RADIO CRÍTICO DE AISLACIÓN

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RADIO CRÍTICO DE AISLACIÓN"

Transcripción

1 DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría y aislant s ncuntra xpusto al air a una tmpratura (80 F) y l aislant mplado tin una conductividad d 0,09 Btu/hft F. Podría disminuirs la pérdida d nrgía al ambint si no s mplara l aislant? Podría aumntar la pérdida d nrgía al ambint si s incrmnta l spsor dl aislant? Si sta última situación posibl, bajo qu condicions podría ocurrir tal situación?

2 DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría y aislant s ncuntra xpusto al air a una tmpratura (80 F) y l aislant mplado tin una conductividad d 0,09 Btu/hft F. Para rspondr stas prguntas, s va a calcular l calor prdido para los casos n qu s dispon d la cañría con y sin aislant y s los va a comparar. Dra. arrondo - Ing. Grosso

3 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant. cuatrimstr d 05 Simplificacions qu s asumn para la rsolución: Estado stacionario. El vapor saturado sólo cambia d fas. En cuanto a las dimnsions d la tubría s stablcrá qu <<. El gradint d tmpraturas s ncontrará stablcido prdominantmnt n la coordnada radial. No s considrará la xistncia d una funt d gnración intrna d calor dntro d la cañría. El matrial qu compon la tubría s un sólido isotrópico d lvada conductividad. S asumirá un valor para l coficint plicular xtrno (h ) d,5 Btu/hft F 3

4 sistncias térmicas dl sistma: Transmisión d calor ntr la corrint d fluido y la suprfici intrna d la tubría (r = ): S T h Transfrncia d calor por conducción n la pard d la tubría: Transmisión d calor ntr la suprfici xtrna d la tubría (r = ) y l ambint: S T h S T h k T T tubría S S T h DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant.

5 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant. Calor transfrido por l sistma cañría sin aislant: El calor transfrido, s pud xprsar como: S h k tubría h Simpr qu s llga a st tipo d xprsions, s db analizar l pso rlativo d cada una d las rsistncias n la transfrncia global d calor.. sistncia intrna dbida a la convcción forzada dl vapor qu circula por la tubría.. sistncia por conducción n l sólido 3. sistncia xtrna dbida a la convcción natural dl air qu roda la tubría.

6 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant. Calor transfrido por l sistma cañría sin aislant:. sistncia intrna dbida a la convcción forzada dl vapor qu circula por la tubría: Si s considra qu l vapor tin una lvada turbulncia, sumado al cambio d fas, s d sprar qu l coficint plicular h sa muy lvado.. sistncia por conducción n l sólido: S impuso como hipótsis qu l matrial qu compon la cañría tin una lvada conductividad, lo cual gnralmnt s cumpl n cañrías d acro. 3. sistncia xtrna dbida a la convcción natural dl air qu roda la tubría: Indpndintmnt dl valor asumido para h, al tratars d una convcción natural, s d sprar qu sta rsistncia tnga un pso rlativo important n la transfrncia d calor dl sistma. 6

7 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant. Calor transfrido por l sistma cañría sin aislant:. sistncia intrna dbida a la convcción forzada dl vapor qu circula por la tubría: Si s considra qu l vapor tin una lvada turbulncia, sumado al cambio d fas, s d sprar qu l coficint plicular h sa muy lvado. h h. sistncia por conducción n l sólido: S impuso como hipótsis qu l matrial qu compon la cañría tin una lvada conductividad, lo cual gnralmnt s cumpl n cañrías d acro. k tubría 3. sistncia xtrna dbida a la convcción natural dl air qu roda la tubría: Indpndintmnt dl valor asumido para h, al tratars d una convcción natural, s d sprar sistncia qu sta rsistncia tnga un pso rlativo Controlant important n la transfrncia d calor dl sistma. h h

8 S DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría sin aislant. Calor transfrido por l sistma cañría sin aislant: Entoncs, l calor transfrido para st caso s pud xprsar como: h S h mplazando por los valors corrspondints, s obtin: S 0,0ft,5 S 9, 79 Btu h ft F Btu h ft 80F 80F 8

9 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. cuatrimstr d 05 Simplificacions qu s asumn para la rsolución: Estado stacionario. El vapor saturado sólo cambia d fas. En cuanto a las dimnsions d la tubría s stablcrá qu <<. El gradint d tmpraturas s ncontrará stablcido prdominantmnt n la coordnada radial. No s considrará la xistncia d una funt d gnración intrna d calor dntro d la cañría. El matrial qu compon la tubría s un sólido isotrópico d lvada conductividad. S asumirá un valor para l coficint plicular xtrno (h ) d,5 Btu/hft F 9

10 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. sistncias térmicas dl sistma: hora, s calculará l calor transfrido para l caso n qu s agrga l aislant para compararlo con l rsultado antrior. difrncia dl caso antrior, ahora s agrga una rsistncia más al sistma. Transmisión d calor ntr la corrint d fluido y la suprfici intrna d la tubría (r = ): C Transfrncia d calor por conducción n la pard d la tubría: C h T T k tubría T 0

11 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. sistncias térmicas dl sistma: Transfrncia d calor por conducción n l spsor d aislant: C k T Transmisión d calor ntr la suprfici xtrna dl aislant (r = +) y l ambint: C aislant T h T cuatrimstr d 05 Dra. arrondo - Ing. Grosso

12 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. Calor transfrido por l sistma cañría con aislant: Para l caso n qu s agrga l aislant, l calor transfrido quda: C h k tubría l igual qu l caso antrior, ahora s db analizar l pso rlativo d cada una d las rsistncias térmicas. k aislant Todo l análisis ralizado s válido para st nuvo caso. h Tnindo n cunta qu lo qu s busca d un bun aislant s qu gnr una gran rsistncia a la transfrncia d calor, s spra qu por lo mnos ésta sa dl mismo ordn qu la rsistncia a la convcción n l air. cuatrimstr d 05 Dra. arrondo - Ing. Grosso

13 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. Calor transfrido por l sistma cañría con aislant: Entoncs, l pso rlativo d cada una d las rsistncias s pud rsumir d la siguint forma:. sistncia intrna dbida a la convcción forzada dl vapor qu circula por la tubría: h h. sistncia por conducción n la tubría: k tubría h y k aislant y k aislant sistncias Controlants h k aislant 3

14 DIO CÍTICO DE ISCIÓN Calculo d la nrgía prdida al ambint: cañría con aislant. Calor transfrido por l sistma cañría con aislant: Finalmnt, l calor transfrido para st caso s xprsa como: C k mplazando por los valors corrspondints, s obtin: C 0,09 Btu h ftf aislant C 80F 0,0ft0,039ft 0,0ft 7, 59 80F Btu h ft h Btu 0,0ft 0,039 ft,5 h ft F 4

15 DIO CÍTICO DE ISCIÓN Comparación y discusión d rsultados. Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. C, 59 7 Btu h ft S 9, 79 Btu h ft Objtivo d asilar la tubría: l agrgar l aislant s suma una rsistncia a la transfrncia d calor. k aislant Efcto scundario: S produc un aumnto n la suprfici qu hac disminuir la rsistncia xtrna para la transfrncia d calor. h 5

16 DIO CÍTICO DE ISCIÓN Comparación y discusión d rsultados. Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. Si s grafican stas dos rsistncias, s comprnd mjor qu s lo qu sta ocurrindo: Exist un mínimo n la rsistncia total ( MÍN ) qu maximiza la transfrncia d calor adio Crítico d islación

17 DIO CÍTICO DE ISCIÓN Comparación y discusión d rsultados. Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. a xistncia d una rsistncia mínima también s pud vr si s grafica l calor transfrido por l sistma tubría+aislant: Una vz suprado *, l uso d aislant rsulta n una disminución dl calor transfrido. la izquirda d *, l uso d aislant produc un aumnto n la pérdida d calor. Sin mbargo, su uso sólo s justifica si > *.

