en els punts indicats: a) f() en f() + 4 5 en - c) f() 6 + 5 en

Más detalles

TEMA 1: Divisibilitat. Teoria

TEMA 1: Divisibilitat. Teoria TEMA 1: Divisibilitat Teoria 1.0 Repàs de nombres naturals. Jerarquia de les operacions Quan en una expressió apareixen operacions combinades, l ordre en què les hem de fer és el següent: 1. Les operacions

Más detalles

PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA

PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA Nom i cognoms DNI / NIE PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA COMPETÈNCIA LOGICOMATEMÀTICA 1. Està prohibit l ús de la calculadora o de qualsevol altre aparell

Más detalles

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT

Más detalles

4.- Expressa en forma de potència única indicant el signe resultant.

4.- Expressa en forma de potència única indicant el signe resultant. Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).

Más detalles

TEMA 4 : Matrius i Determinants

TEMA 4 : Matrius i Determinants TEMA 4 : Matrius i Determinants MATRIUS 4.1. NOMENCLATURA. DEFINICIÓ Una matriu és un conjunt de mxn elements distribuïts en m files i n columnes, A= Aquesta és una matriu de m files per n columnes. És

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

SOLUCIONARI Unitat 9. Comencem. Exercicis

SOLUCIONARI Unitat 9. Comencem. Exercicis SOLUCIONARI Unitat 9 Comencem Les edats de tres nens sumades de dues en dues donen 6, 8 i 12 anys, respectivament. Troba les edats de cada nen. + y = 6 El sistema és: x + z = 8 îy + z 2 Es pot resoldre

Más detalles

EXERCICIS PROPOSATS. 3 cm

EXERCICIS PROPOSATS. 3 cm EXERCICIS PROPOSATS 1.1 Calcula el perímetre de les figures següents. a), b) cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Calcula el perímetre d aquestes figures. a) Un quadrat de 6 centímetres de costat. b) Un

Más detalles

c) C = (c ij ) de tres files i tres columnes per a) u r = (1, 2, 3, 4), c) u r = (1, 1, 1), v r = (2, 4, 8) i w r = (3, 9, 27)

c) C = (c ij ) de tres files i tres columnes per a) u r = (1, 2, 3, 4), c) u r = (1, 1, 1), v r = (2, 4, 8) i w r = (3, 9, 27) SOLUCONAR Unitat 8 Comencem Cada 100 g de producte d un determinat aliment conté 0,06 g de vitamina A, 0,3 g de vitamina B i 0, g de calci. Anàlogament, un altre aliment conté 0,1 g de vitamina A, 0, g

Más detalles

Quadern de matemàtiques Decimals1

Quadern de matemàtiques Decimals1 Quadern de matemàtiques Decimals CENTENES DESENES UNITATS DECIMES CENTÈSIMES 3,5 Busca les vuit diferències que hi ha en aquests dos dibuixos Curs i grup: Data inici quadern Data acabament Seguiment Data

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

2 POTÈNCIES I ARRELS QUADRADES

2 POTÈNCIES I ARRELS QUADRADES 2 POTÈNCIES I ARRELS QUADRADES EXERCICIS PROPOSATS 2.1 Escriu cada potència com a producte i calcula n el valor. a) ( 7) 3 b) 4 5 c) ( 8) 3 d) ( 3) 4 a) ( 7) 3 ( 7) ( 7) ( 7) 343 c) ( 8) 3 ( 8) ( 8) (

Más detalles

avaluació diagnòstica educació secundària obligatòria

avaluació diagnòstica educació secundària obligatòria curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla

Más detalles

corresponent de la primera pàgina de l examen.

corresponent de la primera pàgina de l examen. Oficina d Accés a la Universitat Pàgina 1 de 5 PAU 017 SÈRIE PAUTES PER ALS CORRECTORS RECORDEU: - Podeu valorar amb tants decimals com considereu convenient, però aconsellem no fer ho amb més de dos.

Más detalles

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83 5 Expressions algebraiques Objectius Crear expressions algebraiques a partir d un enunciat. Trobar el valor numèric d una expressió algebraica. Classificar una expressió algebraica en monomi, binomi,...

Más detalles

UNITAT 8. FIGURES PLANES

UNITAT 8. FIGURES PLANES 1. Fes servir aquests punts per traçar dues línies poligonals més de cada tipus, apart de les dels exemples: Línia poligonal oberta Línia poligonal oberta creuada Línia poligonal tancada Línia poligonal

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

1.4 Derivades: Unitat de síntesi (i repàs)

1.4 Derivades: Unitat de síntesi (i repàs) 1.4 Derivades: Unitat de síntesi (i repàs) 11. Problemes de: optimització, extrems ( ), punts d inflexió ( ), rectes tangents (T) i interpretació de gràfiques (G): A.- Considereu tots els prismes rectes

Más detalles

QUÍMICA 2 BATXILLERAT. Unitat 3 CINÈTICA QUÍMICA

QUÍMICA 2 BATXILLERAT. Unitat 3 CINÈTICA QUÍMICA QUÍMICA 2 BATXILLERAT Unitat 3 CINÈTICA QUÍMICA La velocitat de les reaccions La VELOCITAT d una reacció es mesura per la quantitat d un dels reactants que es transforma per unitat de temps. Equació de

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 2016 Criteris de correcció

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 2016 Criteris de correcció Oficina d Accés a la Universitat Pàgina 1 de 6 Criteris de correcció Matemàtiques aplicades a les ciències socials SÈRIE 3 1. Una fàbrica de mobles de cuina ven 1000 unitats mensuals d un model d armari

Más detalles

Els alumnes miren sorpresos el tauler amb les dades de l embassament.

Els alumnes miren sorpresos el tauler amb les dades de l embassament. SOLUCIONARI Els alumnes miren sorpresos el tauler amb les dades de l embassament. Ens diu la veritat? No n estic segur. Informació sobre l embassament CAPACITAT 9,7 hm Justifica si el guia ha fet bé els

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO Institut Galileo Galilei Departament de Matemàtiques Curs 015-16 DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES n d ESO A continuació tens una sèrie d'exercicis i activitats relacionats amb els continguts treballats

Más detalles

Examen Final 17 de gener de 2013

Examen Final 17 de gener de 2013 MATEMÀTIQUES FIB-UPC Examen Final 7 de gener de 03 a) Representeu gràficament la corba definida per l equació y = x 5x. b) Determineu si el conjunt C = { x R x 5x 6 } és fitat superiorment inferiorment)

Más detalles

avaluació educació primària

avaluació educació primària avaluació educació primària ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI curs 2015-2016 competència matemàtica instruccions Per fer la prova utilitza un bolígraf. Aquesta prova té diferents tipus

Más detalles

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6 Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m

Más detalles