Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos."

Transcripción

1 ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra: Es cualquer subconjunto de la poblacón. El número de elementos de la muestra se llama tamaño de la muestra. El carácter estadístco es una propedad que permte clasfcar a los ndvduos de una poblacón. Clasfcamos los caracteres estadístcos en Cualtatvos, los que no podemos medr, y en Cuanttatvos, los que podemos medr. Los valores que toman los caracteres estadístcos cuanttatvos los llamamos varables estadístcas. Las varables estadístcas pueden ser dscretas y contnuas. Una varable estadístca es dscreta cuando sólo puede tomar un número fnto de valores o nfnto numerable. Representamos sus valores medante: x,x,...,x. Una varable estadístca es contnua cuando puede tomar todos los valores posbles dentro de un ntervalo de la recta real. Las representamos medante el ntervalo o clase, y tomamos como representante del ntervalo la marca de clase del ntervalo (punto medo del ntervalo). Es necesaro que las clases tengan el msmo tamaño. Llamamos dstrbucón estadístca al conjunto de todos los datos estadístcos. Podemos presentar los datos estadístcos medante tablas con las varables estadístcas y las dferentes frecuencas de estas varables. Frecuenca absoluta de un valor representaremos por f Frecuenca absoluta acumulada de un valor n x es el número de veces que aparece este valor x. La x es la suma de las frecuencas absolutas de los F. Sabemos que: F = f + f f valores menores o guales que x. La representamos por Frecuenca relatva de un valor x es el cocente entre la frecuenca absoluta de ese valor y el f número total de datos que tenemos en la dstrbucón estadístca. La representaremos por h =. N Frecuenca relatva acumulada de un valor x es el cocente entre la frecuenca absoluta acumulada del valor x y el número total de datos de la dstrbucón estadístca. La representamos F f + f f f f f por H. Sabemos que: H = = = = h + h h N N N N N

2 Podemos agrupar los datos hacendo representacones gráfcas. De estas representacones las más mportantes son: Dagrama de barras: representamos los datos medante barras de altura proporconal a su magntud. En el dagrama de barras los datos pueden ser cualtatvos o cuanttatvos, pero sempre sn agrupar en clases. Hstogramas: Es un dagrama de barras pero los datos son sempre cuanttatvos agrupados en clases o ntervalos. El polígono de frecuencas es la línea rota que une los puntos medos de los lados superores de los rectángulos que forman las barras. Tanto el dagrama de barras como el hstograma tenen un polígono de frecuencas asocado. Dagrama de sectores: Dvdmos un círculo en sectores de tamaño proporconal a la magntud de los datos que representan. [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) Este es un ejemplo de dagrama de sectores, que corresponde a los datos del segundo problema de autoaprendzaje, el del médco de cabecera. Qué hay que hacer para analzar una muestra? Recoger los datos Ordenar los datos (en orden crecente o decrecente) Recuento de frecuencas Agrupacón de los datos: según la varable aleatora sea dscreta o contnua. Construccón de la tabla estadístca. Los parámetros son unos números que nos proporconan una dea, lo más aproxmada posble, del comportamento de todos los elementos de una poblacón en relacón al carácter que estudamos. Los dvdmos en dos grupos: los parámetros de centralzacón y los parámetros de dspersón. Parámetros de centralzacón pretenden agrupar o centralzar los datos correspondentes a toda una poblacón en sólo un valor numérco, representando el conjunto total. Los más mportantes son: meda artmétca, moda y medana. N x + x xn La meda artmétca: x = = x, donde x es cada uno de los valores de la N N = varable estadístca y N es el número total de datos. El cálculo de la meda artmétca es muy sencllo e ntervenen todos los datos. Presenta un nconvenente, los efectos, que a veces son graves, que producen los valores extremos. Estos valores normalmente, no son sgnfcatvos.

3 La moda es el valor de la varable con mayor frecuenca. S los datos los tenemos agrupados en clases la llamamos clase modal. La medana es el valor de la varable que ocupa el lugar central s tenemos un número mpar de datos. En caso contraro la medana concde con la meda artmétca de los valores centrales. La medana tene la propedad de que el 50% de los datos son menores o guales que ella y el otro 50% son mayores o guales. Entonces la medana dvde el conjunto de datos en dos subconjuntos guales. Parámetros de dspersón tenen como objetvo presentarnos una dea de la proxmdad o lejanía de los datos de la poblacón respecto al valor que hemos tomado como valor central. Los más mportantes son: el rango, la varanza y la desvacón típca. Una desvacón típca muy grande ndca que hay mucha dspersón de los datos, y una desvacón típca muy pequeña ndca que los datos están todos alrededor del valor central. El rango es la dferenca entre el valor máxmo y el mínmo de una varable estadístca. S el rango es grande exste la posbldad de que los datos estén alejados unos de otros, y por tanto, que los valores centrales no sean muy representatvos. Por otro lado, s el rango es pequeño, los datos no pueden encontrarse muy dstancados y los valores centrales pueden ser representatvos del conjunto. La varanza es la meda artmétca de los cuadrados de las desvacones de los datos respecto a N ( x x) + ( x x) ( xn x) la meda: σ = = x x. N N La desvacón típca es la raíz cuadrada de la varanza: Cuando en los N datos sólo aparecen k valores dferentes (lógcamente k<n), x, x,..., xk, podemos utlzar la tabla de frecuencas para obtener la meda y la varanza: k k k k x = xf(x ) = x h( x ) σ = x f(x ) x = x h( x ) x N = = N = = (Recordemos que f es la frecuenca absoluta y h la frecuenca relatva) = σ = σ

4 Ejerccos de autoaprendzaje:. Un profesor de 3º ESO de nglés, de una clase de 5 alumnos, tene las notas sguentes en su cuaderno: 5, 3, 4,,, 8, 9, 7, 6, 8, 6, 7, 9, 8, 7, 7,, 0,, 5, 8, 0, 8, 8, 4 Se trata de una varable aleatora dscreta. Construmos la tabla estadístca: x f F h H = = = = = = = = = = 5 5 La suma de todas las frecuencas absolutas es el número total de datos, en este caso concreto esta suma se corresponde con el número de alumnos: 5. La suma de todas las frecuencas relatvas es sempre la undad. Hacemos el correspondente dagrama de barras: Qualfcacons d'anglés f x f

5 Hace falta hacer un estudo estadístco, calculando las meddas de centralzacón y las de dspersónn y sacar las conclusones de estos cálculos. x f x f x f x = = σ = = σ = =.938 Las meddas de centralzacón son: La meda artmétca es x = 5. 04, la moda es el 8 y la medana es 6 Las meddas de dspersón son: El recorrdo o rango es 9, la varanza es y la desvacón típca es σ = Nuestras conclusones son las sguentes: sabemos que la meda es de 5.04, pero hay una dspersón de 3. Podemos decr que las notas de nglés son o muy buenas o malas. Sobretodo podemos decr que, como la moda es 8 y la medana es 6, hay más gente con buenas notas, pero tambén hay gente suspendda.. Hemos recogdo el número de personas que han vstado el médco de cabecera a lo largo del mes de novembre: 3,, 3, 4,, 4, 5, 6, 7, 3, 4, 5, 3,, 5, 6, 5,, 4, 3, 6, 9, 3, 6, 7, 3, 6, 5,, 6. Se pde una tabla de frecuencas con su dagrama correspondente y tambén un estudo estadístco calculando las meddas de centralzacón y de dspersón. Se trata de una varable aleatora contnua. Agrupamos los datos en clases que son ntervalos de tamaño 5. La marca de clase es el punto medo de cada ntervalo. Construmos la tabla estadístca: Clases Marca de f F h H clase [0, 5) ˆ 0.3 6ˆ [5, 0) ˆ [0, 5) ˆ 0.8 3ˆ [5, 0) ˆ

6 [0,5).5 8 = 0.03ˆ 0.9 3ˆ [5, ) ˆ = Construmos el hstograma: Vstes al metge de capçalera [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) f Calcula la meda artmétca, la varanza y la desvacón típca. Clases Marca de f x f x f clase:x [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) x = = 3.73ˆ σ = σ = σ =.6006 =.56ˆ La meda es x = 3.73ˆ, la varanza es σ =.56ˆ y la desvacón típca es: σ = Podemos decr que, más o menos, el número de pacentes que ha recbdo el médco ha sdo, más o menos de CON LA CALCULADORA: ON/ STAT Necestamos poner la calculadora en modo STAT pulsando ndf F DATA DATA DATA DATA DATA Introducr los datos. Por ejemplo: 3, 4, 7, 9, 3 M + ; 4 M + ; 7 M + ; 9 M + ; M + Ahora podemos conocer las dferentes meddas:

7 Para saber: x necestamos pulsar x M en la pantalla aparece x = 7 σ necestamos pulsar ndf RM en la pantalla aparece σ = 3. 9 x necestamos pulsar ndf ) en la pantalla aparece x = 35 n n necestamos pulsar ) en la pantalla aparece n=5

8 Problemas:. Hemos hecho un estudo a 00 famlas para estudar el número de personas que forman la undad famlar y hemos obtendo la tabla sguente: Personas por famla Número de famlas Construr la tabla de frecuencas Hacer la representacón gráfca de la dstrbucón.. Los pesos, en kg, de los alumnos de un grupo de 4º ESO son: 54, 73, 5, 58, 66, 5, 53, 67, 53, 54 59, 6843, 60, 46, 56, 48, 6, 49, 6, 56, 50, 57, 64, 57, 5. Agrupar los datos en ntervalos de tamaño 5 kg, sendo el prmero [40, 45), y construr una tabla de frecuencas. Representar esta dstrbucón de pesos medante un hstograma. 3. Las alturas de todos los alumnos del nsttuto de 4º ESO están recogdas en la sguente tabla: Altura en cm Alumnos 55 a a a a a a a a 95 3 Construr la tabla de frecuencas, agrupando los datos en clases y elgendo la marca de clase adecuada. Hacer el correspondente hstograma. 4. Les calfcacones fnales de Matemátcas de los alumnos de 3º ESO venen dadas en la tabla sguente: Calfcacones EX NT B SF IN Nº Alumnos Construr una tabla de frecuencas. Calcular el tanto por cento de aprobados y el de suspensos. Representar gráfcamente esta dstrbucón medante un dagrama de barras y un dagrama de sectores.

9 5. En una prueba de Bología, de tpo test, de 60 cuestones, los alumnos han contestado correctamente: 3; 4; 9; 35; 5; 49; 55; 8; 38; 46; 59; 35; 5; 8; 3; 37; 45; 4; 5; 35; 4; 5; ; 9; 43; 39; 33; 47;. Construr una tabla de frecuencas agrupando los datos en 6 ntervalos. Representar gráfcamente esta dstrbucón. 6. Hemos hecho un test de 60 preguntas a 00 alumnos. En la sguente tabla recogemos el número de preguntas que han contestado correctamente: Número de preguntas Número de alumnos a) Represéntala gráfcamente medante un hstograma. Qué porcentaje de alumnos contestan ben a más de la mtad de las preguntas? b) Hacer un estudo estadístco, con las meddas de centralzacón y de dspersón, y sacar las conclusones oportunas. 7. Llenar la sguente tabla, con los pesos de todos los alumnos de vuestra clase cuando nacstes: Peso en Kg Nº de Nños/Nñas,5 a,9,9 a 3,3 3,3 a 3,7 3,7 a 4, 4, a 4,5 Construr la tabla de frecuencas. Representar gráfcamente esta dstrbucón. Calcular el recorrdo o rango. Calcular el peso medo. Calcular la desvacón típca. Sacar conclusones acerca de este estudo. 8. Comparar los resultados académcos de dos clases que han obtendo las sguentes calfcacones fnales: CLASE A CLASE B Insufcentes 7 Insufcentes 7 Sufcentes 0 Sufcentes 5 Notables 8 Notables 4 Sobresalentes Sobresalentes 4 a) Para hacer este estudo calcula el tanto por cento de los alumnos que han consegudo cada una de les calfcacones y represéntalo gráfcamente medante un dagrama de sectores. b) Ahora hacer el estudo con las meddas de centralzacón y de dspersón 9. La cantdad de dnero que llevan los 5 alumnos de una clase del nsttuto en un momento determnado es: Euros Nº alumnos

10 Calcula la meda y la desvacón típca del dnero que llevan en el bolsllo estos alumnos. Escrbr conclusones a propósto de este pequeño estudo. 0. El peso medo de los alumnos de una clase del nsttuto es de 65 Kg. Incorporamos una persona al grupo que pesa 65 Kg, cuál será ahora el nuevo peso medo? Cuál es el nuevo peso medo s la persona que se ncorpora pesa 70 kg? Conocemos que la persona que se ncorpora es un juez, y baja la meda a 64 kg. Puede ser verdad?. Y s a la persona que se ncorpora le gustan mucho las chucherías?. Una famla consta de un matrmono y cuatro hjos. Todos los membros de la famla son trabajadores a sueldo. Qué parámetro estadístco, de los ses sueldos, nforma mejor de la rqueza famlar: la moda, la meda o la varanza? Qué parámetro estadístco nforma mejor sobre la dversdad de sueldos: la medana, la meda o la desvacón típca?. Los aumentos de precos de cnco productos almentaros han sdo, respectvamente, del, 3, 34, 48, 3 por cento. Qué medda de centralzacón refleja mejor el térmno medo de los aumentos, la medana o la meda artmétca? Calcular ambos valores. 3. En una clase de 4t ESO de 5 alumnos, hay 0 alumnos de francés y 5 de nglés. La nota meda de los 5 alumnos en Lengua Extranjera es 6.5. Sabemos que la nota meda de los alumnos de francés es de 6. Qué meda tenen los alumnos de nglés? 4. Calcula todas les meddas de centralzacón y de dspersón de las calfcacones obtendas por los alumnos de la clase en Matemátcas: 3, 7, 8, 5, 4, 0, 6, 6, 7, 5,, 0, 9, 3, 4, 6, 6, 5, 4, 0,, 8, 7, 6, 3, 8, 6, 7, 5, 4.

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla

Más detalles

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA UNIDAD 14: ESTADÍSTICA INTRODUCCIÓN La presenca de la Estadístca es habtual en multtud de contextos de la vda real: encuestas electorales, sondeos de opnón, etc. La mportanca de la Estadístca en la socedad

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

el blog de mate de aida CSI: Estadística unidimensional pág. 1

el blog de mate de aida CSI: Estadística unidimensional pág. 1 el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objetos de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objetos de nuestro estudio. TEMA 8 - ESTADÍSTICA 8. NOCIONES GENERALES DE ESTADÍSTICA 8.. INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco de un conjunto de datos empírcos (recogdos

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS . INTRODUCCIÓN En la socedad de la nformacón en la que vvmos resulta mprescndble dsponer de técncas y conceptos que permtan extraer, de manera fable y senclla, nformacón relevante de dferentes conjuntos

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

1. Notación y tabulación

1. Notación y tabulación Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 2) CAPÍTULO II.-ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA.- DISTRIBUCIONES DE FRECUENCIAS DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA . DISTRIBUCIÓN

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 2: ESTADÍSTICA DESCRIPTIVA 1. RESUMEN Métodos para resumr y descrbr

Más detalles

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:

Más detalles

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas Raúl González Medina

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas  Raúl González Medina 1 Estadístca 01.- Indca que varables son cualtatvas y cuales cuanttatvas: a) Comda Favorta. b) Profesón que te gusta. c) Número de goles marcados por tu equpo favorto en la últma temporada. d) Número de

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO

Más detalles

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES) ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 1

GUÍA DE APOYO AL APRENDIZAJE N 1 GUÍA DE APOYO AL APRENDIZAJE N 1 1.- Dencones de conceptos báscos. Estadístca: la estadístca es un conjunto de métodos y procedmentos que srven para recolectar, organzar y presentar los datos obtendos,

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca descrptva. ESTADÍSTICA DESCRIPTIVA POBLACIÓN Y MUESTRA. VARIABLES ESTADÍSTICAS DISTRIBUCIÓN DE FRECUENCIAS DE UNA MUESTRA AGRUPACIÓN DE DATOS REPRESENTACIONES GRÁFICAS DE LAS MUESTRAS PRINCIPALES

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

ESTADÍSTICA DESCRIPTIVA I

ESTADÍSTICA DESCRIPTIVA I ESTADÍSTICA DESCRIPTIVA I 1.- DISTRIBUCIONES UNIDIMENSIONALES. CONCEPTOS GENERALES. La estadístca se puede dvdr en dos partes: Estadístca descrptva o deductva. Estadístca nferencal o nductva. La estadístca

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva ÍDICE ESTADÍSTICA DESCRIPTIVA. Poblacón y Muestra 4. Varables estadístcas 4 3. Frecuencas 5 4. Dstrbucones 7 5. Representacón gráfca 5. De caracteres cuanttatvos 5.. De varables estadístcas

Más detalles

Tema 8: Estadística en una variable (unidimensional)

Tema 8: Estadística en una variable (unidimensional) Matemátcas aplcadas a las Cencas Socales I lasmatematcas.eu Tema 8: Estadístca en una varable Tema 8: Estadístca en una varable (undmensonal) 1. Introduccón Se desconocen con exacttud los orígenes de la

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Estadístca Edad meda para los ccos: 18+ 8 1+ 1 0+ 10 1+ 5 + 3 1016 = = 0,3años. + 8+ 1+ 10+ 5+ 50 La edad meda para las ccas: 18+ 1+ 6 0+ 1+ 17 + 1 3 1071 = = 1, años. + + 6+ + 17+ 1 50 La edad meda del

Más detalles

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO 43 ANEXO 1: Tablas facltadas al alumnado Las sguentes tablas serán rellenadas por parte de los grupos de estudantes que se realzarán en el aula, tal y como se comenta en el presente trabajo. Tabla de

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

5ª Parte: Estadística y Probabilidad

5ª Parte: Estadística y Probabilidad ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca

Más detalles

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA?

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? La Estadístca es la rama de las Matemátcas que se ocupa del estudo de una determnada característca en una poblacón, recogendo

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

3º ESO ESTADÍSTICA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ESTADÍSTICA

3º ESO ESTADÍSTICA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ESTADÍSTICA 3º ESO ESTADÍSTICA DEPARTAMETO DE MATEMÁTICAS. COPIRRAI_Julo César Abad Martínez-Losa ESTADÍSTICA 1.- POBLACIÓ, MUESTRA y CARACTERES ESTADÍSTICOS.- Poblacón: Son todos los ndvduos sobre los que se realza

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

UNIDAD 1: Tablas de frecuencias

UNIDAD 1: Tablas de frecuencias UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 2

GUÍA DE APOYO AL APRENDIZAJE N 2 GUÍA E APOYO AL APREIZAJE Meddas de Tendenca Central ó de Resumen Las meddas de resumen son valores de la varable que permten resumr la normacón que hay en una tabla undamentalmente estas meddas se usan

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Bachllerato ESTADÍSTICA DESCRIPTIVA Introduccón La estadístca es una rama de las matemátcas que trata de la recogda, ordenacón, análss y presentacón adecuada de datos recogdos sobre certa poblacón (no

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Introduccón La estadístca es una rama de las matemátcas que trata de la recogda, ordenacón, análss y presentacón adecuada de datos recogdos sobre certa poblacón (no necesaramente

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

1. ESTADÍSTICA DESCRIPTIVA.

1. ESTADÍSTICA DESCRIPTIVA. Departamento de Matemátcas http://www.colegovrgendegraca.org/eso/dmate.htm Estadístca descrptva 1. ESTADÍSTICA DESCRIPTIVA. 1.1. Introduccón. En general, cuando se va a estudar un determnado colectvo,

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÓN

ESTADISTICA APLICADA A LA EDUCACIÓN UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón.- El número de turstas (en mllones) entrados en España mensualmente durante los años 00 00 se epone en la sguente estadístca. Nº Turstas 00,76,6,9 3,8 4,4 4,8 8,93 9,98 5,9 4,34,6 3,65

Más detalles