Unidad 5-. Trigonometría II 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad 5-. Trigonometría II 1"

Transcripción

1 Unidd - Trigonometrí II ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Sbiendo que sen - / y tg b /7, y que 70 < < 0 y 80 < b < 70, clcul: sen ( b bb cos ( b cc tg ( b Hllmos el resto de rzones trigonométrics de los ángulos que se nos dn: Prtiendo de sen -/, en el curto cudrnte: cos sen sen / cos / 9 9 tg bsec b Prtiendo de l tg b /7 y b en el tercer cudrnte: sec b tg b cosb 7 sec b 7 Como tg b senb/cosb senb cosb tgb 7 Aor podemos llr los vlores de ls rzones de ángulos de dicción que se nos piden sen( b sen cosb senb bb cos( b cosb sen senb cc tg( b sen( b / cos( b / tgb 7 tgb ( ( 7 88 / / usndo ls dos posibiliddes Prtiendo de ls rzones trigonométrics de 0, y 0, clcul: sen 90 bb cos 90 cc sen 0 dd cos 0 ee tg 0 f f sen 0 gg cos 0 tg 0 / 7 7 Mtemátics I - Edite

2 Unidd - Trigonometrí II sen90º sen(0º 0º sen0º cos 0º cos 0º sen0º sen( º senº cos º bb cos90º cos(0º 0º cos 0º cos 0º sen0º sen0º cos( º cos º sen º 0 0 cc sen0º sen( 0º sen0º cos9º dd cos0º cos( 0º cos 0º - sen 0º sen0º / ee tg0º cos0º / f sen0º sen(0º º sen0º cosºcos0º senº gg cos0º cos(0º º cos0º cosº - sen0º cosº ( ( tg0º / sen0º ( ( cos0º ( / ( ( ( ( 8 8 Sbiendo que el seno de un ángulo es sen / y / < <, ll ls rzones trigonométrics de - 0 Clculmos primero l rzones trigonométrics del ángulo que fltn: 9 sen sen / / sen( 0º sen cos0º - sen0º cos( 0º cos0º sen sen0º Mtemátics I - Edite

3 Unidd - Trigonometrí II tg( -0º sen( 0º ( cos( 0 ( tg0º tg0º / 0 / 0 (9 ( ( ( / / ( ( ( (9 ( ( 8 9 ( Justific ls siguientes igulddes: sen (80 -sen cc sen (70 -cos ee cos (90 -sen bb tg (/ -cotg dd tg ( tg f tg (70 -cotg sen(80º sen80º cos80º sen 0 (- sen -sen tg tg tg tg bb tg cot g tg tg tg tg cc sen(70º sen70º cos70º sen (- 0 sen - tg ( dd tg 0 tg 0 ee cos(90º cos90º sen90º sen 0 sen - sen f f tg70º tg70º tg70º tg70º tg70º tg70º tg70º tg70º K, y que 0 tg( 70º cot g Clcul el vlor de l siguiente epresión: sen sen (b - c - sen b sen ( - c sen c sen (-b sen sen (b - c - sen b - sen ( - c sen c sen (-b sen (senb cosc cosb senc senb(sen cosc senc senc(sen cosb senb sen senb cosc ( sen cosb senc ( sen senb cosc ( senb senc ( senc sen cosb ( senc senb ( 0 y que ls epresiones con subíndices igules son opuests Mtemátics I - Edite

4 Unidd - Trigonometrí II Demuestr que cos ( b cos ( - b cos - sen b cos b sen cos ( b cos ( - b ( cosb sen senb( cosb sen senb ( cosb (sen senb cos cos b sen sen b ( cos ( sen b ( cos sen b cos cos sen b sen b cos sen b cos - sen b ( en donde emos sustituido cos b sen b y sen cos pr llegr l primer iguldd Si l sustitución l cemos cos sen y sen b cos b, tenemos: cos ( b cos ( - b ( cosb sen senb( cosb sen senb ( cosb (sen senb cos cos b sen sen b ( sen cos b - sen ( cos b cos b sen cos b sen sen cos b cos b sen 7 Demuestr que sen ( b sen ( - b sen - sen b cos b cos sen ( b sen ( - b (sen cosb senb ( sen cosb senb (sen cosb ( senb sen cos b cos sen b, prtir de quí, como en el ejercicio nterior, tenemos dos cminos: ( sen cos b cos sen b sen ( - sen b (- sen sen b sen - sen sen b sen b sen sen b sen sen b, que demuestr l primer iguldd ( sen cos b cos sen b ( - cos cos b cos ( - cos b cos b - cos cos b - cos cos cos b cos b - cos que demuestr l segund iguldd 8 Hll ls epresiones que se piden usndo los teorems de dición: cos en función de cos bb sen en función de sen cos( sen sen (cos sen (sen sen cos sen sen cos sen cos (- co cos bb sen( sen( sen (sen (cos sen sen cos sen sen (cos sen sen ( - sen sen sen ( sen sen sen ( sen Mtemátics I - Edite

5 Unidd - Trigonometrí II 9 Sbiendo que tg, y que es un ángulo cuyo seno y coseno son negtivos, clcul ls rzones trigonométrics del ángulo Hllmos primero ls rzones trigonométrics de ls rzones que fltn: tg sec sec tg Como tg sen/ sen Aor ls rzones trigonométrics del ángulo doble: 0 Sbiendo que tg, ll tg sen sen cos cos sen sen / / tg ( sec ( tg tg 0 ecución de segundo grdo en que tg resolvemos: ± ( ± Simplific ls epresiones: sen sen cos sen cos sen cos sen cos cos sen cos cos cos Mtemátics I - Edite

6 Unidd - Trigonometrí II sen cos sen cos sen cos cos cos bb : sen sen( cos sen( cos sen cos sen cos Demuestr que tg cotg - cotg Prtimos del segundo miembro con intención de obtener el primero: cotg cotg tg tg tg tg tg tg tg tg tg tg tg, QED tg tg Comprueb que: tg tg tg tg tg tg sen cos sec cos sen cos cos cos sen, QED Clcul ls rzones trigonométrics de 0' y ls de 7 En mbos csos, utiliz ls epresiones del ángulo mitd º cos º senº0' sen º cos º cos º0' cos º cos º tgº0' tg cos º ( ( ( Mtemátics I - Edite

7 Unidd - Trigonometrí II 7 sen7º cos 7º tg7º 0º sen cos 0º tg 0º cos0º cos0º cos0º cos0º cos 0º cos 0º cos 0º cos 0º ( ( ( 7 7 Sbiendo que cotg - y es el myor ángulo negtivo que verific est iguldd, clcul ls rzones trigonométrics del ángulo mitd Estmos en el segundo cudrnte y que dice que es ángulo negtivo myor que verific que l cotngente es negtiv Necesitmos el : cotg cosec cot g cos ec cot g sen cos sen ( ( sen Clculmos ls rzones, directs, del ángulo mitd sen cos tg ( ( ( Epres, en función de un rzón trigonométric del ángulo mitd: sen cos sen ( ( sen sen cos sen sen cos sen cos tg bb Mtemátics I - Edite

8 Unidd - Trigonometrí II 8 sen sen cos sen cos cos ( ( ( ( tg ( 7 Sbiendo que cos / - / y que es un ángulo del tercer cudrnte, ll sen, cos cos cos cos 9 cos cos 9 sen cos Simplific ls epresiones siguientes: 0º 0º 0º 0º sen cos sen0º sen0º cos 0º cos 0º 0º 0º 0º 0º cos cos sen0º cos0º cos 0º cos0º sen0º cos 0º tg0º 9º 7º 9º 7º cos sen sen9º sen7º cosº sen0º tg0º bb sen9º sen7º 9º 7º 9º 7º senº cos 0º tgº sen cos 0º 0º 0º 0º sen sen cos 0º cos 0º sen0º sen0º sen0º cc tg0º sen0º sen0º 0º 0º 0º 0º cos 0º sen0º cos 0º cos sen cos( y cos( y sen( y sen( y 9 Demuestr que tgy ( y ( y ( y ( y sen sen cos( y cos( y sen sen( y seny sen( y sen( y ( y ( y ( y ( y sen cos( y cos y sen cos D seny cos y tgy QE Mtemátics I - Edite

9 Unidd - Trigonometrí II 9 Mtemátics I - Edite 0 Resuelve ls siguientes ecuciones trigonométrics: sen y que el ángulo cuyo seno es mide 0º / rd en el primer cudrnte y 0º / rd en el segundo bb 9 9 cos y que el ángulo cuyo coseno es -/ mide 0º / rd en el º cudrnte y 0º / rd en el tercero cc tg y que el ángulo cuy tngente es mide 0º / rd en el º cudrnte y 00º / rd en el º dd 8 ( ( cos y que el ángulo cuyo coseno es mide 0º / rd en el primer cudrnte y 0º / rd en el º ee sen sen0º 0 sen sen0º sen ½ 0º 0º 0º 0º 0º 0º 0º 0º f f 0º 7º 0º 0º º 80º 0º 0º º 0º 0º º 80º 0º º º g cot y que el ángulo cuy cotngente es mide 0º en el primer cudrnte y 0º en el º Como l primer solución incluye l segund, tommos l primer Resuelve ls siguientes ecuciones trigonométrics: sen cos dd cos - cos sen sen bb sen sen cos ee sen - cos sen cc sen sen f f sen tg

10 Unidd - Trigonometrí II 0 sen cos sen cos cos 0 cos(sen 0 solución de l segund 90º 0º y está incluid en l primer cos 0 90º 80º, l sen 0 sen bb sen sen cos sen cos cos sen cos( cos sen cos cos 0 ; cos 0 90º 80º cos(sen 0 0º 0º º 80º sen 0 sen 0º 0º 7º 80º cc sen sen sen cos sen sen cos - sen 0 sen(cos - 0, e igulndo cd fctor cero: dd cos cos sen sen sen 0 0º 80º 0º 90º 0º 0º 0º 80º cos 0 cos 0º 0º 0º 80º ( sen sen sen cos - sen sen(- sen cos ( sen sen sen cos 0 sen(sen cos 0, or igulmos cd fctor cero: sen 0 0º 80º 0º 90º cos 0 90º 80º sen cos 0 sen cos cos 0 cos (sen 0 0º 0º sen 0 sen 0º 0º ( Aplicmos ls fórmuls de dición pr convertir sums (o diferencis en productos ( sen(- -sen y psmos l primer miembro todo ee sen cos sen sen cos sen 0 sen(cos sen 0, or y podemos igulr cd fctor cero: sen 0 0º 80º ± 0,877 cos sen 0 cos ( cos 0 cos cos 0 cos, l,80 segund solución no es válid y que el coseno no puede ser menor que - y pr que cos 0,877; º 8 0º ó 7º 0º sen f sen 0 0º 80º sen tg sen tg 0 sen 0 sen 0 cos cos 0 cos cos l segund ecución tiene por soluciones 0º 0º ó 00º 0º Resuelve ls siguientes ecuciones trigonométrics: sen cos dd cos sen sen bb sec tg 0 ee tg tg cc cos (/ cos f cos sen Mtemátics I - Edite

11 Unidd - Trigonometrí II sen cos sen ( sen sen sen sen sen 0, ecución de segundo grdo en sen que resolvemos: ± ± sen, l segund no es válid y que el seno no puede ser menor que - y de l primer obtenemos 90º 0º bb sec tg 0 cos sen cos 0 ( cos 0 No válid sen 0 cos sen 0 sen - 70º 0º cc cos cos cos cos cos cos cos cos cuys soluciones son 0º 0º ó 0º 0º dd cos sen sen ( sen sen sen sen sen sen sen 90º 0º ee tg tg signos tenemos: tg tg tg tg tg tg ± tg tg tg 0º 80º 0º 80º, de tener en cuent los dos f cos sen ejercicio nterior: sen tg cos tg 0º 80º tg 0º 80º tg ± cuys soluciones y emos lldo en el Resuelve ls siguientes ecuciones trigonométrics: sen cos bb sen cos cc sen cos / En ests ecuciones y que plicr los teorems de dición sen cos sen cos sen cos 0º cos sen0º sen( 0º 0º 90º 0º 0º 0º bb sen cos sen cos sen cos sen( º º 90º 0º º 0º Mtemátics I - Edite

12 Unidd - Trigonometrí II cc sen cos sen sen sen ( sen sen ( sen ( sen 0sen sen 8sen 0sen 0, ecución de º grdo en sen que resolvemos: 0 ± 00 7 sen que no tiene soluciones reles Resuelve los siguientes sistems: sen y sen y reducción cos y cos y sen y cosy y 80º 0º cos y cos y sen y y 90º 0º, sustituyendo en l primer sen (90º 0º sen cos y sen cos y cos seny sen( y y 90º bb sumndo 0º y luego tenemos sen cos y cos seny sen( y cos seny res tndo 0º dos sistems posibles (considerndo sólo un vuelt l circunferenci: y 90º sumndo 0º 0º y 0º y 0º y 90º sumndo 0º 0º y 0º y 0º cos cos y cc de l segund se deduce que y 0º, luego y - que sustituid en l primer nos cos( y d: cos cos(- cos cos cos cos ½ 0º 0º ó 0º 0º, l y, por tnto, es y - -0º 00º 0º ó y -0º 0º 0º dd y sen seny de l primer se deduce y / que sustituido en l segund rroj sen sen(/ que convertimos en producto medinte l fórmul de dición: A B A B sena senb sen cos sen sen sen cos sen cos( cos de y son: cos 0º luego los vlores 0º y, d vlores cmbidos: pr /, y / y vicevers 9 y Mtemátics I - Edite

13 Unidd - Trigonometrí II En un de ls orills de un río y un pedestl de 0 m de ltur sobre el que se poy un esttu de 9 m de lzd Hll l ncur del río, sbiendo que desde un punto A, situdo en l orill opuest l pedestl, se ve l esttu bjo el mismo ángulo que se verí un ombre de,80 m situdo delnte del pedestl,8 tgα 0 tg( α β resolviendo el sistem de tres ecuciones con tres incógnits tenemos,7 m 9 tg(α β Sbiendo que tg (A/ ll cos A - cos A y que A es un ángulo cuyo seno es menor que su coseno, En el ejercicio 8 llmos cosa cos A cosa, en función del cos A A prtir de l tngente del ángulo mitd llmos el vlor de cosa: A cos A cos A cos A tg ± ± cos A cos A cosa - cos A cos A cos A cos A, or podemos llr el vlor de l epresión pedid: cosa cosa cos A cosa cosa cos 9 A cosa Mtemátics I - Edite

14 Unidd - Trigonometrí II 7 Un clle mide m de nc Desde el punto medio de l mism se observn los leros de sendos edificios de lturs H y bjo ángulos β y β, respectivmente En el cso de que los ángulos sen de 0 y 0, clcul H y Encuentr l relción generl que lig ls lturs H y, y comprueb que ls lturs clculds nteriormente verificn l relción generl AE ED m tgβ tg0º m tg0º,m m H tgβ tg0º H m tg0º 0,9m m En generl: tgβ H 7 H tgβ H tgβ tg β Comprobemos l relción nterior: 7 7 tg0º H 0,9 (tg0º 8 Siendo A, B, C los ángulos de un triángulo, demuestr que: tg A tg B tg C tg A tg B tg C Not: yúdte del desrrollo de tg (A B C, y recuerd que A B C 80 tga tgb A B C 80º A B 80º - C tg(ab tg(80º-c tgc tga tgb -tgc( tga tgb tga tgb tga tgb -tgc tga tgb tgc tga tgb tgc tga tgb tgc QED Mtemátics I - Edite

15 Unidd - Trigonometrí II 9 En los mnules de grimensur prece l siguiente fórmul pr clculr el áre de un triángulo, siempre que se conozcn los elementos que en ell precen: tga tgb S c tga tgb Ayudándote de l ltur correspondiente l vertice C, demuestr l fórmul nterior En el triángulo rectángulo ADC tenemos: tga En el triángulo rectángulo CDB tenemos: tgb c Si despejemos del sistem formdo por ls dos epresiones nteriores: tga tga tgb c c tgb c tgb Igulndo : tga c tgb tga tgb c tga c tgb tga c tgb c tgb tga tga tgb tga tgb c tgb tga El áre del triángulo es S tga tgb tga tgb c c c c QED tgb tga tgb tga En donde emos sustituido por l epresión obtenid más rrib Mtemátics I - Edite

Unidad 5 Trigonometría II

Unidad 5 Trigonometría II Unidd Trigonometrí II PÁGINA SOLUCIONES. Ls tres igulddes son flss. Pr probrlo bst con utilizr l clculdor.. Clculmos el áre del octógono circunscrito y le restmos el áre del octógono inscrito obteniendo

Más detalles

Unidad 5 Trigonometría II

Unidad 5 Trigonometría II Unidd 5 Trigonometrí II PÁGINA 111 SOLUCIONES 1. Ls tres igulddes son flss. Pr probrlo bst con utilizr l clculdor.. Clculmos el áre del octógono circunscrito y le restmos el áre del octógono inscrito obteniendo

Más detalles

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:

Más detalles

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5.

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5. Mtemátics Bchillerto? Solucionrio del Libro Trigonometrí 07 Actividdes. Clcul ls rzones trigonométrics de un ángulo del segundo cudrnte, si. De sen cos se obtiene cos sen 9. Como está en el tercer cudrnte,

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo

Más detalles

AMPLIACIÓN DE TRIGONOMETRÍA

AMPLIACIÓN DE TRIGONOMETRÍA Alonso Fernández Glián 1. EL TEOREMA DEL SENO AMPLIACIÓN DE TRIGONOMETRÍA 1.1. OTRA DEMOSTRACIÓN DEL TEOREMA DEL SENO 1.. MEDIDA DE UN ÁNGULO INSCRITO EN UNA CIRCUNFERENCIA 1.3. UN COROLARIO DEL TEOREMA

Más detalles

Unidad 4. Trigonometría I 1

Unidad 4. Trigonometría I 1 Unidad Trigonometría I ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Completa en tu cuaderno la siguiente tabla referida a la equivalencia de ángulos en los distintos sistemas de medida Vamos a acer las equivalencias

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente: ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)

Más detalles

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m? º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es :

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es : Unidd Resolución de triángulos generles! 1 RESUELVE TÚ (!!") () Aplicndo el teorem de Pitágors en el triángulo rectángulo PQR de l figur djunt, verific que l ltur y del pistón en el instnte t es : y OQ

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

PLANTEL Iztapalapa V

PLANTEL Iztapalapa V Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés TRIGONOMETRÍA (Primer prte) Relizdo por Mª Jesús Arruego Bgüés INTRODUCCIÓN Trigonometrí signific, etimológicmente, medid de triángulos. En los trbjos topográficos y de l construcción es necesrio conocer

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Ejemplos: 2) Pasar 84º a rad: Lo expresamos en forma incompleja y obtenemos aproximadam. 84,43º 180º rad 84, 43 84, 43º x rad 180

Ejemplos: 2) Pasar 84º a rad: Lo expresamos en forma incompleja y obtenemos aproximadam. 84,43º 180º rad 84, 43 84, 43º x rad 180 1.- RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Medid de ángulos Pr medir ángulos se usn principlmente dos sistems de medid: - El sistem sexgesiml que us como unidd de medid el grdo sexgesiml, que es 1/90

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx REPASO DE TRIGONOMETRÍA.- Calcula las demás razones trigonométricas del ángulo α utilizando las relaciones fundamentales: (sin calcular el valor del ángulo α y trabajando con valores eactos) a) sen α,

Más detalles

Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60.

Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60. ACTIVIDADES a) b) c) π x 0π π = x = = rad 60 10 60 18 π x 70π π = x = = rad 60 15 60 π x 10π π = x = = rad 60 60 60 a) 60 x 60 π = x = = 10º π π 6π b) 60 x 60 = x = = 171,88º π π c) 60 x 60 π = x = = 0º

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm. TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

Como el ángulo es mayor que 360º lo tratamos del siguiente modo:

Como el ángulo es mayor que 360º lo tratamos del siguiente modo: MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60

Más detalles

Funciones trigonométricas

Funciones trigonométricas Funciones trigonométrics Por Sndr Elvi Pérez Márquez Ls funciones trigonométrics son funciones de l medid de un ángulo, es decir, si el vlor del ángulo cmi, el vlor de ésts tmién. L tl 1 muestrs ls seis

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA.

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. CUADERNILLO DE VERANO. º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. Te preguntrás Qué pretendemos? OBJETIVOS:.- Reforr contenidos de opertori ásic..- Fomentr en el lumno el espíritu de superción frente contenidos

Más detalles

DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes

DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se genera por la rotación de un rayo desde una posición inicial hasta otra posición final, siempre alrededor de un punto fijo llamado vértice.

Más detalles

Resolución de triángulos.

Resolución de triángulos. Resolución de triángulos. 06 Resuelve los siguientes triángulos. ) 10 cm, 14 cm, c cm e) 2,1 cm; 1,4 cm; c 1, cm ) 6 cm, c 9 cm, A $ 9 12' f) 9 cm, c 5 cm, B10 $ 27' c) 7 cm, B $ 49', C $ 66 40' g), cm;

Más detalles

Ley de senos y cosenos

Ley de senos y cosenos MB0003 _MAA1L_Ley Versión: Septiembre 01 Revisor: Ptrici Crdon Torres Ley de senos y cosenos por Oliverio Rmírez Juárez En l lectur nterior resolviste distintos problems que implicn triángulos rectángulos,

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Colegio San Agustín (Santander) Página 1

Colegio San Agustín (Santander) Página 1 Mtemátics ºBchillerto Aplicds ls Ciencis Sociles er evlución. Determinntes ) Clcul el vlor de los siguientes determinntes: ) b) c) ) = (-)+ +(-) [ + (-) (-)+ ]= -++-[6++] = --6-= - b) = (-) + + -[ (-)+

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II)

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIERÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS

Más detalles

IES Fernando de Herrera Curso 2012/13 Primer Examen 2ª evaluación 4º ESO 30 de enero de 2013 NOMBRE

IES Fernando de Herrera Curso 2012/13 Primer Examen 2ª evaluación 4º ESO 30 de enero de 2013 NOMBRE IES Fernndo de Herrer Curso 0/ Primer Emen ª evlución º ESO 0 de enero de 0 NOMBRE ) Resolver: 7 ( punto) ) Resolver: + 9 + + (, puntos) ) Resolver: log + log 6 ( punto) 6 ) Resolver: (, puntos) 8 8 )

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA EJERCICIOS DE TRIGONOMETRÍA. Sabiendo que cot g y que, determina: a. cos d. sec cot g b. sen e. c. tg f. cos. Hallar el valor de las siguientes expresiones: sen / x cos x sen x a. cos x sen x b. c. tgx

Más detalles

EXAMEN DE TRIGONOMETRÍA

EXAMEN DE TRIGONOMETRÍA 1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)

Más detalles

Unidad 4. Trigonometría I 1

Unidad 4. Trigonometría I 1 Unidad 4. Trigonometría I 1 ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS 1 Completa en tu cuaderno la siguiente tabla referida a la equivalencia de ángulos en los distintos sistemas de medida. Vamos a hacer

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES REPASO Y APOYO OBJETIVO DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Un iguldd lgebric está formd por dos expresiones lgebrics seprds por el signo igul (=). Un identidd es

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

Colegio Sor Juana Inés de la Cruz Sección Preparatoria. Academia de Ciencias Exactas Ing. Jonathan Quiroga Tinoco

Colegio Sor Juana Inés de la Cruz Sección Preparatoria. Academia de Ciencias Exactas Ing. Jonathan Quiroga Tinoco Colegio Sor Jun Inés de l Cruz Sección Preprtori Acdemi de Ciencis Excts Ing. Jonthn Quirog Tinoco Mteril Didáctico: Guí de preprción pr el Exmen Extrordinrio Mtemátics II Segundo Semestre Ciclo Escolr:

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA.

CUADERNILLO DE VERANO. 1º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. I.E.S. PABLO RUIZ PICASSO DEPARTAMENTO DE MATEMÁTICAS CURSO 8-9 CUADERNILLO DE VERANO. º BACHILLERATO DE CIENCIAS Y TECNOLOGÍA. CURSO 8-9. Te preguntrás Qué pretendemos? OBJETIVOS:.- Reforr contenidos

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

"""##$##""" """##$##"""

##$## ##$## Unidad Resolución de triángulos generales! 11!" Demuestra estas identidades: 1 1 (a) + sec (b) (1 - )(cosec + cotg ) sen cot g + cot gβ (c) tg( + β) cot g cot gβ 1 (a) Partimos del primer miembro: 1 1

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105 HILLERTO Resuelve Págin 10 Loclizción de un emisor clndestin Vmos plicr l técnic de l tringulción pr resolver el siguiente problem: Un emisor de rdio clndestin E se sintoniz desde dos controles policiles,

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

19. Indica la medida de todos los ángulos x tales que se verifiquen :a) senx=- ; b)cosx=0;

19. Indica la medida de todos los ángulos x tales que se verifiquen :a) senx=- ; b)cosx=0; Boletín II trigonometría 1. Existe un ángulo "x" tal que senx=1/ y cosx=1/? Razona tu respuesta. Puede valer el seno de un ángulo 9/8? Razona tu respuesta. Existe algún ángulo que cumpla senx=1/ y tgx=1/9?

Más detalles

Capítulo 8. Trigonometría del círculo. Contenido breve. Presentación. Módulo 20 Funciones circulares. Módulo 21 Identidades fundamentales

Capítulo 8. Trigonometría del círculo. Contenido breve. Presentación. Módulo 20 Funciones circulares. Módulo 21 Identidades fundamentales Cpítulo 8 Trigonometrí del círculo Contenido breve Módulo 20 Funciones circulres Módulo 21 Identiddes fundmentles En un mp del cielo están presentes lguns funciones trigonométrics. Presentción En este

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados. Tema : TRIGONOMETRÍA PLANA..1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.. Razones trigonométricas del ángulo doble y del ángulo mitad..3 Teoremas del coseno

Más detalles

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg MATEMÁTICAS º BACH. CC. N. Y S. 0 de octubre de 008 Trigonometría Atención: Los resultados serán válidos sólo cuando los razonamientos empleados se incluyan. Todos los problemas valen puntos. ) Sabiendo

Más detalles

INTRODUCCIÓN A LA FÍSICA

INTRODUCCIÓN A LA FÍSICA INTRODUCCIÓN A LA FÍSICA TRIGONOMETRÍA: CATETO CATETO ADYACENTE OPUESTO RAZONES TRIGONOMÉTRICAS: EJERCICIOS: SENO: COSENO: TANGENTE: cteto opuesto sen = hipotenus cteto dycente cos = hipotenus tg = cteto

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

De la proporcionalidad de los lados de dos triángulos semejantes, obtenemos la definición de las razones trigonométricas de la siguiente forma:

De la proporcionalidad de los lados de dos triángulos semejantes, obtenemos la definición de las razones trigonométricas de la siguiente forma: TEMA 1: TRIGONOMETRÍA PLANA. 1.1. Conceptos Elementales de la trigonometría. 1.. Resolución de triángulos. 1.. Resolución de Ecuaciones. 1.1. Conceptos Elementales de la trigonometría. La palabra trigonometría

Más detalles

= + = 1+ Cuarta relación fundamental

= + = 1+ Cuarta relación fundamental 1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

BLOQUE 3: TRIGONOMETRÍA. Resolución de triángulos. Funciones y fórmulas trigonométricas.

BLOQUE 3: TRIGONOMETRÍA. Resolución de triángulos. Funciones y fórmulas trigonométricas. BLOQUE : TRIGONOMETRÍA Resolución de triángulos Funciones y fórmulas trigonométricas. 6 . RESOLUCIÓN DE TRIÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Recordamos las razones trigonométricas (seno,

Más detalles

Método de sustitución trigonométrica

Método de sustitución trigonométrica MB0005_MAAL_Sustitución Versión: Septiembre 0 Método de sustitución trigonométric Por: Sndr Elvi Pérez El método de sustitución trigonométric se utiliz cundo ls integrles directs de epresiones rcionles

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

T R I G O N O M E T R Í A

T R I G O N O M E T R Í A T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360

Más detalles