9 Proporcionalidad geométrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "9 Proporcionalidad geométrica"

Transcripción

1 82485 _ qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l unidd reordndo y diferenindo los oneptos ásios de ls pliiones lineles (ret, segmento y polígono), que son el pso previo l estudio de l proporionlidd de segmentos y l pliión de los riterios de semejnz de figurs, en prtiulr de los triángulos. Se proponen prolems senillos de segmentos igules y proporionles que se originn prtir de rets prlels, pr ontinur resolviendo prolems de semejnz de figurs. Será más onveniente inidir en los riterios de semejnz de triángulos que enunir diretmente el teorem de Tles y sus pliiones. Destmos l importni de ser interpretr un esl en un mp o en un plno, suryndo l relión entre l distni que medimos en entímetros o milímetros y estleiendo l distni rel. RESUMEN DE L UNIDD Un ret está formd por infinitos puntos; no tiene ni prinipio ni finl. Por dos puntos siempre ps un ret. Un semirret es un ret que tiene prinipio pero no finl. Un segmento está delimitdo por dos puntos. Un polígono es un figur formd por un líne poligonl errd. Está ompuesto por vrios elementos: digonles, ángulos, ldos y vérties. L sum de los ángulos de un polígono de n ldos es: 180 (n 2). El oiente entre l medid de dos segmentos es su rzón. Dos segmentos son proporionles si tienen l mism rzón. Vris rets prlels ortds por rets sentes formn segmentos proporionles entre sí. Dos triángulos son semejntes si tienen los tres ángulos igules, los tres ldos proporionles, o si tienen dos ldos proporionles y el ángulo que formn igul. Medinte l esl numéri y gráfi podemos lulr distnis de plnos y mps. L medid que lulmos en el mp (m) equivle un distni rel (km). OJETIVOS ONTENIDOS PROEDIMIENTOS 1. lulr l rzón de dos segmentos. 2. plir los riterios de semejnz de segmentos y triángulos. Ret, semirret y segmento. El polígono y sus elementos. Sum de los ángulos de un polígono. Rzón de dos segmentos. Segmentos proporionles. Segmentos igules y proporionles de rets prlels. División de un segmento en prtes igules. Semejnz de triángulos. Trzdo de rets, semirrets y segmentos. Identifiión de polígonos y sus elementos. Tringulión de polígonos. álulo de l rzón de dos segmentos. onstruión de segmentos proporionles. Identifiión de segmentos proporionles en rets prlels. Expresión gráfi de l división de un segmento en prtes igules. pliión de los riterios de semejnz de triángulos. Resoluión de prolems. DPTIÓN URRIULR 3. Leer e interpretr esls en plnos y mps. onepto de esl. Esl numéri y esl gráfi. Interpretión del signifido de l esl. álulo de distnis. Resoluión de prolems. MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 343

2 82485 _ qxd 12//07 15:37 Págin 344 LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. G Por un punto psn infinits rets. Un semirret es un ret que tiene prinipio pero no finl. Ret r Un punto ulquier form dos semirrets sore d líne o direión. Un segmento es l porión o prte de un ret delimitd por dos puntos. Semirret s Los puntos M y N formn el segmento MN. Ret t M N 1 Indi dejo de d figur su nomre: ret, semirret o segmento. ) G ) G ) d) 2 Diuj dos puntos ulesquier, P y T, y trz un ret m que pse por ellos. 3 Diuj un punto, trz vris rets que psen por él y nómrls on letrs diferentes (r, s, t...). 4 onsider un punto y trz dos semirrets, m y n, que tengn su origen en él. 5 Diuj utro segmentos,, MN, PT y XY, de medids 3, 6, 8 y 10 m, respetivmente. ) ) PT ) MN d) XY 344 MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