18 Comparación y discusión d rsultados. DIO CÍTICO DE ISCIÓN Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. Para hallar l valor dl radio crítico d aislación (*) s db igualar a 0 la drivada d la xprsión hallada para C/ rspcto a una nuva variabl +. h k aislant C d d C h k h k aislant aislant 8

19 Comparación y discusión d rsultados. DIO CÍTICO DE ISCIÓN Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. Para hallar l valor dl radio crítico d aislación (*) s db igualar a 0 la drivada d la xprsión hallada para C/ rspcto a una nuva variabl +. h k aislant C 0 * * * * * h k h k d d aislant aislant r C 9

20 DIO CÍTICO DE ISCIÓN Comparación y discusión d rsultados. Para stas condicions, qu v qu l sistma propusto d tubría+aislant transfir más calor. Para hallar l valor dl radio crítico d aislación (*) s db igualar a 0 la drivada d la xprsión hallada para C/ rspcto a una nuva variabl +. 0 * * k aislant h * k aislant h Para nustro jmplo: * 0,09,5 Btu h ftf Btu h ft F 0,06 ft,83cm Gnralmnt, n la mayoría d los casos prácticos s xcdrá l valor dl radio crítico d aislación 0

21 DIO CÍTICO DE ISCIÓN Bibliografía rcomndada Ejmplo 3.4 dl Capítulo 3 d Fundamntos d Transfrncia d Calor, Cuarta Edición, Incropra F.P. & D Witt D.P. Ejmplo dl Capítulo 7 d Fundamntos d Transfrncia d Momnto, Calor y Masa, Sgunda Edición, Wlty J.., Wicks C.E. & Wilson.E. Capítulo d Transfrncia d Calor, Octava Edición, Holman J.P. cuatrimstr d 05 Dra. arrondo - Ing. Grosso

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS Aljandro Luis Hrnándz aljohr65@gmail.com Gracila Lsino lsino@gmail.com Univrsidad Nacional

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

Implementación de un Regulador PID

Implementación de un Regulador PID Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

Modelado numérico del proceso de soldadura por fricción agitación en aceros inoxidables

Modelado numérico del proceso de soldadura por fricción agitación en aceros inoxidables ISSN 1517-7076 Rvista Matéria, v. 13, n., pp. 380 387, 008 http://www.matria.copp.ufrj.br/sarra/artigos/artigo11009 Modlado numérico dl procso d soldadura por fricción agitación n acros inoxidabls PEREYRA,

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

Fernando Cervantes Leyva

Fernando Cervantes Leyva INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍA DIGITAL Mastría n Cincias con Espcialidad n Sistmas Digitals Adaptación d malla n l análisis d disprsión n guías d onda

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado Eliminación d compustos organoclorados para potabilización d aguas mdiant un procso d adsorción - rgnración n carbón activado Sotlo, J.L., Ovjro, G., Dlgado, J.A. y Martínz, I. Dpto. d Ingniría Química,

Más detalles

Relaciones importantes para la entropía.

Relaciones importantes para la entropía. rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d

Más detalles

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II 3.- METALES 06 Durabilidad 1 Introducción La corrosión s la dstrucción d un matrial sólido a causa d fnómnos químicos o lctroquímicos qu sul prsntars n la suprfici dl mtal. En gnral los matrials mtálicos

Más detalles

Cálculo de Obras de Drenaje Trasversal de Carreteras

Cálculo de Obras de Drenaje Trasversal de Carreteras Cálculo d Obras d Drnaj Trasvrsal d Carrtras Víctor Flórz Casillas Ingniro d Caminos, Canals y Purtos Dirctor dl Dpartamnto d Prsas y Obras Hidráulicas d FCC CONSTRUCCIÓN, S.A. VFlorz@fcc.s Batriz Iturriaga

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias.

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias. Mdllín, d nro d 5 Doctor: LUBIER DE JESÚS CALLE RENDÓN Grnt BENEFICENCIA Asunto: Inform d sguiminto a Pticions, Qujas, Rclamos y Sugrncias (PQRS). Rsptado Doctor Call: El artículo 76 d la ly 474 d : FICINA

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

Fundamentos de Tecnología Eléctrica (2º ITIM) Tema 3. Sistemas Trifásicos. Índice. Definiciones y diagramas vectoriales

Fundamentos de Tecnología Eléctrica (2º ITIM) Tema 3. Sistemas Trifásicos. Índice. Definiciones y diagramas vectoriales Fundamntos d cnología Eléctrica (2º IIM) ma istmas rifásicos Damián Laloux, 2004 Índic Dfinicions y diagramas vctorials istma trifásico quilibrado cuncia d fass Conxión n strlla nsions d fas (simpls),

Más detalles

Es un gas, gas natural

Es un gas, gas natural lan d la lcción - ágina 1 ESTDIANTES DE RIMARIA Tma Gas natural Funt trólo y gas natural, páginas 20 a 23 Objtivo Los alumnos aprndrán qu l gas natural s una sustancia qu s forma a través d millons d años

Más detalles

Cuánto tarda una pelota en dejar de botar?

Cuánto tarda una pelota en dejar de botar? Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5

Más detalles

F0-126. Prensaestopas, Racores y Tubos Higiénicos para la Industria Alimentaria

F0-126. Prensaestopas, Racores y Tubos Higiénicos para la Industria Alimentaria F0-126 Prnsastopas, Racors y Tubos igiénicos para la Industria Alimntaria Prnsastopas igiénicas Información Técnica Curpo Acro inoxidabl 1.4305 (AISI 303). Otras class d Acro inoxidabl 1.4305 (AISI 303).

Más detalles

Accesorios de encofrados Tubos distanciadores de encofrados

Accesorios de encofrados Tubos distanciadores de encofrados Accsorios d ncofrados Tubos distanciadors d ncofrados Tubos, mbudos cónicos y tapons d PVC Construcción ants dl hormigonado Tubos rdondos d PVC Ø Acabado Acabado picado RS6602 14 19 iso RS6406 20 24 Picado

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO

ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO ACONDICIONAMIENTO TÉMICO ACONDICIONAMIENTO TÉMICO E HIGOMÉTICO La ncsidad d aislar térmicamnt un dificio stá justificada por cuatro razons fundamntals: 1. Economizar nrgía, al rducir las pérdidas térmicas

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

COPY. Digital Photo Professional Ver. 3.9 INSTRUCCIONES. Software de procesado, visualización y edición de imágenes RAW

COPY. Digital Photo Professional Ver. 3.9 INSTRUCCIONES. Software de procesado, visualización y edición de imágenes RAW Softwar d procsado, visualización y dición d RAW Digital Photo Profssional Vr..9 INSTRUCCIONES Contnido d stas instruccions DPP s utiliza para Digital Photo Profssional. En stas instruccions, las vntanas

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

GUÍA DE APRENDIZAJE DE ELECTRÓNICA I

GUÍA DE APRENDIZAJE DE ELECTRÓNICA I GUÍA DE APRENDIZAJE DE ELECTRÓNICA I TÍTULO DE LA GUÍA:FUENTES NO REGULADAS DE VOLTAJE DC PROGRAMA ACADÉMICO: TECNOLOGÍA ELECTRÓNICA ASIGNATURA: ELECTRÓNICA I UNIDAD TEMÁTICA:FILTROS Y FUENTES DC NO REGULADAS

Más detalles

Estudio de capas nanoestructuradas de TiO 2 para celdas fotoelectroquímicas

Estudio de capas nanoestructuradas de TiO 2 para celdas fotoelectroquímicas Univrsidad d la Habana Instituto d Matrials y Ractivos Estudio d capas nanostructuradas d TiO 2 para cldas fotolctroquímicas TESIS PRESENTADA EN OPCIÓN A GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS FÍSICAS

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS Nunca hac mucho l qu rflxiona dmasiado. Johann Fridich Vonchillr 3.1 Orign d la nrgía dl vinto La nrgía dl vinto procd n sncia dl sol. La Tirra rcib 1.74x10 17 Watts

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

Competencia en cultura humanística y artística

Competencia en cultura humanística y artística Comptncia n cultura humanística y artística d r r i r r g o g zk hz k bi ar r n o u h b t zk n h a x il g au r o h n 1 2 3 t z h n z ba t 5 1 l h 8 8 13 z u 21a 34 5 z 13 h k n tz h k k r 55 d i ri g o

Más detalles

DISPOSITIVOS ELECTRONICOS

DISPOSITIVOS ELECTRONICOS SCULA D IN. LCTRONICA SCULA D IN. LCTRONICA Matrials smiconductors (I) Introducción a la lctrónica d Dispositivos Los Matrials smiconductors Smiconductors lmntals: rmanio () y Silicio (Si) Compustos IV:

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N" 8.797)

LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N 8.797) LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N" 8.797) Concjo Municipal: Vustra Comisión d Gobirno y Cultura ha tomado n considración l proycto d Ordnanza dl concjal Boasso, mdiant l cual cra l mapa rosarino

Más detalles

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES www.loutrainrs.com/fisiotrapia 615 964 258 PRESENTACIÓN Lou Trainrs s una mprsa d Entrnaminto Prsonal, Fisiotrapia y Gstión Dportiva

Más detalles