Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván. Práctica 6: Ablandamiento por Intercambio Iónico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván. Práctica 6: Ablandamiento por Intercambio Iónico"

Transcripción

1 Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván Práctica 6: Ablandamiento por Intercambio Iónico Trabajo Prelaboratorio Francisco José Guerra Millán Adelwart Struck Garza Santiago Andrés Villalobos Steta México D.F., 29 de septiembre de Práctica 6: Ablandamiento por Intercambio Iónico Trabajo Prelaboratorio 1. Qué se entiende por dureza del agua? Qué cationes y aniones son los que contribuyen a la dureza temporal y cuáles a la dureza permanente? En química, se denomina dureza del agua a la concentración de compuestos minerales, en particular sales de magnesio y calcio. Son éstas las causantes de la dureza del agua, y el grado de dureza es directamente proporcional a la concentración de sales metálicas. La dureza del agua tiene una distinción compartida entre dureza temporal (o de carbonatos) y dureza permanente (o de no-carbonatos). Dureza temporal: La dureza temporal se produce por carbonatos (CO 3 2 ) y bicarbonatos (HCO 3 ) y puede ser eliminada al hervir el agua o por la adición de cal (hidróxido de calcio). El bicarbonato de calcio es menos soluble en agua caliente que en agua fría, así que al hervir se precipitará el carbonato de calcio fuera de la solución, dejando el agua menos dura. Los carbonatos pueden precipitar cuando la concentración de ácido carbónico disminuye, con lo que la dureza temporal disminuye. Si el ácido carbónico aumenta puede aumentar la solubilidad de fuentes de carbonatos, como piedras calizas, con lo que la dureza temporal aumenta. Todo esto está en F. J. Guerra, A. Struck, S. A. Villalobos 1

2 relación con el ph de equilibrio de la calcita y con la alcalinidad de los carbonatos. Este proceso de disolución y precipitación es el que provoca las formaciones de estalagmitas y estalactitas. Dureza permanente: Esta dureza no puede ser eliminada al hervir el agua, es usualmente causada por la presencia del sulfato de calcio y magnesio (CaSO 4 y MgSO 4 respectivamente) y/o cloruros (Cl ) en el agua, que son más solubles mientras sube la temperatura. Puede ser eliminada utilizando el método SODA (Sulfato de Sodio). También es llamada dureza de no carbonato. 2. Plantear por qué en la caracterización es importante conocer la alcalinidad. Qué significa la alcalinidad al vire a la fenolftaleína (ALC- P) y qué, la alcalinidad al vire al anaranjado de metilo (ALC-M)? El valor de alcalinidad es utilizado en la interpretación y control del tratamiento de aguas claras y aguas usadas. Aguas usadas crudas de origen doméstico tienen una alcalinidad menor de o ligeramente mayor que el suministro de agua potable. El sobrenadante de digestores anaerobios que funcionan adecuadamente presentan valores de alcalinidad en el rango de 2000 a 4000 mg de carbonato de calcio por litro. Dado que la alcalinidad varía con la concentración de carbonatos y éstos influyen en la dureza del agua, es un indicador importante en el tratamiento de aguas. La alcalinidad se expresa como alcalinidad a la fenolftaleina y la alcalinidad al naranja de metilo o alcalinidad total. Estas caracterizaciones se deben a los virajes o cambios de color de estos indicadores al llegar al punto final en la determinación por titulación con un ácido. La titulación para la determinación de la alcalinidad se hace en dos fases; en la primera fase se realiza la alcalinidad a la fenolftaleina, titulando la muestra hasta ph 8.3 y en la segunda se determina la alcalinidad al naranja de metilo o alcalinidad total, titulando la muestra hasta ph 4.5. En la Figura 1, se representan estas fases en la titulación del agua para conocer las alcalinidades a la fenoftaleina y total. Puede observarse que a medida que se añade ácido, se produce una caída lenta del ph hasta llegar a 8.5 y a partir de aquí una caída rápida del ph, con una inflexión (no muy bien definida) alrededor del punto de ph 8.3. Es aquí donde los iones carbonato habrán pasado a iones bicarbonato y el color de la fenolftaleína pasará del rosa a incoloro. Al ir añadiendo más ácido, el ph irá disminuyendo hasta alcanzar otro punto de inflexión en el entorno del ph 4.5, donde los iones bicarbonato pasarán a CO 2. El color del indicador anaranjado de metilo, pasará del amarillento al rosa pálido. 3. Explicar qué es el proceso de intercambio iónico. Qué diferencia existe entre la resinas catiónicas ácidas y aniónicas básicas débiles y fuertes? Qué regenerante se utiliza por lo general en cada caso? Qué tipo de resina se utilizaría en este caso? F. J. Guerra, A. Struck, S. A. Villalobos 2

3 Figura 1: Titulación de agua para determinar alcalinidad de fenolftaleína y alcalinidad total. El intercambio iónico es una operación de separación basada en la transferencia de materia fluido-sólido. Implica la transferencia de uno o más iones de la fase fluida al sólido por intercambio o desplazamiento de iones de la misma carga, que se encuentran unidos por fuerzas electrostáticas a grupos funcionales superficiales. La eficacia del proceso depende del equilibrio sólido-fluido y de la velocidad de transferencia de materia. Los sólidos suelen ser de tipo polimérico, siendo los más habituales los basados en resinas sintéticas. Una resina de intercambio iónico puede considerarse como una estructura de cadenas hidrocarbonadas a las que se encuentran unidos de forma rígida grupos iónicos libres. Estas cadenas se encuentran unidas transversalmente formando una matriz tridimensional que proporciona rigidez a la resina y donde el grado de reticulación o entrecruzamiento determina la estructura porosa interna de la misma. Como los iones deben difundirse en el interior de la resina para que ocurra el intercambio, la selección del grado de reticulación puede limitar la movilidad de los iones participantes. Las resinas de intercambio iónico están destinadas a varios usos, descalcificación, desnitratación, desionización, desnitratación. Dependiendo de la aplicación a la que se destinen existen diferentes tipos. Resinas catiónicas de ácido fuerte Intercambian iones positivos (cationes). Funcionan a cualquier ph. F. J. Guerra, A. Struck, S. A. Villalobos 3

4 Es la destinada a aplicaciones de suavizado de agua, como primera columna de desionización en los desmineralizadores o para lechos mixtos. Elimina los cationes del agua y necesitan una gran cantidad de regenerante, normalmente ácido clorhídrico (HCl). Resinas catiónicas de ácido débil Tienen menor capacidad de intercambio. No son funcionales a ph bajos. Elevado hinchamiento y contracción lo que hace aumentar las perdidas de carga o provocar roturas en las botellas cuando no cuentan con suficiente espacio en su interior. Se trata de una resina muy eficiente, requiere menos ácido para su regeneración, aunque trabajan a flujos menores que las de ácido fuerte. Es habitual regenerarlas con el ácido de desecho procedente de las de ácido fuerte. Resinas aniónicas de base fuerte Intercambian iones negativos (aniones). Es la destinada a aplicaciones de suavizado de agua, como segunda columna de desionización en los desmineralizadores o para lechos mixtos. Elimina los aniones del agua y necesitan una gran cantidad de regenerante, normalmente sosa (hidróxido sódico - NaOH). Resinas aniónicas de base débil Se trata de una resina muy eficiente, requiere menos sosa para su regeneración. No se puede utilizar a ph altos. Pueden sufrir problemas de oxidación o ensuciamiento. 4. Cómo se puede lograr una desionización total del agua utilizando las resinas de intercambio iónico? El proceso de desionización del agua consiste en reducir la concentración de iones presentes en ella a niveles muy bajos, proceso que puede llevarse a cabo mediante intercambio iónico. En este proceso se emplea una resina catiónica de intercambio para eliminar los cationes (sodio, calcio, magnesio, etc.) y dos resinas aniónicas, una básica débil que absorberá los ácidos fuertes y otra básica fuerte para intercambiar los aniones (cloruro, sulfato, bicarbonato etc.). Como la concentración de iones en el agua determina su capacidad de conducir la electricidad, la efectividad del proceso de ionización se determina midiendo los parámetros resistividad o conductividad. F. J. Guerra, A. Struck, S. A. Villalobos 4