3 82485 _ qxd 12//07 15:37 Págin 345 POLÍGONOS Vrios segmentos unidos entre sí formn un líne poligonl. Un líne poligonl errd es un polígono. Un polígono es un figur pln delimitd por un líne poligonl errd. Líne poligonl iert Polígono (líne poligonl errd) Los ángulos son ls regiones que formn los ldos l ortrse. Se esrien sí: Ê. Los ldos son los segmentos que limitn el polígono. L sum de ls longitudes de los ldos se llm perímetro. Elementos de un polígono D E Los vérties son los puntos donde se ortn los ldos. Se nomrn on un letr myúsul. Ls digonles son los segmentos que unen dos vérties no onseutivos. 6 on segmentos de medids 1, 2, 3 y 4 m, respetivmente, diuj un líne poligonl iert y un polígono. ) Líne poligonl ) Polígono 7 Piens en utro ojetos on form de polígono y diújlos. ) Pizrr ) 8 ) d) Señl y nomr los vérties y ldos de los polígonos, y diuj los ángulos y ls digonles. DPTIÓN URRIULR MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 345

4 82485 _ qxd 12//07 15:37 Págin 346 SUM DE LOS ÁNGULOS DE UN POLÍGONO Semos que l sum de los ángulos de un triángulo es 180. Por eso, pr hllr l sum de los ángulos de un polígono deemos proeder su tringulión, medinte el trzdo de digonles desde uno de los vérties del polígono. L sum de los ángulos de un polígono se lul sumndo 180 tnts vees omo triángulos teng el polígono. T 1 T 1 T 2 T 1 T 2 T 3 T 2 T 3 T 4 T 1 T 1 = 180 T 1 + T 2 = = T 1 + T 2 + T 3 = T 1 + T 2 + T 3 + T 4 = = 360 = = 540 = = 720 Polígono de 3 ldos: 180 (3 2) = = 180 Polígono de 4 ldos: 180 (4 2) = = 360 Polígono de 5 ldos: 180 (5 2) = = 540 Polígono de 6 ldos: 180 (6 2) = = 720 Polígono de 7 ldos: 180 (7 2) = = 00 Polígono de n ldos: 180 (n 2) Reliz l tringulión de estos polígonos, olorélos y señl los triángulos que se formn. ) udrdo ) Retángulo ) Hexágono 10 lul el vlor de d uno de los ángulos de un pentágono regulr. 11 Hll el vlor del ángulo que flt en d so. ) )? ? MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

5 82485 _ qxd 12//07 15:37 Págin 347 RZÓN DE DOS SEGMENTOS L rzón de dos segmentos es el número que result de dividir sus longitudes. EJEMPLO Sen los segmentos y, de longitudes 3 m y 5 m. Hll su rzón. L rzón de y es:. = 3 5 = 06, 12 Diuj dos segmentos, m y n, de longitudes 3 m y 4 m, respetivmente. Hll su rzón. 13 L rzón de dos segmentos, y, es 0,5. Si mide 2 m, lul el vlor de. Diuj los segmentos. 2 = 05, = 05, 14 L rzón de dos segmentos, m y n, es 0,75. Si n mide 4 m, lul el vlor de m. Diuj los segmentos. m n = 075, 15 SEGMENTOS PROPORIONLES Si l rzón de dos segmentos, y, es l mism que l de otros dos segmentos, y d, se die que los segmentos son proporionles, se esrie: = y se umple que d =. d Los segmentos y miden 3 m y 4 m, y los segmentos miden y d, 6 m y 8 m. Diújlos y omprue que son proporionles. DPTIÓN URRIULR 16 Dos segmentos, y, miden 4 m y 5 m y son proporionles otros dos segmentos y d. Si el segmento mide 8 m, lul el vlor del segmento d. MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 347

