Tema IV Programación lógica con estructuras

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema IV Programación lógica con estructuras"

Transcripción

1 Tema IV Programación lógica con estructuras Programación Lógica - E.T.S.I. Informática - Málaga 1

2 Términos La estructura de datos básica en PROLOG es el término. Los términos se clasifican en : variables no variables -> compuestos atómicos -> átomos números Las variables se denotan mediante palabras que comienzan por una letra mayúscula o por un guión de subrayado. los átomos se denotan mediante palabras que comienzan por una letra minúscula. Los números tienen la notación decimal habitual. Los términos compuestos tiene la forma general: <funtor>(<argumentos>), donde los argumentos también son términos separados por, y el funtor es un átomo. Programación Lógica - E.T.S.I. Informática - Málaga 2

3 Predicados para la comprobación de tipos Predicados predefinidos: var(t) - Tiene éxito cuando T es una variable sin instanciar. nonvar(t) Tiene éxito cuando T no es una variable sin instanciar. compound(t) Tiene éxito cuando T es un término compuesto. atomic(t) Tiene éxito cuando T es un término atómico. atom(t) Tiene éxito cuando T es un átomo. number(t) - Tiene éxito cuando T es un número. integer(t) Tiene éxito cuando T es un número entero. float(t) - Tiene éxito cuando T es un número decimal. Programación Lógica - E.T.S.I. Informática - Málaga 3

4 Términos compuestos Los términos compuestos se pueden ver como árboles generales: f f(x,h(a,b,3)) -> X h a b 3 Los términos compuestos pueden ser recursivos: cuando algún argumento es un término del mismo tipo. Los téminos compuestos más simple son los registros, cuyos argumentos no son del mismo tipo. Programación Lógica - E.T.S.I. Informática - Málaga 4

5 Comparación de términos PROLOG dispone de una relación de orden para la comparación de términos, consistente con el orden numérico y con el orden alfabético para los nombres de átomos (permite la aparición de variables libres) Xs == Ys éxito cuando Xs e Ys representan el mismo término Xs \== Ys Ys Ys Ys Ys éxito cuando Xs e Ys representan términos distintos éxito cuando Xs representa un término menor que Ys éxito cuando Xs representa un término mayor que Ys éxito cuando Xs representa un término menor o ig. que Ys éxito cuando Xs representa un término mayor o ig. que Ys (Tienen sentido para términos de la misma categoría) (No confundir con las relaciones numéricas) Programación Lógica - E.T.S.I. Informática - Málaga 5

6 Registros: fecha(dia,mes,año) % constructor cons_fecha(d,m,a,fecha(d,m,a)). % predicados de consulta dia(fecha(d,_,_),d).... % predicados para la modificación %completar poner_dia(d,fecha(_,m,a),fecha(d,m,a)).... %completar Ejercicios: 1. Predicado para comprobar el dominio fecha: es_fecha(fecha(d,m,a)) 2. Predicado para calcular la fecha siguiente a una dada: dia_sig(fecha(d,m,a),f) Programación Lógica - E.T.S.I. Informática - Málaga 6

7 Las listas en PROLOG Programación Lógica - E.T.S.I. Informática - Málaga 7

8 Listas:. (Cabeza, Cola) Las listas son términos compuestos recursivos que están predefinidos en PROLOG en la forma:. (Cabeza, Cola), donde Cabeza es un término y Cola otra lista. Hay una lista especial que no es un término compuesto: la lista vacía []. PROLOG incorpora notaciones más simples para listas: [Cabeza Cola] [] [T1,T2,...,Tn] [] Mixtas: [T1,T2,...,Tp Cola] Programación Lógica - E.T.S.I. Informática - Málaga 8

9 Ejercicios de comprobación de listas Comprobar cuales de las siguientes expresiones son listas y determinar el número de elementos en cada caso: [oros,copas,espadas,bastos] [oros copas,espadas,bastos] [oros [copas,espadas,bastos]] [oros,copas espadas,bastos] [oros,copas [espadas bastos]] [oros,copas,espadas [bastos]] [oros,copas,[espadas,bastos]] [oros,copas,espadas,bastos []] [oros [copas [espadas [bastos []]]]] Programación Lógica - E.T.S.I. Informática - Málaga 9

10 Ejercicios de unificación de listas [X Y] [a,[b,c]] [[a,b],c] [a X] [a X] [a X] [a,b,y] [a,b,y] [a,b Y] [a,b [Y]] [a,b [Y]] [a,b Y] [a,b,c] [X Y] [X Y] [Y a] [Y [c]] [Y] [X,T] [X T] [X,T] [a,b,c] [a,b,c,d] [a,b,c,d] Programación Lógica - E.T.S.I. Informática - Málaga 10

11 Árboles de búsqueda con listas Desarrollar el árbol de búsqueda correspondiente al programa siguiente: p([],[]). p([x Xs],[Y Ys]):-q(X,Y),p(Xs,Ys). q(a,b). q(a,y):-s(x),s(y). q(a,c). q(b,b). s(a). s(b). :-p([a,x],[x,b]). Programación Lógica - E.T.S.I. Informática - Málaga 11

12 Predicados sobre listas (I) Definir y estudiar los posibles usos de los siguientes predicados: % dominio de listas: es_lista/1 es_lista([]). es_lista([_ _]). % prefijo(prefijo,lista) % sufijo(sufijo,lista) % sublista(sublista,lista) % miembro(termino,lista) % seleccion(termino,lista,listaresto) Programación Lógica - E.T.S.I. Informática - Málaga 12

13 Prefijo % La lista vacía es prefijo de cualquier lista: prefijo([],l):- es_lista(l). % Una lista no vacía es prefijo de otra lista: prefijo([x Xs], [ X Ls ] ):- prefijo(xs,ls). no vacía con el mismo primer elemento si su cola es prefijo de la cola de la otra lista Programación Lógica - E.T.S.I. Informática - Málaga 13

14 Predicados sobre listas (II) Predicado para encadenar dos listas: encadena(as,bs,asbs) Definición atendiendo a la estructura del primer argumento: % La lista vacía encadenada con otra lista produce la otra: encadena([],bs,bs). % Una lista no vacía encadenada con otra lista produce una lista: encadena([a As],Bs, [ A AsBs ]) :- encadena(as,bs,asbs). no vacía con el mismo primer elemento cuya cola es la concatenación de su cola con la otra lista Programación Lógica - E.T.S.I. Informática - Málaga 14

15 Tabla de comportamiento de encadena/3 encadena(as,bs,asbs) (+,+,+) (+,+,-) (-,+,+) (+,-,+) (-,-,+) (-,-,-) test Generador único Generador único Generador único Generador acotado Generador infinito (anómalo) Comprueba si AsBs es la concatenación de As y Bs Genera AsBs a partir de As y de Bs Genera el prefijo As que encadenado con Bs da AsBs Genera el sufijo Bs que encadenado tras As da AsBs Genera todas las posibles particiones de AsBs en As y Bs Genera listas de variables libres para As, Bs queda libre y para AsBs la concatenación de ambas. Programación Lógica - E.T.S.I. Informática - Málaga 15

16 Predicados sobre listas (III) Redefinir los predicados siguientes utilizando encadena/3 y construir sus tablas de comportamiento teniendo en cuenta el comportamiento de encadena: % prefijo(as,asbs) % sufijo(bs,asbs) % sublista(bs,asbscs) % miembro(x,asxbs) % seleccion(x,asxbs,asbs) Definir: % ultimo(x,asx) % adyacentes(x,y,asxybs) % inversa(l,linvertida) % permutacion(l,lpermutada) % aplanada(l,lplana) Programación Lógica - E.T.S.I. Informática - Málaga 16

17 Predicados aritméticos sobre listas Definir predicados para calcular: La longitud de una lista. La suma de todos los elementos de una lista de números. El máximo elemento de una lista de números. La lista con todos los elementos del intervalo definido por dos números dados. Dar definiciones iterativas para cada uno de los predicados anteriores Programación Lógica - E.T.S.I. Informática - Málaga 17

18 Comparación de términos PROLOG dispone de una relación de orden para la comparación de términos, consistente con el orden numérico y con el orden alfabético para los nombres de átomos (permite la aparición de variables libres) Xs == Ys éxito cuando Xs e Ys representan el mismo término Xs \== Ys Ys Ys Ys Ys éxito cuando Xs e Ys representan términos distintos éxito cuando Xs representa un término menor que Ys éxito cuando Xs representa un término mayor que Ys éxito cuando Xs representa un término menor o ig. que Ys éxito cuando Xs representa un término mayor o ig. que Ys (Tienen sentido para términos de la misma categoría) (No confundir con las relaciones numéricas) Programación Lógica - E.T.S.I. Informática - Málaga 18

19 Comparación de términos sobre listas Definir predicados para 1) Determinar si un elemento, posiblemente una variable libre, pertenece a una lista. 2) Borrar un elemento de una lista. 3) Calcular el mínimo de una lista (de números o de nombres de átomos). 4) Comprobar si todos los elementos de una lista son iguales. 5) Sustituir todas las apariciones de un elemento, por otro, en una lista dada. Programación Lógica - E.T.S.I. Informática - Málaga 19

20 Listas ordenadas ordenada([]). ordenada([_]). ordenada([x,y Ls]):- Y, ordenada([y Ls]). ordenacion(l,lord):- permutacion(l,lord), ordenada(lord). Definir predicados para: 1) Insertar un elemento en una lista ordenada. 2) Ordenar los elementos de una lista por inserciones. 3) Separar los elementos de una lista con ayuda de un pivote. 4) Ordenar una lista por el procedimiento del pivote. Programación Lógica - E.T.S.I. Informática - Málaga 20

21 Cadenas de caracteres Las cadenas de caracteres son listas de caracteres. Prolog permite la representación habitual de cadenas entre comillas dobles, dentro de un programa o en una entrada, p.e. Hola!. Prolog almacena las cadenas como listas de códigos ASCII correspondientes a los caracteres Hola! [161, 72, 111, 108, 97, 33] Para mantener la representación textual puede ser conveniente utilizar átomos o texto entre comillas simples que no se puede descomponer en caracteres. :-write( Hola! ). :-write( Hola! ). produce la salida: [161,72,111,108,97,33] produce la salida: Hola! Programación Lógica - E.T.S.I. Informática - Málaga 21

22 Conjuntos representados con listas Los conjuntos se pueden representar en PROLOG mediante listas ordenadas y definir las distintas operaciones en función de dicha representación: % pertenece(elemento,conjunto) pertenece(x,[x _]). pertenece(x,[y Cs]):- Y, pertenece(x,cs). % subconjunto(subcj,conjunto) % union(c1,c2,c1oc2) % interseccion(c1,c2,c1yc2) % diferencia(c1,c2,c1\c2) Programación Lógica - E.T.S.I. Informática - Málaga 22

23 Árboles en PROLOG Programación Lógica - E.T.S.I. Informática - Málaga 23

24 Árboles binarios En PROLOG pueden representarse los distintos tipos de árboles binarios mediante estructuras recursivas: ArbolB = vacio arbol(arbolb, Termino, ArbolB) ArbolH = hoja(termino) arbol(arbolh, ArbolH) Definir predicados para: 1) Reconocer estos dominios. 2) Determinar si dos árboles son simétricos y si son isomorfos. 3) Producir los distintos recorridos en profundidad de un ArbolB. 4) Producir el listado de hojas de un ArbolH. 5) Sustituir un elemento en un árbol. Programación Lógica - E.T.S.I. Informática - Málaga 24

25 Árboles binarios de búsqueda (I) Los árboles binarios de búsqueda se corresponden con los árboles del tipo ArbolB, cuyo listado en inorden está ordenado: ordenado(a):- inorden(a,lin), ordenada(lin). Predicado para buscar un elemento (no genera): esta(x,arbolb(_,y,_)):- X==Y. esta(x,arbolb(i,r,_)):- R,esta(X,I). esta(x,arbolb(_,r,d)):- R,esta(X,D). Definir un predicado para insertar un elemento. Programación Lógica - E.T.S.I. Informática - Málaga 25

26 Árboles binarios de búsqueda (II) Elemento máximo de un árbol ordenado: maxarb(arbolb(_,r,vacio),r). maxarb(arbolb(_,r,d),m):- maxarb(d,m). Predicado para borrar un elemento: borra(x,vacio,vacio). borra(x,arbolb(vacio,r,d),d):- X == R. borra(x,arbolb(i,r,d),arbolb(i,m,d)):- X == R, maxarb(i,m),borra(m,i,i ). borra(x,arbolb(i,r,d),arbolb(i,r,d)):- R, borra(x,i,i ). borra(x,arbolb(i,r,d),arbolb(i,r,d )):- R, borra(x,d,d ). Programación Lógica - E.T.S.I. Informática - Málaga 26

27 Árboles de expresiones booleanas Booleano = cierto falso and(booleano,booleano) or(booleano,booleano) not(booleano) 1) Definir un predicado que reconozca este dominio. 2) Definir predicados que reconozcan las expresiones satisfactibles y las no satisfactibles. Programación Lógica - E.T.S.I. Informática - Málaga 27

28 Árboles de expresiones aritméticas Predicado para reconocer expresiones aritméticas simples: expa(n):- number(n). expa(x):- var(x). expa(e1 + E2):- expa(e1), expa(e2). expa(e1 - E2):- expa(e1), expa(e2). expa(e1 * E2):- expa(e1), expa(e2). expa(e1 / E2):- expa(e1), expa(e2). Definir un predicado para evaluar expresiones aritméticas con parámetros, dada una lista de valores para los parámetros. Programación Lógica - E.T.S.I. Informática - Málaga 28

29 Árboles generales (I) Los árboles generales se pueden representar en PROLOG mediante la siguiente estructura recursiva: ArbolG = vacio arbol(termino, [ArbolG]) Predicado para reconocer el dominio de los árboles generales arbolg(vacio). arbolg(arbol(_,[])). arbolg(arbol(r,[a As])):- arbolg(a), arbolg(arbol(r,as)). Programación Lógica - E.T.S.I. Informática - Málaga 29

30 Árboles generales (II) Definir predicados sobre árboles generales para: 1. Calcular el recorrido en preorden. 2. Determinar si un elemento es miembro de un árbol. 3. Determinar si dos árboles son isomorfos. 4. Sustituir las apariciones de un elemento por otro. Programación Lógica - E.T.S.I. Informática - Málaga 30

Tipos Abstractos de Datos

Tipos Abstractos de Datos Objetivos Repasar los conceptos de abstracción de datos y (TAD) Diferenciar adecuadamente los conceptos de especificación e implementación de TAD Presentar la especificación algebraica como método formal

Más detalles

Curso PHP Módulo 1 R-Luis

Curso PHP Módulo 1 R-Luis Lenguaje PHP Introducción Archivos HTML y PHP: Crear un archivo php es tan sencillo como cambiarle la extensión a un archivo html, por ejemplo podemos pasar de index.html a index.php sin ningún inconveniente.

Más detalles

CONCEPTOS BASICOS DEL LENGUAJE JAVA

CONCEPTOS BASICOS DEL LENGUAJE JAVA CONCEPTOS BASICOS DEL LENGUAJE JAVA NOMENCLATURA GENERAL En Java se distinguen las letras mayúsculas y minúsculas. Las reglas del lenguaje respecto a los nombres de variables son muy amplias y permiten

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

1. Sintaxis de Prolog

1. Sintaxis de Prolog 1. Sintaxis de Prolog Términos: Constantes: enteros (Ejs: 3, 4), átomos (Ejs: juan, pi) (en minúscula). Variables: Ejs: X, Casa (en mayúscula) Estructuras: functor, seguido de uno o más argumentos, es

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

TAD Lineales: Pila, Cola y Lista

TAD Lineales: Pila, Cola y Lista TAD Lineales: Pila, Cola y Lista Objetivos! Dar a conocer los TAD lineales pila, cola y lista! Presentar la especificación de cada uno de los TAD! Discutir implementaciones alternativas para cada uno de

Más detalles

1. El vocabulario de un programa PROLOG

1. El vocabulario de un programa PROLOG Tema 2. La Sintaxis 1. El vocabulario de un programa PROLOG 2. Términos 2.1. Constantes 2.2. Variables 2.3. Estructuras 3. Operadores 4. Igualdad y Desigualdad 5. Aritmética en los programas PROLOG 1.

Más detalles

Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden

Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden Especificación TEMA 1 formal de problemas Objetivos Revisar los principales conceptos de la lógica de primer orden Entender el concepto de estado de cómputo y cómo se modela con predicados lógicos Familiarizarse

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática I PROGRAMA: S3C Lima-Perú SESION 1 SISTEMAS DE NUMERACION DEFINICION : Es un conjunto de reglas y principios que nos

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016!

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016! INFORMÁTICA Práctica4. ProgramaciónbásicaenC. GradoenIngenieríaenElectrónicayAutomáticaIndustrial Curso2015H2016 v2.1(18.09.2015) A continuación figuran una serie de ejercicios propuestos, agrupados por

Más detalles

Programación con Listas

Programación con Listas Capítulo 2 Programación con Listas En Prolog la estructura de lista está predefinida como una estructura recursiva lineal cuyas componentes pueden ser heterogéneas porque en Prolog no existe una comprobación

Más detalles

Estructuras de datos: Árboles binarios de

Estructuras de datos: Árboles binarios de Estructuras de datos: Árboles binarios de búsqueda, Dep. de Computación - Fac. de Informática Universidad de A Coruña Santiago Jorge santiago.jorge@udc.es Árboles binarios de búsqueda, Table of Contents

Más detalles

Tema 3 Elementos básicos de programación

Tema 3 Elementos básicos de programación Representación de Datos y Aplicaciones Tema 3 Elementos básicos de programación Natividad Martínez Madrid nati@it.uc3m.es Objetivos del tema 3 Conocer la estructura básica de un programa Java Comprender

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

Conceptos básicos: 1,2 puntos

Conceptos básicos: 1,2 puntos Procesadores del Lenguaje 1 Universidad Rey Juan Carlos Departamento de Lenguajes y Sistemas Informáticos I 8 de junio de 2009 Parcial primero. Conceptos básicos y problemas. Entrega en 90 minutos. Lea

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

Estructuras de datos: Proyecto 2

Estructuras de datos: Proyecto 2 Estructuras de datos: Proyecto 2 28 de mayo de 2013 Instrucciones Enviar las soluciones por email a los ayudantes, con copia a la profesora. Plazo de entrega: 16 de junio (durante todo el día). Se debe

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

Elementos léxicos del lenguaje de programación Java

Elementos léxicos del lenguaje de programación Java Elementos léxicos del lenguaje de programación Java Elementos léxicos del lenguaje de programación Java Palabras reservadas Identificadores Literales Operadores Delimitadores Comentarios Apéndices Operadores

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

5.1 Listas. Por qué usar listas?

5.1 Listas. Por qué usar listas? Listas 5.1 Listas En este capítulo introducimos el tipo de dato más importante dentro de la programación en inteligencia artificial. Existe un lenguaje de programación llamado LISP (LISt Procesing), en

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03.

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03. INFORMÁTICA Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial Curso 2013-2014 v1.0 (05.03.14) A continuación figuran una serie de ejercicios propuestos, agrupados

Más detalles

Tema 10- Representación Jerárquica: Tema 10- Representación Jerárquica: Árboles Binarios

Tema 10- Representación Jerárquica: Tema 10- Representación Jerárquica: Árboles Binarios Tema 10- Representación Jerárquica: Árboles Binarios Tema 10- Representación Jerárquica: Árboles Binarios Germán Moltó Escuela Técnica Superior de Ingeniería Informática Universidad Politécnica de Valencia

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Capítulo 6. ÁRBOLES.

Capítulo 6. ÁRBOLES. 67 Capítulo 6. ÁRBOLES. 6.1 Árboles binarios. Un árbol binario es un conjunto finito de elementos, el cual está vacío o dividido en tres subconjuntos separados: El primer subconjunto contiene un elemento

Más detalles

TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML:

TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML: TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML Página 1 de 6 TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS

Más detalles

ESTRUCTURA DE DATOS: ARREGLOS

ESTRUCTURA DE DATOS: ARREGLOS ESTRUCTURA DE DATOS: ARREGLOS 1. Introduccion 2. Arreglos - Concepto - Caracteristicas 3. Arreglos Unidimensionales 4. Arreglos Bidimensionales 5. Ventajas del uso de arreglos 6. Ejemplo 1. Introducción

Más detalles

Los comentarios en Prolog se escriben comenzando la línea con un símbolo de porcentaje. Ejemplo: % Hola, esto es un comentario. % Y esto también.

Los comentarios en Prolog se escriben comenzando la línea con un símbolo de porcentaje. Ejemplo: % Hola, esto es un comentario. % Y esto también. Tutorial básico de programación en Prolog Elementos del lenguaje En esta sección explicaremos como reconocer los diferentes elementos que componen un programa fuente en Prolog. Como observará en breve,

Más detalles

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006 ARBOLES ESTRUCTURAS DE DATOS 2006 DEFINICION Un árbol (tree) es un conjunto finito de nodos. Es una estructura jerárquica aplicable sobre una colección de elementos u objetos llamados nodos; uno de los

Más detalles

Ampliación de Estructuras de Datos

Ampliación de Estructuras de Datos Ampliación de Estructuras de Datos Amalia Duch Barcelona, marzo de 2007 Índice 1. Diccionarios implementados con árboles binarios de búsqueda 1 2. TAD Cola de Prioridad 4 3. Heapsort 8 1. Diccionarios

Más detalles

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos Fundamentos de Informática 1er curso de ingeniería Industrial Tema 2. Datos 1 Tema 2. Datos 2.1 Codificación binaria 2.2 Tipos de datos 2.3 Operaciones básicas 2.4 Expresiones 2.5 Almacenamiento 2 1 2.1

Más detalles

1 Estructura básica de un programa C++

1 Estructura básica de un programa C++ Elementos básicos de un lenguaje de alto nivel: C++ CONTENIDOS 1. Estructura básica de un programa C++. 2. Tipos de datos simples. 3. Constantes y variables en C++. Declaración. 4. Operadores y expresiones.

Más detalles

Solución al Examen de Prácticas de Programación (Ingeniería Informática)

Solución al Examen de Prácticas de Programación (Ingeniería Informática) Solución al Examen de Prácticas de Programación (Ingeniería Informática) Junio 2006 Parte I. Cuestiones (3 puntos=50% nota del examen) 1) Se desea crear un conjunto de clases para representar en un programa

Más detalles

Apuntes de ACCESS. Apuntes de Access. Campos de Búsqueda:

Apuntes de ACCESS. Apuntes de Access. Campos de Búsqueda: Apuntes de ACCESS Campos de Búsqueda: Los campos de búsqueda permiten seleccionar el valor de un campo de una lista desplegable en lugar de tener que escribirlos. El usuario sólo tiene que elegir un valor

Más detalles

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Semánticas del cálculo de predicados proporcionan las bases formales para determinar el valor

Más detalles

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad:

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad: El TAD Diccionario Cuando se usa un conjunto en el diseño de un algoritmo podría no ser necesario contar con operaciones de unión o intersección. A menudo lo que se necesita es simplemente manipular un

Más detalles

Objetivo de aprendizaje del tema

Objetivo de aprendizaje del tema Computación II Tema 3. Identificadores, palabras clave y tipos de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir i entre modificadores d válidos y no válidos. Enumerar

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado Álgebra Relacional Un álgebra es un sistema matemático constituido por Operandos: objetos (valores o variables) desde los cuales nuevos objetos pueden ser construidos. Operadores: símbolos que denotan

Más detalles

PROGRAMACIÓN EN PYTHON 2. Clara Higuera Laboratorio Integrado de Biofísica y Bioinformática Nov-2015

PROGRAMACIÓN EN PYTHON 2. Clara Higuera Laboratorio Integrado de Biofísica y Bioinformática Nov-2015 PROGRAMACIÓN EN PYTHON 2 Clara Higuera Laboratorio Integrado de Biofísica y Bioinformática Nov-2015 Funciones funcion print Esta es mi función x y funcion z w funcion w Funciones Las funciones sirven para

Más detalles

Proyecto Unico Interpretador de SetCalc

Proyecto Unico Interpretador de SetCalc Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI3721 - Traductores e Interpretadores Abril-Julio 2008 Proyecto Unico Interpretador de SetCalc A continuación se describe

Más detalles

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores Árboles Cursos Propedéuticos 2015 Dr. René Cumplido M. en C. Luis Rodríguez Flores Contenido de la sección Introducción Árbol genérico Definición y representación Árboles binarios Definición, implementación,

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

Tema 3. El modelo Relacional

Tema 3. El modelo Relacional Tema 3. El modelo Relacional Juan Ignacio Rodríguez de León Resumen Presenta el modelo entidad-relación. Visión de alto nivel de las cuestiones referentes a diseño de bases de datos y los problemas encontrados

Más detalles

Técnicas de prueba 1. FUNDAMENTOS DE LA PRUEBA DEL SOFTWARE

Técnicas de prueba 1. FUNDAMENTOS DE LA PRUEBA DEL SOFTWARE Técnicas de prueba El desarrollo de Sistemas de software implica la realización de una serie de actividades predispuestas a incorporar errores (en la etapa de definición de requerimientos, de diseño, de

Más detalles

EJERCICIOS DE LENGUAJES Y PARADIGMAS DE PROGRAMACIÓN (CUESTIONES DE EXAMEN) PROGRAMACIÓN FUNCIONAL

EJERCICIOS DE LENGUAJES Y PARADIGMAS DE PROGRAMACIÓN (CUESTIONES DE EXAMEN) PROGRAMACIÓN FUNCIONAL EJERCICIOS DE LENGUAJES Y PARADIGMAS DE PROGRAMACIÓN (CUESTIONES DE EXAMEN) PROGRAMACIÓN FUNCIONAL María Alpuente y María José Ramírez 1 LENGUAJES Y PARADIGMAS: INTRODUCCIÓN 1. Indica cuál de las siguientes

Más detalles

Estructuras de Datos y Algoritmos. Árboles de Expresión

Estructuras de Datos y Algoritmos. Árboles de Expresión Estructuras de Datos y Algoritmos Árboles de Expresión Año 2014 Introducción Los avances tecnológicos producen día a día una gran cantidad de información que debe ser almacenada y procesada en forma eficiente.

Más detalles

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas para computación Licenciatura en Informática IFM - 0423 3-2-8 2.- HISTORIA

Más detalles

Tema 2: La clase string

Tema 2: La clase string : string Programación 2 Curso 2013-2014 Índice 1 Cadenas de caracteres en C 2 Entrada / salida 3 entre vectores de caracteres y string 4 5 Cadenas de caracteres en C En C, las cadenas de caracteres tienen

Más detalles

Aprender a desarrollar un sitio Web con PHP y MySQL Ejercicios prácticos y corregidos

Aprender a desarrollar un sitio Web con PHP y MySQL Ejercicios prácticos y corregidos Introducción 1. Objetivo del libro 13 2. Funcionamiento de un sitio Web 13 Instalación 1. Introducción 17 2. Instalación de EasyPHP 13.1 18 Las bases del lenguaje PHP 1. Las etiquetas 23 1.1 Sintaxis básica

Más detalles

1 ELEMENTOS BASICOS DEL LENGUAJE

1 ELEMENTOS BASICOS DEL LENGUAJE 1 ELEMENTOS SICOS DEL LENGUJE Contenido: Variables su declaracion y asignacion Caracteres en java Secuencias de escape y comentarios Tipos de datos Operadores aritméticos, relacionales y lógicos Entrada

Más detalles

Semántica Denotacional

Semántica Denotacional Semántica Denotacional Idea: El significado de un programa es la función denotada por el programa Componentes del metalenguaje para la definición semántica denotacional de un L.P.: Dominios sintácticos

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Una variable de clase escalar tiene un nivel de indirección igual a 1. Por ejemplo, las variables i, b y x definidas como se muestra a continuación.

Una variable de clase escalar tiene un nivel de indirección igual a 1. Por ejemplo, las variables i, b y x definidas como se muestra a continuación. Descripción de la semántica de ALFA En esta descripción sólo se mencionarán los aspectos en los que el lenguaje de programación ALFA pueda diferir de otros lenguajes de programación de alto nivel. Se sobreentienden

Más detalles

Normalización. El diseño que hemos recibido está compuesto de estas dos relaciones:

Normalización. El diseño que hemos recibido está compuesto de estas dos relaciones: Normalización 1. Introducción Nuestro departamento de informática ha recibido el encargo de diseñar una base de datos para llevar el control de las piezas, proveedores y proyectos que realiza nuestra empresa.

Más detalles

Ejemplos de TAD (tipos simples)

Ejemplos de TAD (tipos simples) ESPECIFICACIÓN BOOLEANOS TAD booleano Ejemplos de TAD (tipos simples) T : booleano { valor cierto } F : booleano { valor falso } : booleano booleano : booleano, booleano booleano : booleano, booleano booleano

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

TEMA 8.- DISEÑO TEORICO DE BASES DE DATOS RELACIONALES. 1. TEORÍA DE LAS DEPENDENCIAS FUNCIONALES

TEMA 8.- DISEÑO TEORICO DE BASES DE DATOS RELACIONALES. 1. TEORÍA DE LAS DEPENDENCIAS FUNCIONALES TEMA 8.- DISEÑO TEORICO DE BASES DE DATOS RELACIONALES. Teoría de las Dependencias Funcionales. Teoría de la Normalización. Formas Normales. Conclusiones. 1. TEORÍA DE LAS DEPENDENCIAS FUNCIONALES Las

Más detalles

Funciones. Funciones Diapositiva 1

Funciones. Funciones Diapositiva 1 Funciones Concepto Insertar función Asistente de funciones Insertar función manualmente Autosuma Categorías Funciones matemáticas y trigonométricas: Suma, Producto, Subtotales, Redondear, Truncar, Sumar.Si

Más detalles

ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental]

ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental] ACTIONSCRIPT (AS) Proyectos II. Audiovisuales. Dpto. Escultura. UPV. [sintaxis elemental] Action script es el lenguaje de programación que lleva incorporado el software de creación multimedia Macromedia

Más detalles

Tema 2. Tipos predefinidos

Tema 2. Tipos predefinidos Programación Declarativa Haskell Informática Sistemas Curso 2003-2004 Pepe Gallardo Universidad de Málaga Tema 2. Tipos predefinidos 2.1 Tipos simples predefinidos El tipo Bool El tipo Int El tipo Integer

Más detalles

Programación Declarativa Ejercicios de programación con listas

Programación Declarativa Ejercicios de programación con listas Programación Declarativa Ejercicios de programación con listas Ejercicio 1 Define versiones recursivas de los siguientes predicados sobre listas: es lista(xs) Xs es una lista bien formada es lista nat(ss)

Más detalles

Tema 2. El lenguaje de programación Java (Parte 1)

Tema 2. El lenguaje de programación Java (Parte 1) Programación en Java Tema 2. El lenguaje de programación Java (Parte 1) Luis Rodríguez Baena Facultad de Informática Elementos del lenguaje (I) El juego de caracteres. No utiliza ASCII, sino Unicode de

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009 Árboles Ejemplos de estructuras arborescentes: con forma de árbol Regla de Alcance: los objetos visibles en un procedimiento son aquellos declarados en él mismo o en cualquier ancestro de él (cualquier

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Objetivo: Conoce los sistemas de numeración diferentes al decimal Ser capaces de transformar una cifra de un sistema a otro 1 Introducción El sistema de numeración usado de forma

Más detalles

TALLER #5 ACCESS CONSULTAS. objeto Consulta en la vista lateral izquierda de la ventana Base de datos. Aparece esta ventana.

TALLER #5 ACCESS CONSULTAS. objeto Consulta en la vista lateral izquierda de la ventana Base de datos. Aparece esta ventana. TALLER #5 ACCESS CONSULTAS Las consultas son los objetos de una base de datos que permiten recuperar datos de una tabla, modificarlos e incluso almacenar el resultado en otra tabla. TIPOS DE CONSULTAS

Más detalles

Curso QCAD v2 CPR de Almendralejo mayo 2005 (versión reducida)

Curso QCAD v2 CPR de Almendralejo mayo 2005 (versión reducida) Ejercicios de QCAD (versión resumida) EJercicio1: Dibujar sobre una hoja tamaño A4 un plano que debe representar una parcela irregular cuyas magnitudes, conocidas en metros, son las siguientes: - En Preferencias

Más detalles

Empresarial y Financiero NIVEL AVANZADO

Empresarial y Financiero NIVEL AVANZADO Curso de Excel Empresarial y Financiero NIVEL AVANZADO Rosa Rodríguez SESION 2: INDICE ANALISIS DE SENSIBILIDAD (3h) Validación de datos n Restricciones a la entrada de datos n Lista Dependiente n Administrador

Más detalles

Restricciones sobre dominios finitos con Gprolog

Restricciones sobre dominios finitos con Gprolog Autores: Rubén García Portal Nikolai Smirnov Restricciones sobre dominios finitos con Gprolog Introducción. Este documento explicará brevemente las funciones que se utilizan en Gprolog para resolución

Más detalles

UNIDAD I: LÓGICA PROPOSICIONAL

UNIDAD I: LÓGICA PROPOSICIONAL UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA

Más detalles

TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B)

TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B) APRENDERAPROGRAMAR.COM TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B) Sección: Cursos Categoría: Tutorial básico del programador web:

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

ELEMENTOS BÁSICOS DE MATHEMATICA

ELEMENTOS BÁSICOS DE MATHEMATICA CAPÍTULO 1 ELEMENTOS BÁSICOS DE MATHEMATICA 1.- COMENZANDO A TRABAJAR 2.- OPERADORES MATEMÁTICOS 3.- REPRESTACIÓN DE VALORES NUMÉRICOS 4.- VARIABLES CAPÍTULO 1 7 8 1.- COMENZANDO A TRABAJAR Una vez iniciado

Más detalles

Operación de Microsoft Word

Operación de Microsoft Word Generalidades y conceptos Combinar correspondencia Word, a través de la herramienta combinar correspondencia, permite combinar un documento el que puede ser una carta con el texto que se pretende hacer

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Semántica: principales usos. Semántica: principales enfoques. Semántica Operacional. Sintaxis abstracta de un lenguaje (sujeto) Semántica Operacional

Semántica: principales usos. Semántica: principales enfoques. Semántica Operacional. Sintaxis abstracta de un lenguaje (sujeto) Semántica Operacional Semántica: principales enfoques Semántica Operacional Se define el significado mediante una máquina abstracta (con estados) y secuencias de cómputos sobre dicha máquina Semántica Denotacional El significado

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

Programación Declarativa UNIVERSIDAD DE MÁLAGA

Programación Declarativa UNIVERSIDAD DE MÁLAGA Programación Declarativa UNIVERSIDAD DE MÁLAGA (3 o de Ingeniería Técnica en Informática) E.T.S.I. INFORMÁTICA 17 de Febrero de 2005 Alumno: Grupo: Prolog Ejercicio 1 (a)(2 pts.) Realiza el árbol de búsqueda

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

PROGRAMACIÓN DECLARATIVA: LÓGICA Y RESTRICCIONES Grado en Ingeniería Informática / Grado en Matemáticas e Informática

PROGRAMACIÓN DECLARATIVA: LÓGICA Y RESTRICCIONES Grado en Ingeniería Informática / Grado en Matemáticas e Informática Nombre: PROGRAMACIÓN DECLARATIVA: LÓGICA Y RESTRICCIONES Nº de Matrícula: INSTRUCCIONES: El examen consta de 3 ejercicios. Todas las preguntas deben comenzar a contestarse en su hoja correspondiente. Pueden

Más detalles

árbol como un conjunto de nodos y líneas

árbol como un conjunto de nodos y líneas ÁRBOLES CAPÍTULO 6 ÁRBOLES Desde el punto de vista conceptual, un árbol es un objeto que comienza con una raíz (root) y se extiende en varias ramificaciones o líneas (edges), cada una de las cuales puede

Más detalles

Operaciones básicas, fórmulas, referencias absolutas, relativas y mixtas.

Operaciones básicas, fórmulas, referencias absolutas, relativas y mixtas. Módulo 3 Herramientas de Cómputo Operaciones básicas, fórmulas, referencias absolutas, relativas y mixtas. Operaciones Básicas Las operaciones básicas que se realizan en una hoja de cálculo son: Seleccionar

Más detalles

Tipo de Dato TRANSACT SQL

Tipo de Dato TRANSACT SQL Tipos De Datos TRANSACT SQL Tipo de Dato Descripción Numéricos aproximados: float Punto flotante, desde -1.79 E 308 a 1.79 E 308 real Punto flotante, desde 3.40 E 38 a 3.40 E 38 Int entero entre (2 31

Más detalles

Guía práctica PHP 6. (c) Francisco Charte Ojeda

Guía práctica PHP 6. (c) Francisco Charte Ojeda Guía práctica PHP 6 Agradecimientos Sobre el autor (c) Francisco Charte Ojeda Introducción Páginas de servidor PHP Creación de páginas PHP Cómo usar este libro Convenciones tipográficas 1. Instalación

Más detalles

PROGRAMACIÓ DIDÁCTICA: Secuanciación, Temporalización y Unidades Didácticas

PROGRAMACIÓ DIDÁCTICA: Secuanciación, Temporalización y Unidades Didácticas Departamento de Informática PROGRAMACIÓN DIDÁCTICA Curso 11-12 1 CONSEJERÍA DE EDUCACIÓN I.E.S. NERVIÓN Departamento de Informática CICLO FORMATIVO: TÉCNICO SUPERIOR EN DESARROLLO DE APLICACIONES MULTIPLATAFORMA.

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014 Tecnologías en la Educación Matemática jac@cs.uns.edu.ar Dpto. de Ciencias e Ingeniería de la Computación UNIVERSIDAD NACIONAL DEL SUR 1 Datos Los algoritmos combinan datos con acciones. Los datos de entrada

Más detalles

Manual de Lisp para IACS (Curso 91 92)

Manual de Lisp para IACS (Curso 91 92) Dpto. de Álgebra, Computación, Geometría y Topología Universidad de Sevilla Manual de Lisp para IACS (Curso 91 92) Sevilla, 1992 Contenido 1 Introducción 1 1.1 Introducción............................

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 9. Reglas de Integridad

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 9. Reglas de Integridad FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA Tema 9. Reglas de Integridad 1.- Introducción. 2.- Claves Primarias. 3.- Regla de Integridad de Entidades. 4.- Claves Ajenas. 5.- Regla de Integridad

Más detalles

Estructuras de Datos Abstractas en Lenguaje Java

Estructuras de Datos Abstractas en Lenguaje Java Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Industrial Estructuras de Datos Abstractas en Lenguaje Java Listas Enlazadas, Colas, Pilas y Árboles Binarios Creado por

Más detalles

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ). I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones

Más detalles