5 5. Cómo se lleva a cabo el proceso de regeneración de una resina? La regeneración de las resinas de intercambio iónico es el proceso inverso del proceso de intercambio iónico y tiene por finalidad devolverle a la resina de intercambio iónico su capacidad inicial de intercambio. Esto se realiza haciendo pasar soluciones que contengan el ión móvil original, el cual se deposita en la resina y desaloja los iones captados durante el agotamiento. Para la regeneración de las resinas de intercambio iónico se usa: Sal común (cloruro de sodio) para regenerar resinas catiónicas de ácidos fuertes. Ácido clorhídrico o ácido sulfúrico (depende del costo y de la eficiencia) para regenerar resinas catiónicas de ácidos fuertes y resinas catiónicas de ácidos débiles. Hidróxido de sodio o hidróxido de amonio para regenerar resinas aniónicas de bases fuertes y resinas aniónicas de bases débiles. Una vez regenerada la resina está lista para un nuevo ciclo de intercambio iónico. 6. Establecer cómo se construye y qué es la curva de operación de un sistema continuo de intercambio iónico. Marcar en la gráfica donde es el punto de ruptura y establecer su importancia. Marcar en la gráfica el punto de agotamiento y cuál es su significado. Establecer de qué factores depende esta curva de operación. La curva de operación se construye graficando la concentración del efluente en función del tiempo. El tiempo transcurrido desde el comienzo de la operación en el lecho hasta que los iones de la disolución aparecen en la corriente de salida o más concretamente, cuando se alcanza la máxima concentración permisible en el efluente, se denomina Tiempo de ruptura (t R ). En este momento, la corriente se desviaría a un segundo lecho, iniciando el proceso de regeneración del primero. La curva que representa la evolución de la concentración del efluente que abandona el lecho recibe el nombre de Curva de ruptura (Figura 2). El punto de agotamiento es el punto en el que un desionizador ya no puede realizar el intercambio iónico. El punto de agotamiento se ajusta normalmente en función de la reducción en la calidad del agua tratada, según se determina por un medidor de conductividad. En la gráfica se representa cuando la curva llega a una saturación. El conocimiento de la curva de ruptura, es fundamental para el diseño de un lecho fijo de intercambio iónico, y en general debe determinarse experimentalmente, dada la dificultad que entraña su predicción. Ésta se ve modificada principalmente por la temperatura, concentración inicial del eluente y flujo de operación. F. J. Guerra, A. Struck, S. A. Villalobos 5

6 Figura 2: Diagrama concentración efluente - tiempo 7. Establecer brevemente cuáles son los métodos analíticos que se utilizan para determinar la concentración de calcio, magnesio, carbonatos y bicarbonatos presentes en el agua. Establecer cuál es el titulante, cuál el indicador y de qué color es el vire, y cómo a partir de los datos de la titulación y ph puede conocer la cantidad de CO 2, carbonatos y bicarbonatos e hidróxidos presentes. (Consultar libros y apuntes de química analítica) Dureza (Ca + Mg): A 10 ml de la muestra en el tubo de ensayo del estuche se añaden 5 gotas de disolución reguladora de ph 10 y otras tres gotas de la disolución de negro de eriocromo T y se homogeneiza la mezcla con la varilla de vidrio. Añadir, gota a gota y agitando con la varilla, la disolución de Na 2 -EDTA hasta el cambio de color del rojo al azul y anotar el número de gotas gastadas. Si la dureza es mayor de 250 mg CaCO 3 /L repetir la valoración tomando 5 ml de muestra. Determinación de calcio: Poner 10 ml de muestra en el tubo de ensayo del estuche, añadir 3 gotas de NaOH 4 M y unos cristales de murexida. Agitar con la varilla de vidrio hasta homogeneizar el contenido del tubo y, a continuación, ir añadiendo gota a gota y agitando la disolución de N 2 -EDTA 0,01000 M hasta el cambio a color violeta de la disolución y anotar el número de gotas de la disolución de EDTA gastadas. Si la dureza es mayor de 250 mg CaCO 3 /L repetir la determinación tomando 5 ml de muestra. Carbonatos y Bicarbonatos: Se tomará, en principio, un volumen de 100 ml de muestra en un erlenmeyer limpio. Se añadirá a dicha muestra 2 o 3 F. J. Guerra, A. Struck, S. A. Villalobos 6

7 gotas de solución indicadora fenolftaleína al 1 %. Si la reacción anterior da coloración rosa se valorará volumétricamente la muestra con ácido sulfúrico 0.01N. El punto final de la valoración coincidirá con la desaparición de la coloración rosa pasando a incolora, coincidiendo con el valor de ph 8.3 comprobándose el valor de ph. Anotaremos el volumen gastado. A continuación añadimos a dicha muestra 6 o 7 gotas de solución indicadora Anaranjado de Metilo al 0.5 %. Se valorará volumétricamente la muestra con ácido sulfúrico 0.01N. El punto final de la valoración coincidirá con el viraje de coloración amarilla a naranja, coincidiendo con valores de ph entre 4.3 y 4.7. Anotaremos el volumen gastado y el ph alcanzado en dicha valoración. Los cálculos detallados para los procedimientos anteriores se pueden consultar en [8] y [2]. 8. Establecer un diagrama de flujo o una ruta crítica para optimizar el tiempo de experimentación para llevar a cabo ésta práctica, donde se explicite en qué orden se harán las experimentaciones y quién será responsable de cada parte. Ablandamiento por Intercambio Iónico Antes de comenzar, filtrar el agua problema para evitar presencia de sólidos suspendidos. Filtrar al vacío aproximadamente 3 litros. (5 minutos. Santiago Villalobos (SV)) Caracterización de las muestras A las muestra de agua dura (filtrada), a la solución estándar de calcio y a la solución estándar de magnesio, realizarles los siguientes análisis: Determinar el ph y temperatura potenciómetro. (5 minutos. Adelwart Struck (AS)) Determinar experimentalmente la dureza total. Para esto colocar una alícuota de 2 ml (con pipeta volumétrica) en un matraz erlenmeyer de ml. Añadirle 2 ml de buffer ph 10 y unos granitos de indicador de negro de eriocromo. La solución tomará una coloración vino. Titular la muestra utilizando una microbureta con EDTA concentrada (0.01 M) hasta el vire a azul marino. Anotar valores. (10 minutos. Francisco Guerra (FG)) Determinar de la muestra y la solución estándar de calcio la concentración de iones calcio Tomar una alícuota de 2 ml (pipeta volumétrica) y colocarla en un matraz erlenmeyer de 25 o 50 ml Añadirle a la muestra en el matraz 2 ml de sosa 0.1 M hasta llegar a ph 11, añadir como indicador polvo de F. J. Guerra, A. Struck, S. A. Villalobos 7

8 murexida Titular con solución de EDTA concentrada hasta el vire (rosa fucsia a violeta). (10 minutos. (AS)) Para determinar la concentración del magnesio se calcula mediante la diferencia entre la dureza total obtenida de cada muestra o solución y su correspondiente dureza de calcio, expresada como mg/l de carbonato de calcio. NOTA: La dureza total siempre es mayor o igual a la dureza de calcio. (5 minutos. (SV)) Determinar la alcalinidad P (de fenolftaleína) y M (anaranjado de metilo, indicador mezclado o verde de bromocresol) en una misma alícuota de 2 ml colocada en un matraz erlenmeyer siguiendo la técnica: Inicialmente añadir unas gotas de fenolftaleína y observar la coloración; si la muestra presenta una coloración rosa, titular con una microbureta que contenga la solución de ácido sulfúrico de mayor concentración hasta el vire correspondiente. Anotar el volumen utilizado. Sobre la misma muestra ya titulada, añadir el indicador de anaranjado de metilo o el indicador de verde de bromocresol, y seguir titulando hasta el vire correspondiente. Anotar el volumen total de titulante utilizado. De este último valor y el valor del volumen de titulante para el vire de fenolftaleína se podrá determinar, por diferencia,el que corresponda para la determinación de la alcalinidad M. (20 minutos. (AS)) De los datos anteriores, y las correspondientes ecuaciones determinar la concentración de calcio, magnesio y dureza total, así como la concentración de carbonatos, bicarbonatos e hidróxidos presentes, como mg de carbonato de calcio por litro (ppm de carbonato de calcio) para todas las muestras. (10 minutos. (SV)) Ablandamiento por intercambio iónico. Curva de operación En la columna de intercambio iónico (jeringa de 5 ml para este caso) colocar en el fondo como soporte de la resina y para distribuir el flujo uniformemente unas perlas de vidrio y encima un pequeño trozo de algodón sin compactar. Llenar la columna de agua destilada, abrir parcialmente la válvula de modo que gotee muy poco pero constantemente y empacar de 2.5 a 3 ml de resina catiónica sódica húmeda, vaciándola lentamente en forma de lodo o suspensión para que se acomode de forma uniforme y no se presenten burbujas de aire. Nunca dejar secar la resina. El nivel del líquido siempre tiene que estar a una altura mínima de 1 cm arriba del nivel de la resina. F. J. Guerra, A. Struck, S. A. Villalobos 8

9 (10 minutos. (FG)) Lavar la resina varias veces (por lo menos 4 veces) con 50 ml de agua destilada alimentada con la bomba de forma continua para remover la solución regeneradora de sal. Dejar la columna llena de agua hasta un nivel de 1 cm. arriba del nivel superior de la resina, cerrar la válvula y medir el volumen exacto que ocupa la resina y el diámetro interno de la columna. (10 minutos. (SV)) Ajustar un gasto de alimentación de la bomba a la columna de modo que no se rebase su capacidad, ni se inunde totalmente. Mantener ese gasto constante con agua destilada. Ajustar y medir exactamente el gasto con una probeta y un cronómetro de modo que se puedan tener un gasto aproximado mínimo de 5 a 10 ml/min. Medir y anotar el gasto que se está suministrando. (10 minutos. (AS)) Iniciar el bombeo de la muestra de agua problema previamente filtrada, manteniendo la llave de la bureta abierta al gasto ya medido, de modo que no se seque la resina ni se inunde la columna, tomando este como el tiempo cero. Cuando se haya alimentado el volumen equivalente al lecho de resina, (aproximadamente 3 ml) iniciar el muestreo a la salida de la columna. Tomar una muestra inicial de 10 ml recibiendo el agua tratada en otro vaso o en un tubo de ensaye. Continuar alimentando el agua dura, y tomar continuamente muestras de aproximadamente 10 ml a intervalos de 10 min, durante un mínimo de 2 a 3 horas. (3 horas. (Todos)) De cada muestra tomada a los diferentes tiempos determinar únicamente el ph, la dureza total, y la alcalinidad total. De cada muestra se tomarán las alícuotas de 2 ml para la dureza total y de 2 ml para las determinaciones de alcalinidad. Continuar tomando muestras hasta completar 2 o 3 hr., o hasta el momento en que se agote la capacidad de la resina, es decir cuando C i = C o para la dureza total de la muestra. (3 horas. (Todos. Simultáneo a la caracterización de la resina)) Al final del proceso, volver a medir el gasto alimentado y promediarlo con el valor ajustado y medido en un principio. Una vez terminada la experimentación enjuagar la columna varias veces con 50 ml de agua destilada y vaciar el contenido (resina húmeda usada) en una solución saturada de cloruro de sodio para su regeneración. (10 minutos. (FG)) Caracterización de la resina F. J. Guerra, A. Struck, S. A. Villalobos 9

10 Primero se determinará la densidad de la resina en base seca y en base húmeda. Para esto, se deberá pesar una probeta de 10 ml vacía y seca, luego se añadirá un volumen conocido de resina seca y se vuelve a pesar la probeta. A la misma resina contenida en la probeta añadirle agua hasta que quede humedecida, decantando o removiendo con una pipeta beral o Pasteur el agua sobrante. Dejar que se impregne perfectamente y se hinche, y medir nuevamente su volumen y su peso. Devolver esta resina al frasco de resina con solución regeneradora. (10 minutos. (AS)) Para determinar la capacidad de la resina para remover los cationes en sistemas intermitentes se harán tres pruebas colocando 0.5 ml de resina húmeda, previamente regenerada y lavada, en tres matraces erlenmeyer de 250 ml. a) al primer matraz añadir 150 ml del agua dura (problema) de la muestra original filtrada. Colocar un agitador magnético y poner en agitación muy suave durante 2 horas, tomando dos muestras de 2 ml a la hora y valorándolas para dureza total y calcio de acuerdo a las técnicas de la parte inicial de caracterización. También medirle el ph. A las 2 horas tomar otras muestras y valorarlas de la misma forma. (2 horas 10 minutos. (Todos)) b) al segundo matraz añadir 150 ml de la solución estándar de calcio y repetir el experimento del inciso a), esta vez determinando, el ph y la dureza total en intervalos de 60 minutos, durante 2 horas. (2 horas. (Todos)) c) al tercer matraz añadir 150 ml de la solución estándar de magnesio y repetir el experimento del inciso a), esta vez determinando, el ph y la dureza total en intervalos de 60 minutos durante 2 horas. (2 horas. (Todos)) A partir de la concentración de dureza total, calcio, y magnesio determinados de las soluciones originales (inicial) y los datos de dureza total, calcio y magnesio, final (después del tratamiento de 2 horas) según el caso, así como la cantidad de resina se podrá determinar la eficiencia de remoción. (10 minutos. (FG)) NOTA: Al comparar la capacidad de remoción de las sales de calcio y magnesio por separado, con el agua dura problema se podrá concluir si la resina presenta una afinidad selectiva por alguno de los dos cationes. F. J. Guerra, A. Struck, S. A. Villalobos 10

11 Referencias [1] Ana Carmen. Alcalinidad del agua , September [2] Centro Canario del Agua. rocedimientos recomendados para la determinación analítica de ciertos parámetros en las aguas desaladas. Analisis %20de %20aguas %20desaladas %20recomendaciones.pdf, September [3] A. Massol. Parámetros físico-químicos: Alcalinidad. September [4] NA. Tipos de resinas de intercambio iónico. September [5] J. Puga. Resinas de intercambio iónico. September [6] Tecnociencia. Aplicaciones de los intercambiadores iónicos en la industria. ionico/aplicaciones.htm, September [7] Universidad Autónoma de Madrid. Intercambio iónico. pdi/ciencias/mgilarra/experimentacioniqii/ Intercambioionico2006.pdf, September [8] Universidad de Oviedo. Determinación de la dureza de un agua. PRACT 4 Dureza del Agua.pdf, September [9] Wikipedia. Dureza del agua. del agua, September F. J. Guerra, A. Struck, S. A. Villalobos 11

Ca 2+ + 2OH - + CO 2 CaCO 3 + H 2 O

Ca 2+ + 2OH - + CO 2 CaCO 3 + H 2 O DUREZA DEL AGUA Un agua dura requiere de grandes cantidades de jabón para producir espuma. La dureza de las aguas naturales es producida sobre todo por las sales de calcio y magnesio. La dureza corresponde

Más detalles

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO 1.- FUNDAMENTO TEÓRICO. 1.1.- Materiales de intercambio iónico. El intercambio

Más detalles

CONTROLES A EFECTUAR EN EL AGUA DE LAS CALDERAS

CONTROLES A EFECTUAR EN EL AGUA DE LAS CALDERAS CONTROLES A EFECTUAR EN EL AGUA DE LAS CALDERAS La duración de la vida de una caldera depende, en una parte muy importante, de la calidad del agua utilizada. Así pues, cuando se conoce el papel vital que

Más detalles

PRÁCTICA 3 DETERMINACIÓN DE LA DUREZA DEL AGUA POR VALORACIÓN CON EDTA

PRÁCTICA 3 DETERMINACIÓN DE LA DUREZA DEL AGUA POR VALORACIÓN CON EDTA PRÁCTICA DETERMINACIÓN DE LA DUREZA DEL AGUA POR VALORACIÓN CON EDTA INTRODUCCIÓN El contenido salino de las aguas potables es debido principalmente a las sales de calcio y magnesio y, por esta razón,

Más detalles

OBTENCIÓN DE CARBONATO DE SODIO (P 5)

OBTENCIÓN DE CARBONATO DE SODIO (P 5) OBTENCIÓN DE CARBONATO DE SODIO (P 5) Objetivos - Estudio descriptivo del carbonato de sodio y de sus usos industriales - Realización de la síntesis de carbonato de sodio y su comparación con el método

Más detalles

Laboratorio N 3: Determinación de dureza en aguas -

Laboratorio N 3: Determinación de dureza en aguas - Laboratorio N 3: Determinación de dureza en aguas - Titulaciones complejométricas: Los ácidos aminopolicarboxílicos son excelentes agentes acomplejantes. El EDTA (ácido etilendiaminotetracético) el más

Más detalles

DETERMINACIÓN DE LA DUREZA DEL AGUA POR EL MÉTODO COMPLEXOMÉTRICO EN CICLOS FORMATIVOS

DETERMINACIÓN DE LA DUREZA DEL AGUA POR EL MÉTODO COMPLEXOMÉTRICO EN CICLOS FORMATIVOS DETERMINACIÓN DE LA DUREZA DEL AGUA POR EL MÉTODO COMPLEXOMÉTRICO EN CICLOS FORMATIVOS AUTORÍA MARÍA JESÚS MOLINERO LEYVA TEMÁTICA MÉTODOS OFICIALES ANÁLISIS DE AGUA ETAPA FORMACIÓN PROFESIONAL Resumen

Más detalles

PARAMETROS FISICO-QUIMICOS: ALCALINIDAD

PARAMETROS FISICO-QUIMICOS: ALCALINIDAD SEGUNDA PARTE PARAMETROS FISICO-QUIMICOS: ALCALINIDAD DEFINIMOS ALCALINIDAD COMO la capacidad del agua para neutralizar ácidos o aceptar protones. Esta representa la suma de la bases que pueden ser tituladas

Más detalles

SUAVIZACIÓN CONCEPTOS BÁSICOS

SUAVIZACIÓN CONCEPTOS BÁSICOS SUAVIZACIÓN CONCEPTOS BÁSICOS Revisemos algunos conceptos que utilizarás para el diseño de los equipos del sistema de suavización, recuerda que muchos ya los has visto en cursos anteriores y que esto es

Más detalles

DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000

DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000 DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000 Este Modo Operativo está basado en la Norma ASTM C 289, la misma que se ha adaptado al nivel de implementación y a las

Más detalles

Sistemas de Tratamiento de Agua de Gumerman-Burris-Hansen. 9

Sistemas de Tratamiento de Agua de Gumerman-Burris-Hansen. 9 III. ANÁLISIS TÉCNICO El análisis técnico tiene como propósito efectuar una evaluación de la eficiencia de los métodos en términos de la calidad final del agua y con base en el desempeño que presentan.

Más detalles

Análisis de Agua Parte 1: Dureza Total Dureza Cálcica Dureza Magnesiana

Análisis de Agua Parte 1: Dureza Total Dureza Cálcica Dureza Magnesiana SUPERINTENDENCIA NACIONAL DE SERVICIO DE SANEAMIENTO Cooperación Técnica Alemana Análisis de Agua Parte 1: Dureza Total Dureza Cálcica Dureza Magnesiana Desarrollo 1. Introducción 1. Fundamentos del Método

Más detalles

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA VIII 1 PRÁCTICA 8 ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA En esta práctica estudiaremos algunos aspectos prácticos de las reacciones de oxidación reducción que no son espontáneas.

Más detalles

PRÁCTICA 17 REACCIONES DE FORMACIÓN DE COMPLEJOS. DETERMINACIÓN DE LA DUREZA DEL AGUA.

PRÁCTICA 17 REACCIONES DE FORMACIÓN DE COMPLEJOS. DETERMINACIÓN DE LA DUREZA DEL AGUA. PRÁCTICA 17 REACCINES DE FRMACIÓN DE CMPLEJS. DETERMINACIÓN DE LA DUREZA DEL AGUA. BJETIVS En esta práctica se tratarán aspectos de interés relacionados con los equilibrios de formación de complejos, así

Más detalles

PRÁCTICA 6: DETERMINACIÓN DE VITAMINAS Y MINERALES

PRÁCTICA 6: DETERMINACIÓN DE VITAMINAS Y MINERALES PRÁCTICA 6: DETERMINACIÓN DE VITAMINAS Y MINERALES 1. DETERMINACIÓN DE LA DUREZA DEL AGUA MEDIANTE ANÁLISIS VOLUMÉTRICO CON EDTA Introducción La dureza del agua viene dada por la cantidad de sales cálcicas

Más detalles

Práctica 2 DETERMINACIÓN DE CALCIO Y MAGNESIO EN AGUAS POR COMPLEXOMETRÍA

Práctica 2 DETERMINACIÓN DE CALCIO Y MAGNESIO EN AGUAS POR COMPLEXOMETRÍA 1. Objetivo Práctica 2 DETERMINACIÓN DE CALCIO Y MAGNESIO EN AGUAS POR COMPLEXOMETRÍA El objetivo de esta práctica es la determinación del contenido de calcio y magnesio de una muestra de agua (dureza

Más detalles

CONCURRIR AL LABORATORIO CON VINAGRE BLANCO (DE ALCOHOL), AGUA DE MAR, ETIQUETAS O MARCADOR PARA VIDRIO, TRAPO, DETERGENTE, PROPIPETA

CONCURRIR AL LABORATORIO CON VINAGRE BLANCO (DE ALCOHOL), AGUA DE MAR, ETIQUETAS O MARCADOR PARA VIDRIO, TRAPO, DETERGENTE, PROPIPETA CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 6 PARTE A: ph y VALORACIÓN ÁCIDO BASE (NEUTRALIZACIÓN) PARTE B: ANÁLISIS FISICOQUÍMICO DE AGUAS PARTE A: ph y VALORACIÓN ÁCIDO BASE (NEUTRALIZACIÓN) OBJETIVOS 1.

Más detalles

Si el agua que llega a la superficie terrestre entra en contacto con minerales de caliza (carbonato de calcio) ocurre la disolución del mineral.

Si el agua que llega a la superficie terrestre entra en contacto con minerales de caliza (carbonato de calcio) ocurre la disolución del mineral. COMPOSICIÓN QUÍMICA DE LAS AGUAS POTABLES Ingeniería de Tratamiento y Acondicionamiento de Aguas 2.0 INTERPRETACIÓN DE LOS ANÁLISIS DE AGUA Un análisis químico del agua nos indica que sustancias se encuentran

Más detalles

Medición de ph y dureza

Medición de ph y dureza Medición de ph y dureza 363 Medición de ph y dureza Isabel Romero Terán Medición de ph Campo de aplicación Este procedimiento complementario es útil para todos los ensayos de toxicidad que requieran medir

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

PRACTICA N 12 ANÁLISIS FISICO Y QUÍMICO DEL AGUA UTILIZADA EN LAS INDUSTRIAS DE ALIMENTOS

PRACTICA N 12 ANÁLISIS FISICO Y QUÍMICO DEL AGUA UTILIZADA EN LAS INDUSTRIAS DE ALIMENTOS PRACTICA N 12 ANÁLISIS FISICO Y QUÍMICO DEL AGUA UTILIZADA EN LAS INDUSTRIAS DE ALIMENTOS I. INTRODUCCIÓN: Es universalmente reconocido el principio del que el agua de consumo debe estar libre de microorganismos

Más detalles

TRABAJO PRÁCTICO Nº 4 Aguas

TRABAJO PRÁCTICO Nº 4 Aguas TRABAJO PRÁCTICO Nº 4 Aguas El agua es un constituyente de todos los seres vivos. Es un material de principal importancia en tecnología pues sirve como solvente, agente de transmisión del calor, reactivo

Más detalles

CAPITULO IV. REGULADORES DE ph

CAPITULO IV. REGULADORES DE ph CAPITULO IV REGULADORES DE ph 4.1Soluciones Reguladora de ph 4.2 Sistema de Carbonatos 4.3 Alcalinidad 4.1. SOLUCIONES REGULADORAS DE ph. Solución que, tiene la capacidad de resistir los cambios de ph,

Más detalles

Si el ion intercambiable en la resina es el H +, evidentemente podrá ser sustituido por otros iones de su mismo signo según la siguiente ecuación:

Si el ion intercambiable en la resina es el H +, evidentemente podrá ser sustituido por otros iones de su mismo signo según la siguiente ecuación: RESINAS INTERCAMBIADORAS DE IONES En general, las resinas de intercambio iónico están constituidas por productos polímeros de elevado peso molecular, insolubles, que contienen grupos funcionales (positivos

Más detalles

PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE

PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE FUNDAMENTOS Concepto de ácido y base Los ácidos y las bases constituyen una clase de compuestos químicos de gran interés. El concepto de ácido y base ha evolucionado a

Más detalles

3. ESTANDARIZACIÓN DE DISOLUCIONES VALO- RANTES.

3. ESTANDARIZACIÓN DE DISOLUCIONES VALO- RANTES. 3. ESTANDARZACÓN DE DSOLUCONES ALO- RANTES. 3.1 NTRODUCCÓN Si la disolución valorante no se ha preparado a partir de un patrón primario, su concentración no será exactamente conocida, y por lo tanto, habrá

Más detalles

CROMATOGRAFÍA DE FILTRACIÓN EN GEL

CROMATOGRAFÍA DE FILTRACIÓN EN GEL 1.- FUNDAMENTO TEÓRICO CROMATOGRAFÍA DE FILTRACIÓN EN GEL Filtración en gel - 1 (Farmacia) La cromatografía de exclusión o filtración en gel es una clase de cromatografía sólido-líquido que permite la

Más detalles

TÍTULO: Determinación colorimétrica de detergentes catiónicos en agua

TÍTULO: Determinación colorimétrica de detergentes catiónicos en agua Página 1 de 5 1.- INTRODUCCIÓN Los tensioactivos catiónicos son compuestos bastante infrecuentes en las aguas, dado que son poco utilizados (básicamente como desinfectantes), en relación con los restantes

Más detalles

Dar a conocer la capacidad de disolución del agua frente a otras sustancias.

Dar a conocer la capacidad de disolución del agua frente a otras sustancias. MINISTERIO DE EDUCACION Actividad 1: Agua en la vida II. Laboratorio: Solubilidad del agua 1. Tema: AGUA DISOLVENTE UNIVERSAL 2. Objetivo: Dar a conocer la capacidad de disolución del agua frente a otras

Más detalles

Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base. Disoluciones reguladoras del ph

Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base. Disoluciones reguladoras del ph Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base IES La Magdalena. Avilés. Asturias Disoluciones reguladoras del ph Si añadimos una pequeña cantidad de ácido o base a agua pura, el

Más detalles

Informe del trabajo práctico nº10

Informe del trabajo práctico nº10 Informe del trabajo práctico nº10 Profesora : Lic. Graciela. Lic. Mariana. Alumnas: Romina. María Luján. Graciela. Mariana. Curso: Química orgánica 63.14 turno 1 OBJETIVOS Ejemplificar una reacción de

Más detalles

Universidad Tecnológica de Panamá Centro de Investigaciones Hidráulicas e Hidrotécnicas Laboratorio de Sistemas Ambientales

Universidad Tecnológica de Panamá Centro de Investigaciones Hidráulicas e Hidrotécnicas Laboratorio de Sistemas Ambientales Código: PCUTP- Página: 1 de 5 1. Introducción: La alcalinidad se mide en mg/l de CaCO 3. El rango de medición es de 10 a 4000 mg/l CaCO 3 ; la muestra es titulada con ácido sulfúrico hasta un punto final

Más detalles

VALORACIÓN ÁCIDO-BASE. Conocer y aplicar el método volumétrico para realizar una titulación ácido-base

VALORACIÓN ÁCIDO-BASE. Conocer y aplicar el método volumétrico para realizar una titulación ácido-base EXPERIMENTO 3 VALORACIÓN ÁCIDO-BASE Objetivo general Conocer y aplicar el método volumétrico para realizar una titulación ácido-base Objetivos específicos 1.- Determinar el punto de equivalencia de una

Más detalles

CAPÍTULO 10 APÉNDICE A CARACTERIZACIÓN DEL SUELO. A.1. Determinación del ph. (Domínguez et al, 1982)

CAPÍTULO 10 APÉNDICE A CARACTERIZACIÓN DEL SUELO. A.1. Determinación del ph. (Domínguez et al, 1982) CAPÍTULO 10 APÉNDICE A CARACTERIZACIÓN DEL SUELO A.1. Determinación del ph (Domínguez et al, 1982) Pesar 10 gramos de suelo y colocarlos en un vaso de precipitados. Agregar 25 ml de agua destilada y agitar

Más detalles

6. Reacciones de precipitación

6. Reacciones de precipitación 6. Reacciones de precipitación Las reacciones de precipitación son aquellas en las que el producto es un sólido; se utilizan en los métodos gravimétricos de análisis y en las titulaciones por precipitación.

Más detalles

Instalaciones de tratamiento de agua de alimentación de caldera

Instalaciones de tratamiento de agua de alimentación de caldera Instalaciones de tratamiento de agua de alimentación de caldera Introducción La calidad del agua de alimentación a la caldera repercute directamente sobre el buen funcionamiento de la misma así como sobre

Más detalles

PRÁCTICA 5 VALORACIÓN ÁCIDO-BASE

PRÁCTICA 5 VALORACIÓN ÁCIDO-BASE PRÁCTICA 5 VALORACIÓN ÁCIDO-BASE OBJETIVO Determinar concentraciones desconocidas de ácidos y bases. I. FUNDAMENTO TEÓRICO Las cantidades de reaccionantes y productos de una reacción, son investigados

Más detalles

V. Métodos. La desaireación se basa en los siguientes dos principios científicos:

V. Métodos. La desaireación se basa en los siguientes dos principios científicos: 21 V. Métodos 5.1 Sistema de alimentación de agua de caldera 5.1.1 Tratamiento para la eliminación de gases no condensables Los métodos utilizados con mayor frecuencia para eliminar el O 2 y CO 2 del agua

Más detalles

TEMA 12 ANALISIS DE AGUA

TEMA 12 ANALISIS DE AGUA TEMA 12 ANALISIS DE AGUA 1. Al titular 50 ml de una muestra de agua, se gastaron 18,3 ml de HCl 0,02 N para la alcalinidad a la fenolftaleína y 38,6 ml para la alcalinidad total. Diga cuales son los componentes

Más detalles

COMPLEJANTES POLIAMINOCARBOXILICOS EN ABLANDAMIENTO DE AGUAS CALDERAS - TORRES DE ENFRIAMIENTO

COMPLEJANTES POLIAMINOCARBOXILICOS EN ABLANDAMIENTO DE AGUAS CALDERAS - TORRES DE ENFRIAMIENTO COMPLEJANTES POLIAMINOCARBOXILICOS EN ABLANDAMIENTO DE AGUAS CALDERAS - TORRES DE ENFRIAMIENTO TRATAMIENTO DE AGUAS En forma natural el agua posee disueltas sales metálicas. Al atravesar las capas del

Más detalles

Prácticas de Física y Química VALORACIONES ÁCIDO-BASE

Prácticas de Física y Química VALORACIONES ÁCIDO-BASE Prácticas de Física y Química VALORACIONES ÁCIDO-BASE Nivel: Bachillerato de Ciencias Objetivo: Descripción: Adquirir el concepto de valoración como un procedimiento de amplio uso en el laboratorio para

Más detalles

ANÁLISIS VOLUMÉTRICOS: DETERMINACIÓN DE LA ALCALINIDAD

ANÁLISIS VOLUMÉTRICOS: DETERMINACIÓN DE LA ALCALINIDAD Página 1 ANÁLISIS VOLUMÉTRICOS: DETERMINACIÓN DE LA ALCALINIDAD 1.- OBJETIVOS 2.- TEORÍA 3.- PROCEDIMIENTO 4.- RESULTADOS 5.- APARATOS 6.- REACTIVOS 1.- OBJETIVOS Se pretende que el alumno: realice las

Más detalles

TRABAJ O PRÁCTICO: PRECIPITACIÓN Y FILTRACIÓN

TRABAJ O PRÁCTICO: PRECIPITACIÓN Y FILTRACIÓN TRABAJ O PRÁCTICO: PRECIPITACIÓN Y FILTRACIÓN PREGUNTA DE ENFOQUE: Es posible conocer la cantidad de cloruro de plata que se forma al mezclar una disolución acuosa de cloruro de sodio con una de nitrato

Más detalles

QUIMICA GENERAL I. Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO NORMAS DE TRABAJO

QUIMICA GENERAL I. Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO NORMAS DE TRABAJO QUIMICA GENERAL I Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO Bata Gafas de Seguridad Cuaderno de Laboratorio Calculadora NORMAS DE TRABAJO Antes de empezar Antes de empezar cada práctica,

Más detalles

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION Zaragoza 17 de noviembre de 2010 Manuel Alonso Ortega Jefe de Sección de Edificios e 1 Instalaciones HCU Lozano Blesa INDICE

Más detalles

Marco teórico. En la figura 4.1se muestra un sistema típico de vapor, cuyas partes principales se describen a continuación.

Marco teórico. En la figura 4.1se muestra un sistema típico de vapor, cuyas partes principales se describen a continuación. 8 IV. Marco teórico 4.1 Descripción de un sistema de vapor En la figura 4.1se muestra un sistema típico de vapor, cuyas partes principales se describen a continuación. Figura 4.1 Sistema típico de vapor

Más detalles

PRÁCTICA 8: DESTILACIÓN

PRÁCTICA 8: DESTILACIÓN PRÁCTICA 8: DESTILACIÓN FUNDAMENTO TEÓRICO La destilación es una técnica de laboratorio utilizada en la separación de sustancias miscibles. Consiste en hacer hervir una mezcla, normalmente una disolución,

Más detalles

-Determinación del cloro libre y combinado cuando no hay presencia de dióxido de cloro ni clorito.

-Determinación del cloro libre y combinado cuando no hay presencia de dióxido de cloro ni clorito. DETERMINACIÓN DEL CLORO, DIOXIDO DE CLORO, CLORITO Y CLORAMINAS EN EL AGUA POTABLE -Método del DPD. -Determinación del cloro libre y combinado cuando no hay presencia de dióxido de cloro ni clorito. -Determinación

Más detalles

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 5: TITULACION ACIDO-BASE

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 5: TITULACION ACIDO-BASE I. Presentación de la guía: ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 5: TITULACION ACIDO-BASE Competencia: El alumno será capaz de aplicar un análisis volumétrico (titulación ácidobase) en la cuantificación

Más detalles

Anexo I. Instrucciones para la. realización de los experimentos. Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA

Anexo I. Instrucciones para la. realización de los experimentos. Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA Anexo I. Instrucciones para la realización de los experimentos Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA EXPERIMENTO 1: SOLVENTE UNIVERSAL/TENSIÓN SUPERFICIAL OBJETIVO: Conseguir separar dos sustancias

Más detalles

Ácido-base 08/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. a) 0,500 M [1 PUNTO] 3 COOH CH 3 COO + H + K a = [CH 3 COO ][H + ] [CH 3 COOH] x 2

Ácido-base 08/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. a) 0,500 M [1 PUNTO] 3 COOH CH 3 COO + H + K a = [CH 3 COO ][H + ] [CH 3 COOH] x 2 Química 2º Bach. Ácido-base 08/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Calcula el ph de una disolución de ácido acético (ácido etanoico): a) 0,500 M [1 PUNTO] b) 2,0 10-3 M [1 PUNTO]

Más detalles

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION. Zaragoza 17 de noviembre de 2009 1

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION. Zaragoza 17 de noviembre de 2009 1 IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION Zaragoza 17 de noviembre de 2009 1 INDICE Propiedades del agua. Calidad del agua. Tratamiento del agua. Importancia de la

Más detalles

PRACTICA N 8 Cuantificación de nitrógeno total y determinación del contenido de proteína cruda Introducción:

PRACTICA N 8 Cuantificación de nitrógeno total y determinación del contenido de proteína cruda Introducción: 1 PRACTICA N 8 Cuantificación de nitrógeno total y determinación del contenido de proteína cruda I. Introducción: El nitrógeno es el elemento químico que permite diferenciar las proteínas de otros compuestos,

Más detalles

GUEMISA Sta. Virgilia 3-b; 1º F 28033 Madrid Tfno.: 91 764 21 00 Fax.: 91 764 21 32

GUEMISA Sta. Virgilia 3-b; 1º F 28033 Madrid Tfno.: 91 764 21 00 Fax.: 91 764 21 32 ph 1. SUMARIO Y APLICACIONES 1. El principio básico de la medida electrométrica del ph se fundamenta en el registro potenciométrico de la actividad de los iones hidrógeno por el uso de un electrodo de

Más detalles

CROMATOGRAFIA DE INTERCAMBIO IONICO

CROMATOGRAFIA DE INTERCAMBIO IONICO [ESCRIBIR EL NOMBRE DE LA COMPAÑÍA] CROMATOGRAFIA DE INTERCAMBIO IONICO Integrantes: Álvarez - Costanzo - Diaz Zegarra -Gerez- Hollman- Hurtado- Lucero- Macuso- Ruggieri- Strack INTRODUCCIÓN. La cromatografía

Más detalles

CAPITULO IV VALORACIONES DE NEUTRALIZACIÓN: APLICACIONES

CAPITULO IV VALORACIONES DE NEUTRALIZACIÓN: APLICACIONES CAPITULO IV VALORACIONES DE NEUTRALIZACIÓN: APLICACIONES APLICACIONES DE LAS VALORACIONES DE NEUTRALIZACIÓN Las valoraciones de neutralización se utilizan para la determinación de gran número de especies

Más detalles

LAS AGUA DE CALDERO Y SUS PROBLEMAS

LAS AGUA DE CALDERO Y SUS PROBLEMAS LAS AGUA DE CALDERO Y SUS PROBLEMAS Uno de los usos más importantes del agua en la Industria, es como elemento de transferencia calórica. Esta función se realiza a través de intercambiadores de calor o

Más detalles

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Página: 1/7 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 8: EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Bibliografía: Química, La Ciencia Central, T.L. Brown, H. E. LeMay, Jr., B. Bursten; Ed. Prentice-Hall, Hispanoamérica,

Más detalles

Cómo llevar a cabo una reacción química desde el punto de vista experimental

Cómo llevar a cabo una reacción química desde el punto de vista experimental Cómo llevar a cabo una reacción química desde el punto de vista experimental Para obtener un compuesto se pueden utilizar varias técnicas, que incluyen el aislamiento y la purificación del mismo. Pero

Más detalles

CONSIDERACIONES SOBRE EL PROCESO DE ABLANDAMIENTO

CONSIDERACIONES SOBRE EL PROCESO DE ABLANDAMIENTO CONSIDERACIONES SOBRE EL PROCESO DE ABLANDAMIENTO CONSIDERACIONES SOBRE EL PROCESO DE ABLANDAMIENTO Se conoce como dureza del agua a ciertos cationes divalentes como el calcio y el magnesio. Estos cationes

Más detalles

Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván

Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván Laboratorio de Ingeniería Ambiental Quím. Ma. Teresa Morán y Morán Ing. Leticia Espinosa Marván Práctica 10: Demanda de Cloro y Cloro Residual Trabajo Prelaboratorio Francisco José Guerra Millán Adelwart

Más detalles

TÍTULO: Determinación de la demanda química de oxígeno (DQO) por el método del dicromato

TÍTULO: Determinación de la demanda química de oxígeno (DQO) por el método del dicromato Página 1 de 9 1.- INTRODUCCIÓN La demanda química de oxígeno, (DQO), del agua puede considerarse como una medida aproximada de la demanda teórica de oxígeno es decir la cantidad de oxígeno consumido para

Más detalles

Prácticas de Análisis Instrumental

Prácticas de Análisis Instrumental Prácticas de Análisis Instrumental Asignatura: Análisis Instrumental Alumno: Daniel González Mancebo Practica 1. DETERMINACIÓN DE CONSTANTES DE EQUILIBRIO MEDIANTE ESPECTROFOTOMETRÍA UV- VISIBLE. Lo primero

Más detalles

1. La magnitud 0,0000024mm expresada en notación científica es: a) 2,4 10 6 mm b) 2,4 10 5 mm c) 24 10 5 mm d) 24 10 6 mm

1. La magnitud 0,0000024mm expresada en notación científica es: a) 2,4 10 6 mm b) 2,4 10 5 mm c) 24 10 5 mm d) 24 10 6 mm Se responderá escribiendo un aspa en el recuadro correspondiente a la respuesta correcta o a la que con carácter más general suponga la contestación cierta más completa en la HOJA DE RESPUESTAS. Se facilitan

Más detalles

PROTOCOLO PARA LA DETERMINACIÓN DE CLORUROS CONTENIDO

PROTOCOLO PARA LA DETERMINACIÓN DE CLORUROS CONTENIDO COD. GL PL 17 3 2 1 Se cambió la imagen institucional 0 Documento inicial Celian Obregon Apoyo a procesos Martha García Ing. Química Loida Zamora Dir. SILAB Carlos Doria Coordinador lab. de calidad ambiental

Más detalles

Laboratorio General de Química I. Indicadores ácido-base en disoluciones amortiguadoras

Laboratorio General de Química I. Indicadores ácido-base en disoluciones amortiguadoras Laboratorio General de Química I Indicadores ácido-base en disoluciones amortiguadoras 1. OBJETIVOS: Extracción de un indicador natural de ph a partir de la col lombarda y elaboración de disoluciones amortiguadoras

Más detalles

QUÍMICA. AgNO 3 (ac) Ag + (ac) + NO 3 - (ac) (0,25 puntos) 0,1 M 0,1 M 0,1 M. (0,25 puntos)

QUÍMICA. AgNO 3 (ac) Ag + (ac) + NO 3 - (ac) (0,25 puntos) 0,1 M 0,1 M 0,1 M. (0,25 puntos) OPCIÓN A QUÍMICA 1. (2,5 puntos) Se analiza una muestra de 10 ml de una disolución acuosa que contiene ión cloruro, Cl -, mediante la adición de una gota (0,2 ml) de disolución acuosa de nitrato de plata,

Más detalles

Importante presencia de compuestos de calcio y magnesio, poco solubles, principales responsables de la formación de depósitos e incrustaciones.

Importante presencia de compuestos de calcio y magnesio, poco solubles, principales responsables de la formación de depósitos e incrustaciones. PRACTICA#-4- SUAVIZACION DEL AGUA OBJETIVO: En la carrera de ingeniería química se ve lo que trata el Laboratorio de servicios auxiliares, dentro de estos servicios se encuentra el suavizador de agua,

Más detalles

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de 39 4. Materiales y Métodos 4.1 Equipos Los equipos que a continuación se mencionan se encuentran en el laboratorio de Ingeniería Ambiental de la Universidad de las Américas Puebla y en el Laboratorio de

Más detalles

TEMA 4 MATERIAL DE LABORATORIO

TEMA 4 MATERIAL DE LABORATORIO UNIVERSIDADE DA CORUÑA Química 4 Curso 2013-2014 TEMA 4 MATERIAL DE LABORATORIO 4.1. MATERIAL DE USO FRECUENTE EN EL LABORATORIO. 4.2. LIMPIEZA Y SECADO DEL MATERIAL DE LABORATORIO. 4.1.1. CLASIFICACIÓN

Más detalles

3". Se observa el color del líquido sobrenadante y se identifica el ph aproximado, teniendo en cuenta que con él:

3. Se observa el color del líquido sobrenadante y se identifica el ph aproximado, teniendo en cuenta que con él: DETERMINACIÓN DEL PI! 51 3". Se observa el color del líquido sobrenadante y se identifica el ph aproximado, teniendo en cuenta que con él: ph 5 ph 6 ph 7 ph 8 ph 9 Púrpura de bromocresol. amarillo amarillo

Más detalles

PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES.

PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES. PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES. OBJETIVOS 1.- Familiarizarse con el material de laboratorio. 2.- Aprender a preparar disoluciones de una concentración determinada. 3.- Manejar las distintas formas

Más detalles

Universidad de Córdoba

Universidad de Córdoba DEPARTAMENTO DE QUÍMICA AGRÍCOLA Y EDAFOLOGÍA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRONOMOS Y DE MONTES Universidad de Córdoba GRADO EN INGENIERÍA AGROALIMETARIA Y DEL MEDIO RURAL ASIGNATURA: QUÍMICA

Más detalles

Neutralización por Destilación ÍNDICE

Neutralización por Destilación ÍNDICE ÍNDICE Página Carátula 1 Índice 3 Introducción 4 Objetivos 5 Principios Teóricos 6 Neutralización 6 Producción de Amoniaco 7 Detalles Experimentales 8 Materiales y Reactivos 8 Procedimiento 9 Conclusiones

Más detalles

5 Materiales y Métodos

5 Materiales y Métodos 5 Materiales y Métodos Los tejidos de Cenchurs ciliaris utilizados en esta investigación fueron obtenidos por pretratamiento con H 2 SO 4 al 0.15 M, a 135ºC, para eliminar la hemicelulosa. Con los tejidos

Más detalles

GUÍA DE LABORATORIO N 1 RECONOCIMIENTO DE MATERIALES DE LABORATORIO

GUÍA DE LABORATORIO N 1 RECONOCIMIENTO DE MATERIALES DE LABORATORIO GUÍA DE LABORATORIO N 1 RECONOCIMIENTO DE MATERIALES DE LABORATORIO OBJETIVOS Identificar y reconocer las características y la utilidad de los materiales que se utilizan con mayor frecuencia en el laboratorio.

Más detalles

Cuál es la distribución del agua en la Tierra?

Cuál es la distribución del agua en la Tierra? Laboratorio: Distribución del agua a nivel mundial Lectura 1. El agua de la Tierra E l agua ocupa la mayor parte de la superficie de nuestro planeta y, según afirman los científicos, en ella se inicia

Más detalles

Titulación Ácido Base

Titulación Ácido Base Titulación Ácido Base Experimento 16 La titulación es el procedimiento utilizado para determinar el volumen de una solución que es necesario para reaccionar con una cierta cantidad de otra sustancia. En

Más detalles

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN DOCUMENTACIÓN ELABORADA POR: NIEVES CIFUENTES MASTER EN INGENIERIÁ MEDIOAMBIENTAL Y GESTIÓN DEL AGUA ÍNDICE 1. INTRODUCCIÓN 2. INTERCAMBIO IÓNICO 3.

Más detalles

Ac $ + H 3 O + (1) [c] i. =! i

Ac $ + H 3 O + (1) [c] i. =! i Laboratorio de Química Física 1 Grado en Química PRÁCTICA 1 Determinación conductimétrica de la constante de ionización de un electrolito débil (ác acético) Material 1 matraz aforado de 1000 ml compartido

Más detalles

Los gases mejoran la calidad del agua potable

Los gases mejoran la calidad del agua potable Los gases mejoran la calidad del agua potable El agua es el alimento más importante y con el control más estricto A partir de la incorporación de las directrices de la UE sobre el agua potable en la legislación

Más detalles

Trabajo práctico 3: Medición del volumen de líquidos

Trabajo práctico 3: Medición del volumen de líquidos Trabajo práctico 3: Medición del volumen de líquidos Objetivo Identificar los materiales volumétricos que se utilizan en el laboratorio. Realizar diferentes mediciones de volúmenes de líquidos. Analizar

Más detalles

SAPONIFICACION. Tanto el cuerpo del insecto como el plumaje de los patos se encuentran cubiertos por una capa de grasa que los hace impermeables.

SAPONIFICACION. Tanto el cuerpo del insecto como el plumaje de los patos se encuentran cubiertos por una capa de grasa que los hace impermeables. SAPONIFICACION MARCO TEORICO MUCHAS veces hemos visto maravillados cómo en una fría mañana invernal los patos nadan en el estanque sin una aparente preocupación por ser mojados por las frías aguas; cuando

Más detalles

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA AUTORÍA ADELA CARRETERO LÓPEZ TEMÁTICA DENSIDAD DE LA MATERIA, TÉCNICAS DE SEPARACIÓN DE MEZCLAS ETAPA SECUNDARIA Resumen La realización de prácticas

Más detalles

CARACTERISTICAS DEL AGUA. Mayeline Gómez Agudelo

CARACTERISTICAS DEL AGUA. Mayeline Gómez Agudelo CARACTERISTICAS DEL AGUA Mayeline Gómez Agudelo Características Físicas Color Turbiedad o Turbidez Olor Sabor Temperatura Sólidos Color El color en el agua es producido por los minerales disueltos, colorantes

Más detalles

PRÁCTICA 6 INTERCAMBIO IÓNICO

PRÁCTICA 6 INTERCAMBIO IÓNICO PRÁCTICA 6 INTERCAMBIO IÓNICO 6.1. RECOMENDACIONES BÁSICAS DE SEGURIDAD Debido al riesgo de salpicaduras en la preparación de la disolución de NaOH, se recomienda el uso de gafas de seguridad. No son necesarias

Más detalles

REACCIONES DE IONES METÁLICOS

REACCIONES DE IONES METÁLICOS Actividad Experimental 4 REACCIONES DE IONES METÁLICOS Investigación previa -Investigar las medidas de seguridad para trabajar con amoniaco -Investigar las reglas de solubilidad de las sustancias químicas.

Más detalles

GRUPO INTERINSTITUCIONAL PARA UNIFORMAR MÉTODOS ANALÍTICOS DETERMINACIÓN DE NITRÓGENO TOTAL EN FERTILIZANTES

GRUPO INTERINSTITUCIONAL PARA UNIFORMAR MÉTODOS ANALÍTICOS DETERMINACIÓN DE NITRÓGENO TOTAL EN FERTILIZANTES GRUPO INTERINSTITUCIONAL PARA UNIFORMAR MÉTODOS ANALÍTICOS DETERMINACIÓN DE NITRÓGENO TOTAL EN FERTILIZANTES Alcance y aplicación Se describe el método para determinar nitrógeno total en fertilizantes

Más detalles

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES 5. MATERIALES PARA SEÑALAMIENTO Y DISPOSITIVOS DE SEGURIDAD 01. Pinturas para Señalamiento 003. Contenido de Pigmento en

Más detalles

CONTENIDO DE LA GUÍA OBJETIVO

CONTENIDO DE LA GUÍA OBJETIVO CONTENIDO DE LA GUÍA OBJETIVO Reconocer las características físicas y formas de emplear el material de laboratorio, con el cual se desarrollan diferentes actividades experimentales que permiten alcanzar

Más detalles

4.5. REACCIONES ÁCIDO-BASE.

4.5. REACCIONES ÁCIDO-BASE. 4.5. REACCIONES ÁCIDO-BASE. 4.5.1. ÁCIDOS, BASES Y SALES. Algunas sustancias tienen propiedades comunes y se pueden clasificar como del mismo tipo. El zumo de limón, el vinagre o la aspirina tienen un

Más detalles

MINERALIZACIÓN. Conductividad eléctrica (µs/cm) Mineralización. 100-200 Débil 200-700 Media 700 a 1000 Importante

MINERALIZACIÓN. Conductividad eléctrica (µs/cm) Mineralización. 100-200 Débil 200-700 Media 700 a 1000 Importante MINERALIZACIÓN CONDUCTIVIDAD ELÉCTRICA DUREZA ALCALINIDAD IONES (SHÖLLER) CONDUCTIVIDAD ELÉCTRICA La conductividad eléctrica es la capacidad de un agua para conducir electricidad; se mide como la conductividad

Más detalles

EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO

EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO UNIDAD DE APOYO TÉCNICO PARA EL SANEAMIENTO BÁSICO DEL ÁREA RURAL EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO Centro Panamericano de Ingeniería Sanitaria

Más detalles

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra EXTRACCION CON SOLVENTES Esp. Farm. María a Alejandra EXTRACCION CON SOLVENTES Se empezó a emplear durante la segunda guerra mundial. El motor de este cambio de procesos fue la obtención de metales nucleares

Más detalles

NORMA MEXICANA NMX-F-501-SCFI-2011

NORMA MEXICANA NMX-F-501-SCFI-2011 NORMA MEXICANA NMX-F-501-SCFI-2011 INDUSTRIA AZUCARERA Y ALCOHOLERA - DETERMINACIÓN DE DIÓXIDO DE AZUFRE EN MUESTRAS DE AZÚCARES BLANCOS. (CANCELA A LA NMX-F-501-1987) SUGAR AND ALCOHOL INDUSTRY - DETERMINATION

Más detalles

Preguntas de preparación para el laboratorio. Después de leer cuidadosamente el experimento, conteste las siguientes preguntas.

Preguntas de preparación para el laboratorio. Después de leer cuidadosamente el experimento, conteste las siguientes preguntas. DRAFT EXPERIMENTO 10 SÍNTESIS DE JABÓN Fecha: Sección de laboratorio: Nombre del estudiante: Grupo #: Preguntas de preparación para el laboratorio. Después de leer cuidadosamente el experimento, conteste

Más detalles

DISOLUCIÓN Y PRECIPITACIÓN DE SALES CAPITULO V. 5.1. Solubilidad 5.2. Disolución de compuestos poco solubles. 5.3. Precipitación Fraccionada

DISOLUCIÓN Y PRECIPITACIÓN DE SALES CAPITULO V. 5.1. Solubilidad 5.2. Disolución de compuestos poco solubles. 5.3. Precipitación Fraccionada CAPITULO V DISOLUCIÓN Y PRECIPITACIÓN DE SALES 5.1. Solubilidad 5.2. Disolución de compuestos poco solubles. 5.3. Precipitación Fraccionada El fenómeno de precipitación, así como el de disolución de precipitados

Más detalles

INFORME DE LABORATORIO N 9 SUSTANCIAS ÁCIDAS Y BÁSICAS

INFORME DE LABORATORIO N 9 SUSTANCIAS ÁCIDAS Y BÁSICAS UNIVERSIDAD DE CIENCIAS E INFORMATICA FACULTAD DE CIENCIAS DE LA SALUD ESCUELA DE KINESIOLOGIA INFORME DE LABORATORIO N 9 SUSTANCIAS ÁCIDAS Y BÁSICAS Asignatura :Química general Profesor : José Gabriel

Más detalles

AGUA PURA. MÉTODO Ω -cm μs cm. Teórico 26 x 10 6 0.04. Agua USP (bidestilada) 5 ppm ST 0.1-0.5 x 10 6 10 50. Agua Tridestilada 1 x 10 6 1

AGUA PURA. MÉTODO Ω -cm μs cm. Teórico 26 x 10 6 0.04. Agua USP (bidestilada) 5 ppm ST 0.1-0.5 x 10 6 10 50. Agua Tridestilada 1 x 10 6 1 AGUA PURA MÉTODO Ω -cm μs cm Teórico 26 x 10 6 0.04 Agua USP (bidestilada) 5 ppm ST 0.1-0.5 x 10 6 10 50 Agua Tridestilada 1 x 10 6 1 Intercambio Iónico 18 x 10 6 0.055 Agua Destilada 28 veces en Cuarzo

Más detalles

Conductividad en disoluciones electrolíticas.

Conductividad en disoluciones electrolíticas. Conductividad en disoluciones electrolíticas. 1.- Introducción 2.- Conductores 3.- Definición de magnitudes 3.1- Conductividad específica 3.2 Conductividad molar " 4. Variación de la conductividad (, ")

Más detalles