LA RESISTENCIA. Resistencias de valor fijo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA RESISTENCIA. Resistencias de valor fijo"

Transcripción

1 Resistencias de valor fijo La figura muestra la constitución interna de una resistencia de película de carbón. Durante su fabricación, una fina capa de carbón es depositada sobre una pequeña barra cerámica. La capa resistiva va tomando la forma de una espiral, esto lo hace una máquina automática hasta que la resistencia entre ambos extremos de la barra se halle tan cerca posible del valor correcto. Se agregan al final de la capa unos terminales de metal, luego la resistencia es cubierta por una capa aislante y finalmente pintada con las bandas de colores para indicar el valor nominal y su tolerancia. Las resistencias de película de carbón son baratas y fácilmente disponibles, con valores de tolerancia dentro del ±10% (plateado) o ±5% (dorado) de su valor nominal. Las resistencias de película metálica y las de óxidos de metales se fabrican de una forma similar, pero con mayor precisión, con tolerancias de ±2% (rojo) o ±1% (marrón) de su valor nominal. Hay algunas diferencias de prestaciones entre estos dos tipos, pero ninguna de ellas afecta a su uso en circuitos simples. Las resistencias de hilo bobinado o de alambre se fabrican enrollando un fino alambre alrededor de una barra de cerámica. Pueden ser hechas con extremada precisión para su uso en multímetros, osciloscopios y otros equipos de medida. Algunos tipos de resistencias de hilo bobinado pueden soportar grandes intensidades de corriente sin sobrecalentarse y son usadas en fuentes de alimentación y otros circuitos que manejan grandes corrientes. Función Las resistencias restringen o limitan el flujo de la corriente eléctrica, por ejemplo una resistencia suele colocarse en serie con un diodo LED ( light-emitting diode) para limitar la corriente que pasa a través de él a un valor que no se exceda de 20 ma. Ejemplo: símbolo: Código de Colores Cómo puede ser reconocido el valor de una resistencia desde las bandas de colores? Cada color representa un número de acuerdo al siguiente esquema: La primera banda sobre la resistencia es interpretada como el PRIMER DÍGITO del valor. Para la resistencia de la figura de abajo, la primera banda es amarillo, así el primer dígito es 4. La segunda banda da el SEGUNDO DÍGITO. En este ejemplo es violeta, esto hace que el segundo dígito sea un 7. La tercera banda es llamada MULTIPLICADOR (o Número de Ceros) y esto se entiende como el número de ceros que debes escribir después de los dos dígitos que ya tienes. Una banda roja te dice que debes agregar 2 ceros. El valor de esta resistencia es por lo tanto: ohmios, es decir, Ω, o 4,7 kω. 1

2 La banda del otro extremo de la resistencia es llamada TOLERANCIA. Esta indica el porcentaje de precisión del valor de la resistencia. La mayoría de las resistencias de carbón tienen una banda de tolerancia de color dorado, indicando que el valor real de la resistencia está dentro del valor nominal + o un 5% del mismo valor. Otros colores de tolerancia son los de la tabla de la derecha: Más acerca del Código de Colores El código de colores explicado anteriormente te permite interpretar los valores de cualquier resistencia por encima de los 100 Ω. Cómo trabaja el código para valores por debajo de 100 Ω? Aquí está el código para 12 Ω: marrón, rojo, negro. El color negro como multiplicador representa o significa que ningún cero deberá agregarse a las dos primeras cifras. Usando este método para indicar valores comprendidos entre 10 Ω y 100 Ω esto significa que todos los valores requieren el mismo número de bandas. Para valores comprendidos entre 1 Ω y 10 Ω, el color del multiplicador es cambiado a dorado. Por ejemplo, los colores: marrón, negro, dorado indican una resistencia de 1 Ω, mientras que los colores: rojo, rojo, dorado se refieren a una resistencia de 2,2 Ω. Las resistencias de película de metal, fabricadas con 1 o 2 % de tolerancia, a menudo usan un código que consiste en 4 bandas de colores en lugar de 3. El código trabaja de la misma forma, con las primeras 3 bandas interpretadas como dígitos y la cuarta banda como el multiplicador. Por ejemplo, una resistencia de película de metal de 1 kω tiene las siguientes bandas: marrón, negro, negro, marrón (más marrón o rojo para la tolerancia), mientras que una resistencia de película de metal de 56 kω tiene las bandas: verde, azul, negro, rojo Cabe señalar que el multiplicador para las resistencias de película de metal con valores desde 1 kω para arriba es marrón (en lugar de rojo, como en el sistema de tres colores), mientras que el factor de multiplicación es rojo para resistencias por encima de 10 kω (en lugar de naranja). Es probable que uses valores bajos de resistencias de película metálica en algunas ocasiones y te sea útil saber leer su código. Sin embargo, la mayoría de las resistencias que usas en la construcción de circuitos electrónicos serán de película de carbón con valores indicados usando el código de tres bandas de color. Es este sistema el que tú debes dominar primero. Valores E12 y E24 Si tú tienes alguna experiencia construyendo circuitos, habrás notado que las resistencias comúnmente tienen valores tales como 2,2, 3,3, o 4,7 y no están disponibles en valores igualmente espaciados como 2, 3, 4, 5 y así sucesivamente. Los fabricantes no producen valores similares a estos, porqué no? La respuesta se debe en parte al hecho de que las resistencias son fabricadas con un porcentaje de precisión (tolerancia). Mira la tabla de abajo la cual muestra los valores de la serie E12 y E24: Serie E12 tolerancia 10 % Serie E24 tolerancia 5 % Las resistencias se fabrican en múltiplos de estos valores, por ejemplo, 1,2 Ω, 12 Ω, 120 Ω, 1,2 kω, 120 kω, 1,2 MΩ y así sucesivamente. Considera los valores de 100 Ω y 120 Ω, valores adyacentes en el rango E12. El 10% de 100 Ω es 10 Ω, mientras que el 10% de 120 Ω es 12 Ω. Una resistencia etiquetada como 100 Ω podría tener cualquier valor entre los 90 Ω y los 110 Ω, mientras que una etiquetada como de 120 Ω podría tener un 2

3 valor real desde 108 Ω hasta 132 Ω. El rango de posibles valores se solapan, pero solo ligeramente. Más arriba en el rango E12, una resistencia etiquetada como de 680 Ω podría tener un valor real de hasta =748 Ω, mientras que una etiquetada como 820 Ω podría tener un valor inferior de =738 Ω. De nuevo, los rangos de posibles valores se solapan justamente. Los rangos E12 y E24 están diseñados para cubrir el rango entero de resistencias con el mínimo solapamiento entre valores consecutivos. Esto significa que, cuando reemplaces una resistencia con otra etiquetada con un valor más alto, su resistencia real es casi seguro que será más grande. Desde un punto de vista práctico, lo único que te importa saber es que las resistencias de película de carbón están disponibles en múltiplos de valores de E12 y E24. Muy a menudo, habiendo calculado el valor de resistencia que necesitas para una aplicación particular, deberás elegir el valor más cercano del rango E12 o E24. Rango de potencia Cuando fluye corriente a través de una resistencia, la energía eléctrica es convertida en calor. Esto es evidente en una linterna eléctrica donde el filamento de la lámpara se calienta y brilla hasta ponerse incandescente. Aunque el resultado puede ser menos evidente o imperceptible, exactamente el mismo proceso de conversión de energía se lleva a cabo cuando la corriente fluye a través de cualquier componente electrónico. La potencia de salida de una lámpara, resistencia, u otro componente, es definida como la velocidad de cambio de la energía eléctrica a calor, luz, o alguna otra forma de energía. La potencia se mide en Watts, W, o miliwatts, mw, y se puede calcular así: donde P es la potencia Cuál es la potencia de salida de una resistencia cuando el voltaje a través de ella es de 6 V, y la corriente que fluye a través de ella es de 100 ma? 0,6 W de calor es generado en esta resistencia. Para prevenir el sobrecalentamiento, debe ser posible evacuar o perder ese calor, o ser disipado, al entorno al mismo tiempo que se genera. La habilidad de una resistencia para perder el calor depende en gran medida de la superficie de su área en contacto con el ambiente. Una resistencia pequeña con una superficie limitada no puede disipar (= perder) el calor rápidamente y es probable que se sobrecaliente si circula una gran corriente. Las resistencias más grandes disipan el calor más eficientemente. Observa el diagrama de abajo el cual muestra resistencias de diferentes tamaños y potencias: El tamaño estándar de las resistencias de película de carbón usadas en la mayoría de los circuitos tienen un rango de potencia de 0,5 W. Esto quiere decir que una resistencia de este tamaño puede perder calor a una máxima velocidad de 0,5 W. En el ejemplo anterior, la velocidad de pérdida de calor calculada fue de 0,6 W, es decir una resistencia con más alto rango de potencia, 1 W o 2 W, serían necesarios. Algunas resistencias están diseñadas para pasar corrientes muy grandes y son encapsuladas en aluminio con el fin de incrementar el área de su superficie y aumentar su pérdida de calor. La entrada y los subsistemas que procesan señales en circuitos electrónicos raramente involucran grandes corrientes, pero los rangos de potencia deben ser tenidos en cuenta cuando los circuitos de salida manejan traductores, tales como lámparas, LEDs y altavoces. 3

4 Resistencias variables Construcción Las resistencias variables consisten en una pista (track) resistiva con conexiones a ambos extremos y un cursor (wiper) o punto medio el cual se mueve a lo largo de la pista según giras el eje. La pista puede estar hecha de carbón, cermet (mezcla de cerámico y metal) o una bobina de alambre (para bajos valores de resistencia). El cursor por lo general es rotatorio pero hay versiones rectas, usualmente llamadas deslizables, también disponibles. Las resistencias variables pueden ser usadas como reóstato con dos conexiones (el punto medio o cursor y uno de los extremos de la pista) o como un potenciómetro usando las tres conexiones. Las versiones miniatura son conocidas como preset y están hechos para circuitos en los que no se requieren demasiados ajustes. Las resistencias variables son a menudo llamadas potenciómetros en algunos libros y catálogos. Están especificados por su máxima resistencia, pista lineal o logarítmica, y su tamaño físico. El diámetro estandar del eje es de 6 mm. El valor de la resistencia y el tipo de pista está etiquetado en el cuerpo: 4K7 LIN significa 4,7 k Ω pista lineal. 1M LOG significa 1 MΩ pista logarítmica Resistencia variable estándar Photograph Rapid Electronics Algunas resistencias variables están diseñadas para ser montadas directamente sobre una placa de circuito impreso, pero la mayoría tienen su montaje a través de un agujero hecho en la caja que contiene el circuito con cable trenzado conectando sus terminales al circuito impreso. Lineal (LIN) y Logarítmico (LOG) Pista Lineal (LIN) significa que la resistencia cambia a intervalo constante como tú vayas moviendo el cursor. Este suele ser el estándar y tú deberías asumir que es requerido este tipo si un proyecto no especifica el tipo de pista. Los presets siempre tienen pista lineal. Pista Logarítmica (LOG) significa que la resistencia cambia lentamente en uno de los extremos de la pista y rápidamente en el otro extremo, así en la mitad del recorrido de la pista no será la mitad de la resistencia total! Este tipo es muy usado para control de volumen (loudness) porque el oído humano tiene una respuesta logarítmica al volumen así un control fino (cambio lento) es requerido a bajos volúmenes y un control grueso (cambio rápido) a altos volúmenes de sonido. Es importante conectar correctamente los terminales de la pista, si encuentras que girando el eje se incrementa el volumen rápidamente seguido por un pequeño cambio adicional deberías intercambiar las conexiones en ambos extremos de la pista. Reóstato Esta es la manera más simple de usar una resistencia variable. Son usados dos terminales: uno conectado a uno de los extremos de la pista, y el otro al cursor central móvil. Girando el eje la resistencia entre estos dos terminales cambia desde cero hasta su valor máximo. Los reóstatos son usados a menudo para variar la corriente, por ejemplo para controlar el brillo de una lámpara o la velocidad de carga de un condensador. Símbolo reóstato 4

5 Si el reóstato se monta sobre una placa de circuito impreso tu puedes encontrar que sus tres terminales están conectados! Sin embargo, uno de ellos estará unido o puenteado al terminal del cursor central. Esto mejora notablemente la robustez mecánica del montaje pero eléctricamente no cumple ninguna función. Potenciómetro Las resistencias variables usadas como potenciómetro tienen sus tres terminales conectados. Esta disposición es normalmente usada para variar el voltaje, por ejemplo para colocar el punto de conmutación de un circuito con un sensor, o controlar el volumen (loudness) en un amplificador. Si se conectan los extremos de la pista a una fuente de alimentación entonces el terminal central del cursor proveerá un voltaje que podrá variar desde cero voltios hasta el máximo que entregue la fuente. Símbolo potenciómetro Preset Esta es la versión miniatura de la resistencia variable estándar. Está diseñada para ser montada directamente sobre la placa de circuito impreso y es ajustada solo cuando el circuito es construido. Por ejemplo para ajustar la frecuencia del tono de una alarma o la sensibilidad de un circuito sensible a la luz. Un pequeño destornillador Símbolo preset se requiere para ajustarlo. Los presets son mucho más baratos que una resistencia variable estándar por lo que que algunas veces son usados en proyectos donde una resistencia variable estándar debería ser usada normalmente. Los preset multivuelta se usan cuando deben hacerse ajustes muy precisos. El tornillo debe ser girado muchas veces (10 o más) para mover el cursor deslizable desde un extremo de la pista hasta el otro, dando un control muy fino y preciso. Preset (tipo abierto) Preset (tipo cerrado) Preset multivuelta Photographs Rapid Electronics 5

Desarrollo y Construcción de Prototipos Electrónicos

Desarrollo y Construcción de Prototipos Electrónicos Desarrollo y Construcción de Prototipos Electrónicos U.D. 0.2.- Identificación normalizada de resistencias y condensadores Tema 0.2.1.- Código de colores y valores normales de resistencias Código de colores

Más detalles

Resistencias. Tema 1 TEST DE AUTOEVALUACIÓN

Resistencias. Tema 1 TEST DE AUTOEVALUACIÓN TEST DE AUTOEVALUACIÓN El nombre real del componente tratado en este primer tema es resistor, pero en el argot técnico suele cambiarse por el de su característica principal, denominándose popularmente

Más detalles

RESISTORES FIJO VARIABLE

RESISTORES FIJO VARIABLE RESISTORES La función de estos componentes en un circuito eléctrico es limitar la cantidad de corriente o dividir el voltaje. La unidad de medida es el ohm (Ω) y su símbolo es como a continuación se muestra:

Más detalles

COMPONENTES ELECTRÓNICOS: Resistencias

COMPONENTES ELECTRÓNICOS: Resistencias COMPONENTES ELECTRÓNICOS: Resistencias Resistencias fijas. Pueden ser de carbón, película de carbón, película metálica y óxido de metal, siendo las de película de carbón y metálica las más usadas. Se fabrican

Más detalles

LAS RESISTENCIAS: BOBINADAS:

LAS RESISTENCIAS: BOBINADAS: LAS RESISTENCIAS: Las resistencias son unos componentes eléctricos cuya misión es dificultar el paso de la corriente eléctrica a través de ellas. Su característica principal es su resistencia óhmica aunque

Más detalles

DOCUMENTO EXPLICATIVO Resistencias Eléctricas y SMD Oscar Ignacio Botero Diana Marcela Domínguez

DOCUMENTO EXPLICATIVO Resistencias Eléctricas y SMD Oscar Ignacio Botero Diana Marcela Domínguez 1 INSTITUCIÓN UNIVERSITARIA PASCUAL BRAVO FACULTAD DE INGENIERÍA DEPARTAMENTO DE ELECTRÓNICA Y AFINES TÍTULO AUTORES DOCUMENTO EXPLICATIVO Resistencias Eléctricas y SMD Oscar Ignacio Botero Diana Marcela

Más detalles

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO Objetivos: Utilización de un voltímetro y de un amperímetro, caracterización de aparatos analógicos y digitales, y efecto de carga. Material: Un voltímetro

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

CENTRO INDUSTRIAL Y DEL DESARROLLO TECNÓLOGICO. Ingeniero Electrónico. Julio César Bedoya Pino

CENTRO INDUSTRIAL Y DEL DESARROLLO TECNÓLOGICO. Ingeniero Electrónico. Julio César Bedoya Pino Clasificación de las resistencias.??? RESISTORES Lineales No lineales Variables Termistores Varistores (VDR) Fotoresistencias (LDR) Fijos NTC PTC Una Resistencia es.??? La oposición que ofrece un cuerpo

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS. Fundamentos de Ingeniería Eléctrica

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS. Fundamentos de Ingeniería Eléctrica Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS Fundamentos de Ingeniería Eléctrica Contenidos Resistencias Tipos Características Código de colores Potenciómetros

Más detalles

Componentes Electrónicos

Componentes Electrónicos Componentes Electrónicos Activos: Los que pueden, en alguna de sus aplicaciones, transferir energía a una señal. (Transistores, diodos, circuitos monolíticos, fibras dopadas con Erbio, etc..) Componentes

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

Pendientes 3º ESO TECNOLOGÍAS

Pendientes 3º ESO TECNOLOGÍAS ALUMNO : Pendientes 3º ESO TECNOLOGÍAS Para recuperar la materia de Tecnologías pendiente de 3º de ESO, el alumno deberá tener en cuenta las siguientes consideraciones: Entregar este cuadernillo con las

Más detalles

LABORATORIO Nº 3 SEMICONDUCTORES

LABORATORIO Nº 3 SEMICONDUCTORES 1.- Objetivo LABORATORIO Nº 3 SEMICONDUCTORES a) Aprender a reconocer componentes electrónicos. b) Usar código de colores para determinar su valor dependiendo del componente electrónico. 2.- Fundamento

Más detalles

ASOCIACIÓN DE RESISTORES

ASOCIACIÓN DE RESISTORES ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos

Más detalles

ELECTRICIDAD/ELECTRONICA

ELECTRICIDAD/ELECTRONICA (Ejercicios resueltos) Alumno: Curso: Año: LA RESISTENCIA ELECTRICA (CODIGO INTERNACIONAL DE COLORES) Resistencias: Código internacional de colores COLOR NÚMERO FACTOR MULTIPLICACIÓN TOLERANCIA NEGRO 0

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica

TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica Índice de contenido 1. Introducción... 4 2. Resistencias... 5 2.1. Definición... 5 2.2. Símbolo y unidades... 6 2.3. Código de colores de las resistencias...7

Más detalles

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo J.M.A. Componentes del grupo Nº : - - CURSO USO DEL POLÍMETRO DIGITAL Pantalla Selector Clavija para transistores clavija 10A DC clavija VΩmA clavija COMÚN 1. Pantalla

Más detalles

Los resistores, también conocidos como resistencias, son uno de los componentes más utilizados en los circuitos electrónicos.

Los resistores, también conocidos como resistencias, son uno de los componentes más utilizados en los circuitos electrónicos. RESISTENCIAS Los resistores, también conocidos como resistencias, son uno de los componentes más utilizados en los circuitos electrónicos. Es un componente de gran importancia, que a pesar de su sencillez,

Más detalles

Introducción a los sistemas electrónicos digitales

Introducción a los sistemas electrónicos digitales Introducción a los sistemas electrónicos digitales Prácticas de laboratorio Autores: Juan Angel Garza Garza, Gabriel Fernando Martínez Alonso, Guadalupe Ignacio Cantú Garza y Julián Eduardo Hernández Venegas

Más detalles

ELEMENTOS DE MANIOBRA

ELEMENTOS DE MANIOBRA Circuito eléctrico. Circuito eléctrico. Circuito eléctrico Un circuito eléctrico es un conjunto de operadores o elementos que, unidos entre sí, permiten una circulación de electrones (corriente eléctrica).

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

CODIGO DE COLORES DE RESISTENCIAS

CODIGO DE COLORES DE RESISTENCIAS Componentes electrónicos Resistencias Las resistencias son de los componentes electrónicos pasivos. Las mismas cumplen infinidad de funciones en diferentes tipos de circuitos. Entre las funciones que cumple

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 2 FISICA III CICLO: 2009-A JUAN

Más detalles

CUADERNO DE EJERCICIOS DE TECNOLOGÍA DE 4º DE E.S.O.

CUADERNO DE EJERCICIOS DE TECNOLOGÍA DE 4º DE E.S.O. CUADERNO DE EJERCICIOS DE TECNOLOGÍA DE 4º DE E.S.O. Expresión gráfica Instalaciones de la vivienda Telecomunicaciones Hardware y software Electricidad Neumática Electrónica Control y Robótica Tecnología

Más detalles

Conceptos básicos de electrónica en radio frecuencia

Conceptos básicos de electrónica en radio frecuencia Conceptos básicos de electrónica en radio frecuencia Prometheus Radio Project Introducción Te has puesto a pensar cómo es que un sonido que entra en un transmisor de radio llega hasta el radio receptor

Más detalles

IES Gonzalo Anaya XIRIVELLA Nombre:...Grupo:... Actividad: Regulador de Intensidad Luminosa

IES Gonzalo Anaya XIRIVELLA Nombre:...Grupo:... Actividad: Regulador de Intensidad Luminosa TECNOLOGIA A. Bueno IES Gonzalo Anaya XIRIVELLA Nombre:...Grupo:... Actividad: Regulador de Intensidad Luminosa 1.- Realiza un proyecto que consista en el diseño, construcción y memoria de un regulador

Más detalles

Linterna LED Estefania Fernandez, Megan Schaefer & Nicolas Fernandez The Ohio State University-Colombia Collaboration

Linterna LED Estefania Fernandez, Megan Schaefer & Nicolas Fernandez The Ohio State University-Colombia Collaboration Tema: Física Tópico: Circuitos & Electricidad Nivel/ Grado: 7 mo, 8 vo & 9 no Duración de laboratorio: 45min-60min Descripción del Proyecto: Un circuito que incorpora los conceptos electrónicos básicos

Más detalles

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie Experimento 5 COMBINACIONES DE RESISTENCIAS Objetivos 1. Construir circuitos con baterías, resistencias, y cables conductores, 2. Analizar circuitos con combinaciones de resistencias en serie para verificar

Más detalles

Guía 01. La ley de Ohm

Guía 01. La ley de Ohm Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

Simbología electrónica básica y encapsulado de componentes

Simbología electrónica básica y encapsulado de componentes Desarrollo y Construcción de Prototipos Electrónicos Tema 0.1.1 Simbología electrónica básica y encapsulado de componentes 1 Símbolos generales Símbolo Comentarios Tipo de elemento Conductor eléctrico.

Más detalles

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS:

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: Para la realización de las prácticas, necesitaremos el siguiente material: 1 5 m de cable de hilos de cobre de pequeña sección. Cartón

Más detalles

Construya este amplificador de RF universal de 10 W por $48 Autor: Diz Gentzow, W8DIZ Traducción: Jon Iza, EA2SN (Este manual está preparado para

Construya este amplificador de RF universal de 10 W por $48 Autor: Diz Gentzow, W8DIZ Traducción: Jon Iza, EA2SN (Este manual está preparado para Construya este amplificador de RF universal de 10 W por $48 Autor: Diz Gentzow, W8DIZ Traducción: Jon Iza, EA2SN (Este manual está preparado para leerse directamente en pantalla; use CTRL+L en Acroread

Más detalles

Snifter. Monitor de polvo MANUAL DE USUARIO

Snifter. Monitor de polvo MANUAL DE USUARIO Snifter Monitor de polvo MANUAL DE USUARIO Casella España S.A. Polígono Európolis Calle Belgrado, nº4b 28232 Las Rozas. Madrid T +34 91 640 75 19 F + 34 91 636 01 96 E online@casella-es.com www.casella-es.com

Más detalles

valor (ohm) 0.47 ohm 0R47 1.13 ohm 1R13 100 ohm 100R 1000 ohm 1k 4700 ohm 4k7 5360 ohm 5k36 1,270,000 1M27

valor (ohm) 0.47 ohm 0R47 1.13 ohm 1R13 100 ohm 100R 1000 ohm 1k 4700 ohm 4k7 5360 ohm 5k36 1,270,000 1M27 Página 1 de 14 Resistencias Definiciones Tolerancia Tabla de valores normalizados. Series E Código de colores de 4 y 5 bandas. Valores típicos para Tolerancias del 5% y 10% Valores típicos para Tolerancias

Más detalles

CONTROL GEAR SELECTOR BRASSA CGS

CONTROL GEAR SELECTOR BRASSA CGS CONTROL GEAR SELECTOR BRASSA CGS Manual de Instalación y Programación INDICE INDICE Descripción General 1 Instalación Mecánica 2 Instalación Eléctrica 3 Programación 5 DESCRIPCIÓN GENERAL Descripción

Más detalles

RESISTENCIA ELECTRICA

RESISTENCIA ELECTRICA RESISTENCIA ELECTRICA Definición. Eléctrica es un componente electrónico diseñado para introducir una oposición a un flujo de corriente que intente pasar a través de dos puntos de un circuito, esta oposición

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electrónica página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA Índice de contenido 1 Electrónica...2 2 Pilas en los circuitos electrónicos...2 3 DIODO...2 4 LED (diodo emisor de

Más detalles

Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V

Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V El amplificador de salida integrado descrito en este artículo consta

Más detalles

SOLDADURA SOLDADURA DE FUSIÓN POR ARCO ELÉCTRICO

SOLDADURA SOLDADURA DE FUSIÓN POR ARCO ELÉCTRICO SOLDADURA DEFINICIÓN Es la unión sólida de dos materiales o parte de un material mediante al fusión de sus bordes con calor proveniente de una fuente eléctrica o gaseosa, según el equipo que se emplee

Más detalles

EL DIODO. Función. circuito:

EL DIODO. Función. circuito: Función Los diodos son dispositivos semiconductores que permiten hacer fluir la electricidad solo en un sentido. La flecha del símbolo del diodo muestra la dirección en la cual puede fluir la corriente.

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación Elementos Pasivos Un elemento pasivo es aquel que no es capaz de entregar potencia al circuito en el cual está conectado esistencia Condensador Bobina esistencia Clasificación según el elemento resistivo

Más detalles

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas Experimento 8 EL CIRCUITO RC Objetivos 1. Describir los aspectos básicos del circuito RC 2. Explicar y describir la dependencia del voltaje y la corriente con respecto al tiempo en los procesos de carga

Más detalles

LABORATORIO DE FÍSICA II/21 PRACTICA Nº 1 SIMBOLOGIA, USO DEL MULTIMETRO Y OTROS APARATOS DE MEDIDA DE TENSIÓN Y CORRIENTE

LABORATORIO DE FÍSICA II/21 PRACTICA Nº 1 SIMBOLOGIA, USO DEL MULTIMETRO Y OTROS APARATOS DE MEDIDA DE TENSIÓN Y CORRIENTE Página 1 de 16 LABORATORIO DE FÍSICA II/21 PRACTICA Nº 1 SIMBOLOGIA, USO DEL MULTIMETRO Y OTROS APARATOS DE MEDIDA DE TENSIÓN Y CORRIENTE OBJETIVOS 1.- Conocer los símbolos de los circuitos eléctricos.

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

PLACAS FERTIRIEGO ELECTRÓNICA NUEVA

PLACAS FERTIRIEGO ELECTRÓNICA NUEVA PLACAS FERTIRIEGO ELECTRÓNICA NUEVA AVERÍAS FUENTE INTERCONEXIÓN INTERFACE C.E. INTERFACE ph LLAVE HARD RELÉS TARJETA DE 32 SALIDAS 7520 Página 1 de 20 # PLACA DE AVERÍAS 12V # AVERÍAS Página 2 de 20 CONEXIONES

Más detalles

7.- Para construir un circuito eléctrico utilizamos 150 metros de hilo de cobre. Si su sección es de 0 8 mm 2 Cuánto valdrá su resistencia?

7.- Para construir un circuito eléctrico utilizamos 150 metros de hilo de cobre. Si su sección es de 0 8 mm 2 Cuánto valdrá su resistencia? 1. Calcula la Resistencia de un hilo de hierro (resistividad del mm 2 hierro ρ Fe = 0.1 Ω ) de longitud 3 m y sección de 10 m mm 2. 2. Ahora disponemos de dos hilos, uno de cobre (resistividad del cobre

Más detalles

Lección 2: Magnetismo

Lección 2: Magnetismo : Magnetismo : Magnetismo Introducción Esta lección describe la naturaleza del magnetismo y el uso de los imanes en varios componentes eléctricos para producir y controlar la electricidad. Objetivos Al

Más detalles

Medidas de efecto Hall en una muestra de germanio

Medidas de efecto Hall en una muestra de germanio PRÁCTICA 2 Medidas de efecto Hall en una muestra de germanio Temas tratados: semiconductores, teoría de bandas, banda de energía prohibida (band gap), fuerza de Lorentz, efecto Hall, concentración y tipo

Más detalles

K7105 OSCILOSCOPIO LCD PORTÁTIL MONTAJE

K7105 OSCILOSCOPIO LCD PORTÁTIL MONTAJE K7105 OSCILOSCOPIO LCD PORTÁTIL MONTAJE 2 VELLEMAN KIT NV Legen Heirweg 33 9890 Gavere Belgium MONTAJE MUY IMPORTANTE MONTE TODOS LOS COMPONENTES CONTRA LA PLACA. USE UN PEQUEÑO SOLDADOR DE 40W MÁX. NO

Más detalles

683373 O Estefania Salazar Fonnegra 683373 Estefania Salazar Fonnegra estefaniasalazarfonnegra@gmail.com nota definitiva 4

683373 O Estefania Salazar Fonnegra 683373 Estefania Salazar Fonnegra estefaniasalazarfonnegra@gmail.com nota definitiva 4 683373 O Estefania Salazar Fonnegra 683373 Estefania Salazar Fonnegra estefaniasalazarfonnegra@gmail.com nota definitiva 4 1 ) GRUPO AL CUAL PERTENECE 2 ) NOMBRE DEL ALUMNO 3 ) EMAIL VIGENTE DEL ALUMNO

Más detalles

Leguizamo Montoya Hugo 683389 Leguizamo Montoya Hugo hmontoya52@hotmail.com nota definitiva 2,8095

Leguizamo Montoya Hugo 683389 Leguizamo Montoya Hugo hmontoya52@hotmail.com nota definitiva 2,8095 6889 1 ) GRUPO AL CUAL PERTENECE Leguizamo Montoya Hugo 6889 Leguizamo Montoya Hugo hmontoya2@hotmail.com nota definitiva 2,89 2 ) NOMBRE DEL ALUMNO ) EMAIL VIGENTE DEL ALUMNO suma de notas 9 4268,88 4

Más detalles

LECTURA DE COMPONENTES

LECTURA DE COMPONENTES LECTURA DE COMPONENTES LECTURA DE VALORES DE COMPONENTES Para facilitar la lectura de los valores de los diversos componentes utilizados durante el montaje de los kits, hemos hecho una recopilación con

Más detalles

MONTAJE FUNCIONAMIENTO

MONTAJE FUNCIONAMIENTO KEMO B160 El siguiente kit que os presentamos es un Vúmetro a 30 LED s en forma circular. Normalmente se conecta a la salida del amplificador, para así poder medir la potencia que aplicamos a los altavoces.

Más detalles

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro

Más detalles

Servicio Nacional de Aprendizaje LEY DE OHM

Servicio Nacional de Aprendizaje LEY DE OHM Ley de Ohm y fórmulas de potencia n cualquier circuito donde la única oposición al flujo de electrones es la resistencia, existen relaciones definidas entre los valores de voltaje, corriente y resistencia.

Más detalles

DEPARTAMENTO DE RENOVABLES DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS

DEPARTAMENTO DE RENOVABLES DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS DIODOS BYPASS Los diodos instalados en las cajas de conexión de los paneles fotovoltaicos sirven para prevenir el consumo de energía cuando las células

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

2. Electrónica. 2.1. Conductores y Aislantes. Conductores.

2. Electrónica. 2.1. Conductores y Aislantes. Conductores. 2. Electrónica. 2.1. Conductores y Aislantes. Conductores. Se produce una corriente eléctrica cuando los electrones libres se mueven a partir de un átomo al siguiente. Los materiales que permiten que muchos

Más detalles

6 SENSOR DE POSICIÓN DEL ACELERADOR (TPS)

6 SENSOR DE POSICIÓN DEL ACELERADOR (TPS) 6 SENSOR DE POSICIÓN DEL ACELERADOR (TPS) INTRODUCCIÓN El sensor de posición del acelerador (TPS) es un potenciómetro (un tipo de resistor variable) con una amplia variedad de modelos. La computadora suministra

Más detalles

Radiación de una lámpara de incandescencia

Radiación de una lámpara de incandescencia Prueba experimental. Radiación de una lámpara de incandescencia OBJETIVO. Se va a estudiar experimentalmente la radiación emitida por el filamento de una lámpara de incandescencia y su dependencia con

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA.

ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA. ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA. 1.- Indica el nombre, el símbolo y la aplicación de los siguientes dispositivos eléctricos: COMPONENTE NOMBRE SÍMBOLO APLICACIÓN FUSIBLES Protege un

Más detalles

Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar

Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar Resumen Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar En este trabajo se presenta un proyecto de fabricación de un motor eléctrico

Más detalles

Sistema electrónico de control de presión GUÍA DE INSTALACIÓN

Sistema electrónico de control de presión GUÍA DE INSTALACIÓN Sistema electrónico de control de presión GUÍA DE INSTALACIÓN EN ESTE MANUAL: Características - página 1 Soporte - página 1 Cambiando los ajustes - página 2 Tabla del conmutador DIP - página 3 Especificaciones

Más detalles

TEMA 1: LA ELECTRICIDAD

TEMA 1: LA ELECTRICIDAD TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no

Más detalles

Magnitudes eléctricas

Magnitudes eléctricas Magnitudes eléctricas En esta unidad estudiaremos las principales magnitudes eléctricas: intensidad de corriente, voltaje, resistencia, potencia y energía, que resumimos en esta tabla: Magnitud eléctrica

Más detalles

UD: 2. RESISTENCIA ELÉCTRICA. 2.1. Conductores y aislantes

UD: 2. RESISTENCIA ELÉCTRICA. 2.1. Conductores y aislantes UD: 2. RESISTENCIA ELÉCTRICA. Es una característica asociada a los materiales de uso común en electricidad. Conociendo el valor de la resistencia de un conductor o aislante podremos determinar, gracias

Más detalles

Fuente de alimentación AT y ATX

Fuente de alimentación AT y ATX Fuente de alimentación AT y ATX En el interior del ordenador existe una caja cerrada, que es la fuente de alimentación, que es la que se encarga de suministrar energía eléctrica a todo el ordenador, incluidos

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

CONTROL DE NIVEL VARI-LEVEL

CONTROL DE NIVEL VARI-LEVEL CONTROL DE NIVEL VARI-LEVEL CONTROL DE NIVEL VARI-LEVEL 75 VII.1. INTRODUCCIÓN El equipo VARI LEVEL ofrece posibilidades muy flexibles de control de nivel de refrigerantes. Los puntos o niveles de consigna

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

Circuitos, Sensores y Actuadores

Circuitos, Sensores y Actuadores Capítulo 3 Circuitos, Sensores y Actuadores 3.1. Introducción En el siguiente capítulo se hablará acerca del circuito a utilizar en nuestra mano, para que el sistema de control por flexión funcione, el

Más detalles

DESCRIPCIÓN DEL PUESTO DE TRABAJO

DESCRIPCIÓN DEL PUESTO DE TRABAJO NORMATIVA Las prácticas de laboratorio de la asignatura TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS de primero curso de la E.T.S.I. de Telecomunicación de la U.L.P.G.C. tendrán lugar en el Laboratorio

Más detalles

Manual de Instalación Alarma de Auto K-9

Manual de Instalación Alarma de Auto K-9 Manual de Instalación Alarma de Auto K-9 Planeando la instalación... Negro... Rojo y Amarillo... Naranja... Gris... Café... Blancos... Verde... Violeta... Azul... Luz del Led... Botón de Valet... Zona

Más detalles

3.1 En el circuito de la figura, calcular la resistencia total, la intensidad que circula y las caidas de tensión producidas en cada resistencia.

3.1 En el circuito de la figura, calcular la resistencia total, la intensidad que circula y las caidas de tensión producidas en cada resistencia. 1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. Aplicamos la ley de Ohm: El resultado será, despejando la

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Tema: Motor eléctrico Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Principio de funcionamiento: Clasificación: 1. Energía eléctrica de alimentación

Más detalles

Amplificador de 400W Complementario

Amplificador de 400W Complementario 1 Amplificador de 400W Complementario 0 46V DC Vcc K 2.2 uf 0.7V 47 uf 1K pf 56 Tip 42 1V 1V Tip 41 Tip 42 4 0 0 0.5V D47 0.47 0.47 B817 D47 0.47 0V DC 0.47 4 Tip 41 0.5V B817 820 4-46V DC -Vcc AC 33v

Más detalles

1. Aplicaciones de la electricidad

1. Aplicaciones de la electricidad 1. Aplicaciones de la electricidad A lo largo de la historia, el ser humano ha ido utilizado diferentes formas de energía para la realización de las tareas cotidianas. El descubrimiento del fuego, por

Más detalles

FLEXIGUARD SISTEMA DE CABLE SENSOR PARA VALLAS. Verjas, Mallas, Electrosoldadas. Analizador FS300, FS310. Manual de Instalación y Mantenimiento

FLEXIGUARD SISTEMA DE CABLE SENSOR PARA VALLAS. Verjas, Mallas, Electrosoldadas. Analizador FS300, FS310. Manual de Instalación y Mantenimiento FLEXIGUARD SISTEMA DE CABLE SENSOR PARA VALLAS Verjas, Mallas, Electrosoldadas Analizador FS300, FS310 Manual de Instalación y Mantenimiento Enero 2005 Contenido 1. Descripción del Sistema... 2 2. Condición

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

1 Tablero Maestro 1 Tarjeta de Circuito impreso DE LORENZO 1 Multímetro 1 Osciloscopio 1 Generador de Funciones. Tabla 1.1 Material y Equipo.

1 Tablero Maestro 1 Tarjeta de Circuito impreso DE LORENZO 1 Multímetro 1 Osciloscopio 1 Generador de Funciones. Tabla 1.1 Material y Equipo. Electrónica de Potencia. Guía 3 Facultad: Estudios Tecnológicos Escuela: Electrónica y Biomédica Asignatura: Electrónica de Potencia Contenido. Curva de Operación del SCR. Objetivos específicos. Verificar

Más detalles

Prevención de Riesgos Laborales y Medio Ambiente, Casella

Prevención de Riesgos Laborales y Medio Ambiente, Casella www.casella-es.com Prevención de Riesgos Laborales y Medio Ambiente, Casella Tabla de contenidos 1 INTRODUCCIÓN... 3 1.1 Seguridad... 3 1.2 Descripción general del producto... 3 1.3 Cómo funciona?... 3

Más detalles

Relación de Problemas: CORRIENTE ELECTRICA

Relación de Problemas: CORRIENTE ELECTRICA Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento Poner a tierra Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio. Colocar a tierra el Osciloscopio Por

Más detalles

Tema 1: Electricidad y electrónica

Tema 1: Electricidad y electrónica Tema 1: Electricidad y electrónica 1.- La corriente eléctrica Cualquier trozo de materia está formado por una cantidad enorme de unas partículas pequeñísimas, a las que los científicos han dado el nombre

Más detalles