6 82485 _ qxd 12//07 15:37 Págin 348 PLIR OJETIVO 2 LOS RITERIOS DE SEMEJNZ DE SEGMENTOS Y TRIÁNGULOS NOMRE: URSO: EH: SEGMENTOS IGULES DE RETS PRLELS Diujmos utro rets prlels que estén l mism distni entre sí:,, y d. Ls ortmos por dos rets sentes, r y s, que formn segmentos en mos ldos. Los segmentos que se originn en l ret r son igules entre sí y los segmentos que se originn en l ret s tmién lo son. EJEMPLO r s G H Segmentos de l ret r: = = D Segmentos de l ret s: G = GH = HI d D I 1 íjte en el siguiente diujo. r s ) Nomr los segmentos que se originn l trzr l ret s. ) Verifi que = = D. ) omprue lo mismo pr los segmentos de l ret s. d D 2 Sore ls rets, f y g, trz utro rets prlels que estén un distni de 1,5 m entre sí. ) Nomr los segmentos que se originn l ortr ls prlels en f y g. ) omprue que los segmentos que se formn en d ret son igules. f g SEGMENTOS PROPORIONLES DE RETS PRLELS Diujmos vris rets prlels:, y. Ls ortmos por dos rets sentes, r y s, que formn segmentos en mos ldos. Los segmentos que originn ls rets r y s son proporionles entre sí. EJEMPLO r H G s es omo G es GH: G = GH 348 MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

7 82485 _ qxd 12//07 15:37 Págin 34 3 íjte en el diujo y hll el vlor del segmento GH. r G s = 2 m G = 2,5 m = 4 m GH =? H 4 Nomr los segmentos on letrs myúsuls y ls rets on minúsuls, y lul el vlor del segmento x. x 2,7 m 1,3 m 1,8 m 5 lul el vlor del segmento que flt. Nomr los segmentos y ls rets. 2,5 m x 2 m 3,6 m DIVIDIR UN SEGMENTO EN PRTES IGULES Seguimos estos psos. 1.º Trzmos un semirret (s) on origen en y señlmos en ell tntos segmentos (1-5) igules y onseutivos (de l medid que mejor nos prez) omo prtes sen. 2.º Unimos el último segmento (5) on el extremo. 3.º Trzmos prlels este y quedn señlds ls prtes igules en. EJEMPLO Divide el segmento en 5 prtes igules. DPTIÓN URRIULR Semirret s MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 34

8 82485 _ qxd 12//07 15:37 Págin Divide el segmento MN en 7 prtes igules. M N 7 Divide un segmento de 6 m en oho prtes igules. SEMEJNZ DE TRIÁNGULOS Dos triángulos son semejntes si se umple ulquier de ests ondiiones. 1. Tener los tres ldos proporionles. 2. Tener los tres ángulos igules. 3. Tener dos ldos proporionles y el ángulo que formn igul. EJEMPLO Primer riterio Dos triángulos son semejntes si tienen sus ldos proporionles. Segundo riterio Dos triángulos son semejntes si tienen dos ángulos igules. Terer riterio Dos triángulos son semejntes si tienen un ángulo igul y los ldos que lo formn son proporionles. ' ' ' ' ' ' ' ' = = Â = Â'; = ' ' ' ' Ĉ = 180 Â = Ĉ' ' Â = Â'; ' ' = ' ' ' ' ' 350 MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

9 82485 _ qxd 12//07 15:37 Págin L medid de los ldos de los siguientes triángulos es: ) Nomr los ldos de d triángulo. 8 m 10 m 4 m 5 m ) omprue que son semejntes. ) Qué riterio hs plido? 3 m 6 m En un triángulo onoemos los siguientes dtos. Ldo G = 4 m Ldo G = 6 m Ĝ = 60 Y en otro triángulo onoemos: Ldo DE = 8 m Ldo E = 12 m Ê = 60 ) omprue si son semejntes. ) Indi el riterio plido. ) Reliz un diujo representtivo. 10 Dos triángulos retángulos tienen un ángulo gudo omún que mide 40. ) Son semejntes? Por qué? ) Reliz un diujo representtivo Los ldos de un triángulo miden 3 m, 5 m y m. Indi ls medids de un triángulo semejnte l primero. Rzon tu respuest y reliz un diujo representtivo. El ángulo de un triángulo mide 75, y los ldos que lo formn, = 4 y D = 6 m. uál de ls siguientes opiones orresponderí un triángulo semejnte l ddo? Rzon tu respuest y reliz un diujo representtivo. ) Ángulo = 65 ; ldos MH = 8 m y HN = 10 m. ) Ángulo = 75 ; ldos MH = 8 m y HN = 10 m. ) Ángulo = 75 ; ldos MH = 8 m y HN = 12 m. d) Ángulo = 0 ; ldos MH = 8 m y HN = 12 m. DPTIÓN URRIULR MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 351

10 82485 _ qxd 12//07 15:37 Págin 352 LEER OJETIVO 3 E INTERPRETR ESLS EN PLNOS Y MPS NOMRE: URSO: EH: ESL DE UN PLNO O MP Ls distnis y tmños de los plnos y mps están reduidos, de mner que se pueden oservr fáilmente. Los vlores son proporionles l distni o tmño rel. Medinte l esl relionmos l distni o el tmño que hy en un plno o mp on l distni o tmño reles. Esl = Distni o tmño sore el plno o mp Distni o tmño en l relidd EJEMPLO Esl numéri 1:300 1 m del diujo, plno o mp equivle 300 m de l relidd (300 m = 3 m). Esl gráfi m G G G G G 1 m 1 m 1 m 1 m 1 m Según est esl: 5 m del diujo, plno o mp equivlen 10 m de l relidd. 1 m del diujo, plno o mp equivle 2 m de l relidd. 1 omplet l siguiente tl. ESL DISTNI EN EL MP O PLNO DISTNI REL (m) DISTNI REL (m) 1:100 1: : : : Expres, medinte un esl numéri y un esl gráfi. ) 1 m en el plno equivle 2 km en l relidd. Esl numéri Esl gráfi ) 1 m en el plno equivle 25 km en l relidd. Esl numéri Esl gráfi 352 MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

11 82485 _ qxd 12//07 15:37 Págin Según ls siguientes esls, omplet ls equivlenis. ) m ESL GRÁI RELIDD (m) G G G G G G G 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 2 m 5 m 10 m ) m ESL GRÁI RELIDD (km) G G G G G 1 m 1 m 1 m 1 m 1 m 1 m 3 m 5 m 12 m 4 Un mp de rreters está elordo esl 1: ) Qué signifi esto? ) Un distni de 4 m en el mp, uántos metros y kilómetros son en l relidd? 5 El plno de un s está diujdo esl 1:100. Si un hitión en el plno mide 3 4 m, uánto medirá en l relidd? Si en el plno 1 m Si en el plno 3 m mide 100 m reles medirá x m reles 6 onsider l distni en líne ret entre ls siguientes iuddes en un plno. Hll l distni rel en km entre: ) Sevill-ádiz ) Sevill-Málg ) ádiz-málg km G G 1 m 1 m Sevill DPTIÓN URRIULR 2,5 m 4 m ádiz 3,5 m Málg MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L. 353

12 82485 _ qxd 12//07 15:37 Págin L plnt j del instituto viene representd por el siguiente plno. Sl de profesores Seretrí Delegión de lumnos seos feterí onserjerí Direión lul ls medids reles de d dependeni, siendo que l esl es 1 : 400. DEPENDENI MEDIDS EN PLNO (m) MEDIDS RELES (m) Seretrí Sl de profesores onserjerí Direión feterí Delegión de lumnos seos 8 Hll l distni que reorre Luis pr ir l instituto, si el plno está heho esl 1 : Instituto Luis 354 MTEMÁTIS 2. ESO MTERIL OTOOPILE SNTILLN EDUIÓN, S. L.

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

CALCULAR LA RAZÓN DE DOS SEGMENTOS

CALCULAR LA RAZÓN DE DOS SEGMENTOS 9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. NOTA IMPORTANTE L segund mitd de ls págins corresponden ls soluciones de l primer mitd. SEMEJANZAS Mnuel Blcázr Elvir TEOREMA DE THALES Sen ls rects r y t cortds por vris rects prlels según el siguiente

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

Movimientos y semejanzas

Movimientos y semejanzas 865 _ 057-068.qxd 7/4/07 :4 Página 57 Movimientos y semejanzas INTRODUIÓN Esta unidad tiene un componente gráfico muy importante, por lo que conviene comenzar la unidad aportando ejemplos reales, sobre

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE Áre: MTEMÁTIS Dignostio Trigonometrí Feh: Enero de 07 onoimiento: Rzones Trigonométris y TP Doente: Sntigo Vásquez Grdo: UNDEIMO Estudinte: Ojetivo: Repsr los oneptos ásios sore rzones trigonométris, teorem

Más detalles

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices.

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices. 1.- QUÉ ES UN TRIÁNGULO? Leión 10: TRIÁNGULOS Un triángulo es un polígono de tres ángulos y tres ldos. Tmién tiene tres vérties. ELEMENTOS DE UN TRIÁNGULO Ldo: Cd uno de los tres segmentos que limitn l

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

GEOMETRÍA 2º DE ESO CURSO

GEOMETRÍA 2º DE ESO CURSO EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

TEMA 39. Geometría del triángulo.

TEMA 39. Geometría del triángulo. TEM 9. Geometrí del triángulo. TEM 9. Geometrí del triángulo.. Introduión. El triángulo es el polígono ms estudido, su importni reside en ls múltiples propieddes que estos tienen y que todos los polígonos

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k 10 Lo fundmentl de l unidd Nombre y pellidos:... Curso:... Fech:... SEMEJNZ FIGURS SEMEJNTES Dos figurs son semejntes cundo solo difieren en segmentos correspondientes son En tl cso, los c b c' b' ' =

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general) 2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

Se tiene tres satélites geo-estacionarios A, B y C alrededor de la Tierra como se muestra en la figura. A B

Se tiene tres satélites geo-estacionarios A, B y C alrededor de la Tierra como se muestra en la figura. A B Triángulos Se tiene tres stélites geo-estionrios, y lrededor de l Tierr omo se muestr en l figur. señl que v del stélite psndo por se demor 0,28 s, l señl que v del stélite psndo por se demor 0,35 s y

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

Proporcionalidad y semejanza. Escalas

Proporcionalidad y semejanza. Escalas NI Proporionlidd y semejnz. Esls ÍNIE E ONTENIOS 1. PROPORIONLI.............................................................. 38 1.1. Mgnitud, ntidd y medid......................................................

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno LSIFIION LOS TRINGULOS. TRINGULOS Los triángulos se lsifin según sus ldos y sus ángulos.. lsifiión de los triángulos según sus ldos.. Triángulo equilátero. s el que tiene sus tres ldos igules Sus tres

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

CAPÍTULO 1. Rectas y ángulos

CAPÍTULO 1. Rectas y ángulos ÍTUO 1 Elementos ásicos de l Geometrí Rects y ángulos 1.1 En Geometrí hy ides ásics que todos entendemos pero que no definimos. Ésts son ls ides de unto, Rect, lno y Espcio. Señlmos un punto con un mrc

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 9 Prolems métricos en el plno Recuerd lo fundmentl Nomre y pellidos:... Curso:... Fech:... GEOMETRÍ MÉTRIC PLN TEOREM DE PITÁGORS Se verific en los triángulos... c = EJEMPLO: Si en un cono l genertriz

Más detalles

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS TRIÁNGULOS DEFINIIÓN Un triángulo es un polígono errdo y onvexo, ompuesto por tres ldos. 1 ELEMENTOS ÁSIOS Los triángulos tienen muhs propieddes importntes pr el diujo y l geometrí, pero los más elementles

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

OBJETIVOS MÍNIMOS REQUERIDOS

OBJETIVOS MÍNIMOS REQUERIDOS MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operciones cominds con números enteros. - Potencis ríces cudrds. - Operciones con frcciones. - Operciones con números decimles. - Ecuciones de primer segundo

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles