Campo magnetico e inductores

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Campo magnetico e inductores"

Transcripción

1 Campo magnetico e inductores Marcos Flores Carrasco Departamento de Física

2 Tópicos Campo Magnético Ley de inducción de Faraday Inductor Asociacion de inductores Circuitos RL

3 Campo magnético (B) Una carga eléctrica genera un campo eléctrico, el que a su vez, ejerce una fuerza (eléctrica) sobre otra carga colocada en el campo. Por analogía: q E q m E m El problema en esta simetría es que no existen cargas magnéticas pues no hay objetos puntuales aislados de los cuales emergen líneas de campo magnético. El campo magnético se origina por cargas eléctricas en movimiento! Una carga eléctrica genera un campo eléctrico tanto en reposo como en movimiento. Por el contrario, el campo magnético se genera sólo si la carga está en movimiento. En los imanes, los electrones del átomo de hierro están en movimiento, y por lo tanto, inducen una magnetización permanente.

4 El experimento de Oersted Hans Oersted: Preparando su clase de física en la Universidad de Copenhague, descubre que al mover una brújula cerca de un cable que conducía corriente eléctrica la aguja rotaba hasta quedar en una posición perpendicular a la dirección del cable. Por primera vez se había hallado una Conexión entre la electricidad y el magnetismo, en un accidente que puede considerarse como el nacimiento del electromagnetismo.

5 Campo magnético (B) En magnetismo pensamos en términos de: qv B qv B = μ0 qv rˆ 4π r 2 Como una corriente eléctrica en un alambre es un flujo de cargas en movimiento: I B I B = μ0 2 I 4π R Aquí µ0 es una constante denominada constante de permeabilidad = 4πx10-7 Tm/A Así como ε0 (constante de permitividad) 8,85x10-12 F/m es para problemas de electrostática.

6 Imán permanente Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel. Líneas de fuerza del campo magnético alrededor de una espiral y de un imán en forma de barra.

7 Campo inducido

8 Ley de Faraday (1831) Faraday descubrió que la variación temporal del flujo magnético debida a un campo magnético variable que atraviesa la superficie limitada por una espira conductora estacionaria (en reposo), induce una corriente. Al insertar el imán en la bobina aparece en ésta una corriente, conocida como corriente inducida El trabajo realizado por unidad de carga durante el movimiento de los portadores de carga que constituyen esa corriente lo denominamos fem inducida Inducción magnética

9 Ley de Faraday Dos bobinas próximas, mantenidas en reposo sin contacto eléctrico directo. Al cerrar el interruptor S, la batería produce una corriente en la bobina de la derecha El galvanómetro en la bobina de la izquierda se activa momentánea, y luego retornando a cero. Cuando se abre la llave S se interrumpe la corriente, el puntero se activa nuevamente, retornando a cero, pero en sentido opuesto. Una fem es inducida solamente cuando algo esta variando. En una situación estática, donde ningún objeto físico esta en movimiento

10 Ley de inducción de Faraday Una fem es inducida en la bobina de la izquierda en los dos experimentos cuando el número de líneas de campo magnético que la atraviesan está variando. El número total de líneas de campo magnético que atraviesan la bobina de la izquierda no nos interesa, es la variación de este número la que induce la fem y es la tasa con que el número varía la que determina el valor de la fem inducida. Exp.1: Las líneas que se generan en la barra imantada y el numero de líneas que atraviesan la bobina aumenta cuando aproximamos el imán y disminuye cuando lo distanciamos. Exp.2: Las líneas están asociadas a la corriente en la bobina derecha. El numero de líneas a través de la bobina izquierda aumenta (a partir de cero) cuando cerramos S (prendiendo la corriente) y disminuye (volviendo a cero) cuando abrimos S.

11 Flujo magnético Considerando una superficie plana o no limitada por una espiral conductora cerrada. Representamos el número de líneas magnéticas que atraviesan esa superficie por el flujo magnético φm para esa superficie, definida por: φm = B nˆda = B da n S S En un caso especial supongamos que el campo magnético tenga el mismo modulo B en toda su superficie plana de área A y que sea perpendicular a esa superficie. Así, el producto escalar queda BdA. Entonces: φ m = B da = BA S En el cual ΦB es el módulo del flujo a través de la superficie. En SI, el flujo magnético se mide en Tesla-metro2, al cual se denomina Weber: 1Wb = 1 Tm2

12 Ley de inducción de Faraday La fem inducida en una espiral conductora es igual al negativo de la variación del flujo magnético a través de la espiral con respecto al tiempo. La fem inducida será igual a la variación del flujo magnético a través de una superficie S encerrada por C: dφ m d d ˆ ξ = B dl = B nda = dt C dt S dt Ley de Faraday Cuando la tasa de variación de flujo es dada en Webers por segundo, la fem inducida es dada en Volts. El signo negativo tiene que ver con el sentido de la fem inducida, esto es, el sentido de la flecha de la fem dibujada en un diagrama de la espiral.

13 Ley de inducción de Faraday Si variamos el flujo magnético a través de una bobina con N vueltas, una fem inducida aparecerá en cada espiral y estas fems como las fems de baterías conectadas en serie se sumarán. Si la bobina fuese enrollada en forma compacta, de modo que el flujo a través de cada espiral sea el mismo, la fem inducida en la bobina será: dφ m ξ = N dt Ley de Faraday

14 Ley de Lenz (1834) Una corriente inducida surgirá en una espiral cerrada con un sentido tal que ella se opondrá a la variación que la generó (conservación de la energía). La Ley de Faraday dice que una tensión se desarrollará a través de un conductor cuando éste esté en un campo magnético cambiante (variable). La Ley de Lenz dice que la polaridad de la tensión inducida creada es tal que la corriente eléctrica resultante produce un campo magnético que se opone al campo magnético que lo creó.

15 Condensadores e inductores Un condensador es un dispositivo que podemos usar, convenientemente, para producir un determinado campo eléctrico en una región del espacio. De forma simimal, podemos definir un inductor como un dispositivo que podemos usar, convenientemente, para producir un determinado campo magnético en una región. Condensador y su campo eléctrico asociado Inductor y su campo magnético asociado

16 Inductancia Poniendo cargas iguales u opuestas +q y -q sobre las placas de un condensador, se produce una diferencia de potencial V entre las placas. La capacidad del condensador está definida por q C= V Faradios Al establecer una corriente i en un inductor, surge, en cada una de sus espirales, un flujo magnético φ, debido a esa corriente y, decimos que las espirales están concatenadas por este flujo compartido. La inductancia del inductor es: Nφ L= i Donde N es el numero de espirales (vueltas) El producto Nφ es denominado flujo concatenado La unidad de la inductancia es Tesla-metro2 por ampere (Tm2/A) Esta unidad es denominada Henry (H) en homenaje a Joseph Henry, coautor de la ley de inducción.

17 Auto-inducción Si dos bobinas, que ahora llamaremos inductores estuvieran próximas una de otra, una corriente i en una bobina producirá un flujo magnético en la segunda bobina. Vimos que, si variamos este flujo variando la corriente, una fem inducida aparecerá en la segunda bobina, de acuerdo con la ley de Faraday. Además: Una Unafem feminducida inducidaξl ξlsurge surgeen enuna unabobina bobinacuando cuando variamos variamoslalacorriente corrienteen enesta estamisma mismabobina. bobina. Tal proceso es denominado de auto inducción, y la fem que aparece es denominada fem auto-inducida. Ella obedece a la ley de la inducción de Faraday, como cualquier otra fem inducida lo hace.

18 Auto-inducción Para cualquier inductor: Nφ L= Nφ = Li (1) i La ley de Faraday plantea: ξ L = dnφ (2) dt Combinando (1) y (2), se tiene que la fem auto-inducida: ξ L = L di dt Luego, en un inductor cualquiera (bobina, solenoide), una fem auto- inducida surge siempre que la corriente varía con el tiempo. La intensidad de la corriente no tiene ninguna influencia sobre el módulo de la fem inducida; solamente la tasa de variación de la corriente tiene importancia.

19 Auto-inducción y ley de Lenz El signo negativo de la ecuación representa el hecho de que como la ley de Lenz afirma la fem auto-inducida actúa de modo que se opone a la variación de corriente que la produce. Supongamos que en la figura (a), se establece una corriente i en una bobina que está aumentando con el tiempo a una tasa di/dt. En la ley de Lenz, este aumento de corriente es la variación a la cual la fem auto-inducida se debe oponer. Para eso, la fem auto-inducida tiene que aparecer en la bobina (en el sentido indicado en la figura), para que se oponga al aumento de la corriente. Al disminuir la corriente con el tiempo, figura (b), la fem auto-inducida tiene que apuntar en un sentido que tienda a oponerse a su disminución, como muestra la figura.

20 Consideraciones sobre inductancias Cuando un campo eléctrico y una fem son inducidos por un flujo magnético variable, no podemos definir un potencial eléctrico. Esto significa que no podemos definir el valor del potencial eléctrico en el interior del inductor, donde el flujo esta variando. Sí podemos definir un potencial en puntos del circuito afuera de esa región, donde los campo eléctricos en el hilo y en otros elementos del circuito son causados por distribuciones de partículas cargadas. Además, podemos definir una diferencia de potencial VL a través de un inductor (entre sus terminales que suponemos fuera de la región del flujo variable). Cuando el inductor es un inductor ideal (los hilos presentan resistencia despreciable), el modulo VL es igual al modulo de la fem autoinducida ξl. Al contrario, cuando el inductor tiene una resistencia r, lo separamos en una resistencia r (que tomamos fuera de la región de flujo variable) y un inductor ideal de fem ξl, como en el caso de la batería real.

21 Inductores Un inductor está constituido usualmente por una cabeza hueca de una bobina de material conductor, típicamente alambre o hilo de cobre esmaltado. Existen inductores con núcleo de aire o con núcleo de un material ferroso, para incrementar la inductancia.

22 Asociación de inductores: serie Para un numero n de inductores conectados en serie: La magnitud di/dt es la misma para todos inductores. Por tanto, la fuerza electromotriz inducida en el sistema completo entre a y b se puede describir: n di di di V = L1... Ln = Li dt dt dt i El valor V es precisamente el mismo si las dos autoinducciones se reemplazan por una única cuya inductancia equivalente de valor: LEq = n Li i Si un circuito contiene n inductores en serie, la inducción total del circuito es la suma de todas inductancias Li, siempre cuando los inductores estén lo suficientemente lejos entre ellos, como para poder despreciar su inducción mutua.

23 Asociación de inductores: paralelo Considerando n inductores conectados en paralelo, suficientemente separados, con corriente variable i que fluye entre a y b. Puesto que la caída de voltaje entre los puntos a y b (es decir, la lectura de un voltímetro conectado entre estos puntos) debe ser la misma a través de cualquier trayectoria, las fuerzas contraelectromotrices inducidas en los inductores también deben ser la mismas. di1 din V = L1 =... = Ln dt dt V di1 = L1 dt din V = Ln dt

24 Asociación de inductores: paralelo Sumando las variaciones de corriente en cada inductor: di di1 di V V = n =... dt dt dt L1 Ln 1 1 = V Ln L1 Si se sustituyen los inductores conectados en paralelo por un único inductor equivalente, la relación V y di/dt seía la misma si se satisface que: 1 = LEq n i 1 Li

25 Asociación de inductores, condensadores y resistencias Serie Paralelo Resistencia R Eq = R 1 + R = + R Eq R 1 R 2 Condensador = + C Eq C1 C 2 C Eq = C1 + C 2 L Eq = L1 + L = + L Eq L1 L 2 Inductor

26 Circuito RL Un retardo análogo ocurre en el aumento (o disminución) de la corriente, cuando se introduce (o se remueve) una fem en un circuito de malla única, compuesto por un inductor y resistencia (circuito RL). Con el interruptor S se cierra en a, la corriente en la resistencia empieza a aumentar. Sin el inductor, la corriente llegará a rápidamente (casi inmediatamente) a su valor estacionario ξ/r.

27 Circuitos RL Analizando cuantitativamente: Ley de las mallas en el sentido horario: di V ir L = 0 dt Se debe buscar la función i(t) y la correspondiente primera derivada que satisfaga la ecuación anterior y su condición inicial i(0). (en analogía a la ecuacion de los circuitos RC) Se tiene la solución: t Rt ξ ξ τl L i (t ) = 1 e = 1 e R R con τl= L R

28 Energía almacenada en un campo magnético A partir del teorema de las mallas, la ecuación de crecimiento de la corriente: di ξ = L + ir dt di 2 Multiplicando por i: ξ i = i R + Li dt Cuando la carga dq atraviesa la batería (fem ξ) en un intervalo de tiempo dt, la batería realiza sobre ella un trabajo igual a ξdq. La tasa de este trabajo equivale a ξdq/dt (=ξi). Luego ξi es la tasa con que el dispositivo de fem transfiere energía al el circuito (término de la izquierda). El primer término de la derecha es la tasa con que la energía aparece en la forma de energía térmica en la resistencia.

29 Energía almacenada en un campo magnético Trabajo realizado por la fem: ξ i = i R + Li 2 di dt La energía que no aparece como potencia disipada térmica queda almacenada en el campo magnético del inductor. Como la ecuación mencionada traduce la conservación de energía para circuitos RL, el último término debe representar la potencia almacenada en forma de campo magnético varía en función del tiempo, así: du B di = Li du B = Lidi dt dt Integrando Um = Um 0 i du m = Lidi U m = 1 2 Li 2 Energía magnética 0 Esta energía representa la energía total almacenada por un inductor L transportando una corriente i

30 Corriente alterna (CA) Se denomina corriente alterna a la corriente eléctrica en que la magnitud y dirección varían cíclicamente. La forma de onda mas comúnmente utilizada es la onda sinusoidal, puesto que se consigue una transmisión más eficiente de energía. En ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada (pulsos, 1 ó 0). CA es la forma en la cual la electricidad se entrega localmente. A = Amplitud de la onda (Vp) f = frecuencia en Hertz (50 ó 60 Hz) T = periodo (s) f = 1/T ω = frecuencia angular (rad/s) ω = 2πf T= 1 1 = = 20 ms f 50 Hz

31 Corriente alterna (CA) En corriente alterna la tensión y corriente pueden ser descritas como: V (t ) = Asen(ω t ) i (t ) = Asen(ω t ) Valor eficaz (Vrms): valor cuadrático medio Se puede obtener el valor equivalente en corriente continua de un voltaje alterno. Este es el voltaje que será medido con el multímetro. Su importancia se debe a que este valor es el que produce la misma pérdida de calor que su equivalente en corriente continua.

32 Corriente alterna (CA) Matemáticamente, el valor eficaz de una magnitud variable con el tiempo, se define como : T Vrms = 1 2 V dt Vrms = T 0 A V (t ) = 2 2 De la misma forma, se puede mostrar que la corriente rms es: Para una onda cuadrada: Vrms = A Para un onda triangular simétrica: Vrms A = 3 irms A = 2

33 Corriente alterna (CA) Potencia eficaz: 2 P = i 2 R P(t ) = i 2 (t ) R = irms R Una corriente alterna de magnitud irms tiene el efecto de una corriente continua de la misma magnitud, produciendo una potencia disipada promedio equivalente para ambas. De un punto de vista energético, es mejor hablar de voltaje rms, que de Vpp (peak to peak). Voltaje residencial = 220 V V0 = V p = Vrms 2 = = 311 V V pp = 622 V

34 Laboratorio 3 Generador de funciones Osciloscopio

Unidad 2 - Corriente Alterna Conceptos:

Unidad 2 - Corriente Alterna Conceptos: Unidad 2 - Corriente Alterna Conceptos: 1. Campo Magnético 2. Ley de inducción de Faraday 3. Inductor Campo Magnético (B) carga eléctrica E carga eléctrica Cargas eléctricas generan un campo eléctrico

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

Inducción electromagnética

Inducción electromagnética Inducción electromagnética El electromagnetismo es la parte de la Electricidad que estudia la relación entre los fenómenos eléctricos y los fenómenos magnéticos. Los fenómenos eléctricos y magnéticos fueron

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA.

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Asignatura: Física III Año 2009 Universidad Nacional de Tucumán Facultad de ciencias exactas y Tecnología Departamento de Física PROMEI Sistema

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas Universidad acional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas IDUCTACIA LOGO Inductancia Magnética. Interacción entre campos

Más detalles

TEMA 4 ELECTROMAGNETISMO

TEMA 4 ELECTROMAGNETISMO TEMA 4 ELECTROMAGNETISMO IV.1 Magnetismo e imanes IV.2 Electroimanes IV.3 Flujo magnético IV.4 Fuerza magnética IV.5 Inducción electromagnética IV.6 Autoinducción Cuestiones 1 IV.1 MAGNETISMO E IMANES

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

Lección 2: Magnetismo

Lección 2: Magnetismo : Magnetismo : Magnetismo Introducción Esta lección describe la naturaleza del magnetismo y el uso de los imanes en varios componentes eléctricos para producir y controlar la electricidad. Objetivos Al

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

Electromagnetismo e inducción magnética

Electromagnetismo e inducción magnética Electromagnetismo e inducción magnética Experiencia N o 8 La electricidad y el magnetismo están estrechamente relacionados, pues la corriente eléctrica manifiesta un efecto magnético. El electromagnetismo

Más detalles

TEMA 4. INDUCCIÓN ELECTROMAGNÉTICA

TEMA 4. INDUCCIÓN ELECTROMAGNÉTICA TEMA 4. INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética Las experiencias de Faraday, Henry y Lenz en la década de 1830 hicieron posible la transformación de otras formas de energía en energía

Más detalles

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente FEM y Circuitos DC Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción Las baterías proporcionan un

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente UIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos TEMA 6: Análisis de circuitos acoplados magnéticamente TEMA 6 6. Inductancia mutua. Criterio del punto. Autoinducción Hasta ahora hemos

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

Objetivos: Introducción al uso de inductancias. Estudio de una aplicación práctica, los transformadores.

Objetivos: Introducción al uso de inductancias. Estudio de una aplicación práctica, los transformadores. Guía 0 : El Transformador Objetivos: Introducción al uso de inductancias. Estudio de una aplicación práctica, los transformadores. Introducción: En 83 Michael Faraday descubrió que el cambio del flujo

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

LEY DE FARADAY-LENZ BREVE EXPLICACIÓN DE LA LEY DE FARADAY Y DE LA LEY DE LENZ

LEY DE FARADAY-LENZ BREVE EXPLICACIÓN DE LA LEY DE FARADAY Y DE LA LEY DE LENZ LEY DE FARADAY-LENZ LÓPEZ, Luciano Federico Instituto Senderos Azules, Monte Grande, Buenos Aires Profesor Guía: BARRESI, Abel Alberto INTRODUCCIÓN Consultando con mi profesor de física sobre los posibles

Más detalles

Resistencias en serie I =I 1 +I 2 = V R 1

Resistencias en serie I =I 1 +I 2 = V R 1 Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en

Más detalles

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN TEMA : EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN Desde siglos antes de Cristo se conocía que algunos minerales de hierro, como la magnetita (Fe 3 O 4 ), atraían pequeños trozos de hierro. Esta propiedad se llamó

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

MAQUINAS ELÉCTRICAS EL TRANSFORMADOR

MAQUINAS ELÉCTRICAS EL TRANSFORMADOR MAQUINAS ELÉCTRICAS EL TRANSFORMADOR 1 Introducción El transformador esta basado en los fenómenos de inducción electromagnética. Consta de un núcleo de chapas magnéticas, al que rodean dos devanados, denominados

Más detalles

Fig. 1. Partes fundamentales de un disco duro

Fig. 1. Partes fundamentales de un disco duro LECTURA Y ESCRITURA DE INFORMACIÒN EN UN DISCO DURO UNIVERSIDAD DISTRITAL FCO. JOSÉ DE CALDAS TENDENCIAS EN DIDÁCTICA DE LA FÍSICA LICENCIATURA EN FÍSICA SERGIO CUELLAR 20021135020 MARCELA P. GONZÁLEZ

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

ELECTRICIDAD Y MAGNETISMO. Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo.

ELECTRICIDAD Y MAGNETISMO. Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo. ELECTRICIDAD Y MAGNETISMO Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo. UNIDAD 5 PRÁCTICA 13 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

Inductancia y Circuítos LRC

Inductancia y Circuítos LRC Inductancia Mutua Inductancia y Circuítos LRC un campo magnético en la bobina 2, creando un flujo magnético en 2 Φ B2 = M 21 i 1. De la ley de Faraday se tiene la fem inducida en 2 debido al cambio temporal

Más detalles

Medir el valor de la permeabilidad del vacío μ o

Medir el valor de la permeabilidad del vacío μ o Experimento 9 MAGNETISMO Objetivo Medir el valor de la permeabilidad del vacío μ o Teoría Estamos familiarizados con las fuerzas de atracción y rechazo que sufren los imanes entre sí. La mayoría hemos

Más detalles

Contenido del módulo 3 (Parte 66)

Contenido del módulo 3 (Parte 66) 3.1 Teoría de los electrones Contenido del módulo 3 (Parte 66) Localización en libro "Sistemas Eléctricos y Electrónicos de las Aeronaves" de Paraninfo Estructura y distribución de las cargas eléctricas

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación Elementos Pasivos Un elemento pasivo es aquel que no es capaz de entregar potencia al circuito en el cual está conectado esistencia Condensador Bobina esistencia Clasificación según el elemento resistivo

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA 9 NDUCCÓN ELECTROMAGNÉTCA 9.. FLUJO MAGNÉTCO. Por qué es nulo el flujo magnético a través de una superficie cerrada que rodea a un imán? Las líneas de campo magnético son cerradas. En el caso de un imán,

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

Elementos almacenadotes de energía

Elementos almacenadotes de energía V Elementos almacenadotes de energía Objetivos: o Describir uno de los elementos importantes almacenadores de energía muy comúnmente utilizado en los circuitos eléctricos como es el Capacitor o Calcular

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Guía de Ejercicios de Electromagnetismo II Lapso I-2010

Guía de Ejercicios de Electromagnetismo II Lapso I-2010 UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

Bases Físicas del Medio Ambiente. Campo Magnético

Bases Físicas del Medio Ambiente. Campo Magnético ases Físicas del Medio Ambiente Campo Magnético Programa X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fuerza de Lorentz. Movimiento de partículas cargadas en el seno de un campo magnético. Fuerza magnética

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

3. Motores de corriente continua

3. Motores de corriente continua 3. Motores de corriente continua 1. Principios básicos Tipos de máquinas eléctricas Generador: Transforma cualquier clase de energía, normalmente mecánica, en eléctrica. Transformador: Modifica alguna

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Medición del ciclo de histéresis de un material ferromagnético

Medición del ciclo de histéresis de un material ferromagnético Medición del ciclo de histéresis de un material ferromagnético Leandro Carballo (a) y Ramón Gómez (b) Laboratorio de Física II, Curso 007 Facultad de Ingeniería y Ciencias Exactas y Naturales Universidad

Más detalles

Capítulo IV. Modelo de transmisión inalámbrica de energía

Capítulo IV. Modelo de transmisión inalámbrica de energía Capítulo IV. Modelo de transmisión inalámbrica de energía 4.1. Análisis del transformador ideal Un transformador ideal es un dispositivo sin pérdidas que tiene un devanado de entrada y un devanado de salida

Más detalles

ELECTRICIDAD Y MAGNETISMO CIERRE CENTRALIZADO DE PUERTAS

ELECTRICIDAD Y MAGNETISMO CIERRE CENTRALIZADO DE PUERTAS ELECTRICIDAD Y MAGNETISMO CIERRE CENTRALIZADO DE PUERTAS GARCÍA, Gastón Maximiliano Colegio Sagrado Corazón, Córdoba Profesor Guía: POSSETTO, Marisa Alejandra INTRODUCCION. Nos bajamos del auto, cerramos

Más detalles

En un transformador, el núcleo tiene dos misiones fundamentales:

En un transformador, el núcleo tiene dos misiones fundamentales: Transformador El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

Práctica #2. By K. Ing.kieigi@misena.edu.co

Práctica #2. By K. Ing.kieigi@misena.edu.co Práctica #2 By K. Ing.kieigi@misena.edu.co Práctica #2. Transformadores e Inductores Integrantes: Gissette Ivonne Cortés Alarcón Presentado a: Instructor Leider Gaitán Tecnólogo en Mantenimiento Electrónico

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

Fundamentos de Electricidad de C.C.

Fundamentos de Electricidad de C.C. LEY DE OHM El flujo de los electrones a través de un circuito se parece en muchas cosas al flujo del agua en las tuberías. Por tanto, se puede comprender la acción de una corriente eléctrica comparando

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO OPCIÓN A. POBLEMA 1. Un planeta gigante tiene dos satélites, S1 y S2, cuyos periodos orbitales son T 1 = 4.52 días terrestres y T 2 = 15.9 días terrestres respectivamente. a) Si el radio de la órbita del

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

Técnicas de Diagnostico Sistemas de Encendido

Técnicas de Diagnostico Sistemas de Encendido Técnicas de Diagnostico Sistemas de Encendido Existen en los nuevos modelos de vehículos sistemas de encendido, en los cuales se remplaza el viejo distribuidor Estos dispositivos se llaman de encendido

Más detalles

CAPITULO 5. Corriente alterna

CAPITULO 5. Corriente alterna CAPITULO 5 Corriente alterna Se denomina Corriente Alterna (CA) a la corriente eléctrica en la cual la magnitud y el sentido varían periódicamente, siendo la forma sinusoidal la más utilizada. El uso doméstico

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián GENERADORES DE CORRIENTE ALTERNA Ley de Faraday La Ley de inducción electromagnética ó Ley Faraday se basa en los experimentos que Michael

Más detalles

Elementos almacenadores de energía

Elementos almacenadores de energía Elementos almacenadores de energía Objetivos. Explicar los conceptos esenciales sobre capacitores e inductores, utilizando los criterios dados en el texto. 2. Ampliar los conocimientos sobre dualidad,

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

UNIDAD V: INDUCCION ELECTROMAGNETICA

UNIDAD V: INDUCCION ELECTROMAGNETICA UNIDAD V: INDUCCION EECTOMAGNETICA Experiencias de FAADAY. Fuerza electromotriz de movimiento. ey de inducción de FAADAY. ey de ENZ. Corrientes de FOUCAUT. Aplicaciones de la ey de FAADAY. Generadores

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

8.9 Algunas aplicaciones de la inducción magnética.

8.9 Algunas aplicaciones de la inducción magnética. CAPÍTULO 8 Inducción agnética Índice del capítulo 8 8. Flujo agnético. 8. La ley de Faraday. 83 8.3 Ley de Lenz. 8.4 Fe de oviiento. 8.5 Corrientes de Foucault. 8.6 Inductancia. 8.7 Energía agnética. 8.8

Más detalles

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Martin, Laura Leibovich, Débora laura_martin1@hotmail.com debbie@megabras.com Laboratorio de física -

Más detalles

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua Bases Físicas del Medio Ambiente Corriente Eléctrica y Circuitos de Corriente Continua Programa XII. COIENTE ELÉCTICA. CICUITOS DE COIENTE CONTINUA.(2h) Corriente. Ley de Ohm. esistencia. Conductores,

Más detalles

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje 1- Recordando los comentarios relacionados con la Figura 20-2 (pág. 874) que hicimos en esta sección, diga que significa expresar

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

ELEMENTOS ALMACENADORES DE

ELEMENTOS ALMACENADORES DE Capítulo ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA Portada del Capítulo 5 2CAPÍTULO. ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA. INTRODUCCIÓN Hasta este capitulo solo se han tratado circuitos resistivos,

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

Objetivos: El papel de la inductancia: Recuerde el comportamiento de una inductancia ε = L di

Objetivos: El papel de la inductancia: Recuerde el comportamiento de una inductancia ε = L di Guía 1 : El tubo fluorescente Objetivos: Estudio del uso de inductancias y condensadores en un dispositivo práctico: el tubo fluorescente. Estudio de la compensación del factor de potencia de un circuito

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

Escuela Superior de Economía y Negocios. Electromagnetismo. Ciclo 2-2014

Escuela Superior de Economía y Negocios. Electromagnetismo. Ciclo 2-2014 Página 1 Escuela Superior de Economía y Negocios Electromagnetismo Ciclo 2-2014 Elena Mónica Fernández Monterroza 20121052 Juan José Rodríguez Cruz 20120086 José Felipe Véjar Torres 20123198 Santa Tecla,

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles