ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson"

Transcripción

1 ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011

2 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables; y en tal caso, de qué tipo es y 2º) si es posible, establecer una ecuación (o modelo) de predicción de una de ellas (la VD o variable criterio), en función de la otra (la VI o predictora) Dosis (cantidad) de BISFOFONATO DMO en Osteoporosis VI FACTOR qué relación existe? VD (ENFERMEDAD) Un ejemplo sencillo en un contexto común Estatura en cm Peso en Kg Se comienza por trazar un DIAGRAMA DE DISPERSIÓN

3 DIAGRAMA DE DISPERSIÓN con valores de estatura y peso del ejemplo en contexto común REPRESENTACIÓN de la estatura y los pesos del ejemplo anterior en una muestra de personas Se denomina NUBE de PUNTOS al conjunto de puntos que representan a cada par de valores asociados en ambas variables. El estudio de esta nube nos indica si existe o no relación entre las variables Pesa 50 kg. Pesa 78 kg. Mide 161 cm. Mide 187 cm.

4 El perímetro de esta nube de puntos, nos permite observar que ambas variables cambian de valor en el mismo sentido: tienden a mostrar mayor peso las personas con mayor estatura) Esto es lo que se denomina una RELACIÓN LINEAL DIRECTA: - lineal porque los puntos de la nube se aproximan a un línea recta más o menos en el centro del perímetro de la nube - y directa porque los cambios en ambas variables se producen en el mismo sentido

5 TIPOS de RELACIÓN que se pueden observar en un diagrama de dispersión Fuerte relación directa Cuando a valores de X mayores que la media le corresponden valores de Y mayores también a la suya; y a valores de X menores que la media vemos que le corresponden valores de Y menores también: tenemos una relación directa, en la que las variables modifican sus valores en el mismo sentido ( ó ) por lo que la nube de puntos se concentra en torno a una línea recta creciente Cierta relación inversa No hay correlación Cuando a valores de X mayores que la media le corresponden valores de Y menores a la suya y viceversa: tenemos una relación inversa, en la que las variables modifican sus valores en sentidos opuestos ( ó ) por lo que la nube de puntos se concentra en torno a una línea recta decreciente Cuando para valores de X mayores que la media encontramos algunos valores de Y mayores y algunos menores que la suya, y aproximadamente en la misma proporción: no existe correlación entre las variables y por tanto los cambios observados en una de las variables NO están asociados a las modificaciones introducidas en la otra variable; por lo que no se aprecia ningún tipo de tendencia lineal en la nube de puntos (que se puede parecer más a una pelota que a una recta; en realidad es como una especie de elipse con la diagonal positiva ligeramente más larga que la diagonal negativa)

6 ÍNDICES ESTADÍSTICOS de evaluación del grado de asociación entre variables cuantitativas COVARIANZA Indica el grado de variación conjunta (o simultánea) que se observa entre 2 variables numéricas Si su valor es > 0 (positivo) la relación es directa Si su valor es < 0 (negativo) la relación es inversa Inconvenientes: 1) tiene unidades de medida, por lo que impide comparaciones con otras covarianzas y 2) se desconoce su límite máximo, por lo que no expresa magnitud de relación Coeficiente de Correlación r de Pearson Indica el grado de asociación lineal entre 2 variables (es decir, la tendencia de los puntos de la nube a situarse alineadamente cerca de una recta, con excepción de las rectas horizontales y verticales) Es la estandarización del valor de la covarianza en una escala de valores universal con límites conocidos (+1 y 1), eliminando las unidades de medida pero manteniendo el signo. Si su valor es > 0 (positivo) la relación es directa (el límite +1 se llama Correlación Perfecta Positiva) Si su valor es < 0 (negativo) la relación es inversa (el límite 1 se llama Correlación Perfecta Negativa) En ambos casos, se excluyen los casos de puntos alineados en rectas horizontales o verticales Si su valor es = 0 no hay relación (se denomina Correlación Nula) La intensidad de la correlación se interpreta en valor absoluto (entre 0 y 1)

7 Coeficiente de Determinación El denominado MODELO LINEAL GENERAL, establece que Variabilidad TOTAL observada en una VD Parte EXPLICADA por el factor (la V.I.) Parte explicada por otros factores no controlados Es lo que se denomina: descomposición de la varianza total de una VD Parte explicada por el factor Variabilidad total de la VD Al cuadrado del coeficiente de Pearson La proporción (ó %) de variabilidad observada en la V.D. que está explicada por (o asociada a) los cambios (variaciones) introducidos por el investigador en la V.I. Ej.: Si la r de Pearson entre peso y estatura fuese,600 para cierta población; el CD ó r 2 nos diría que el 36% de las variaciones en el peso (si éste fuese la V.D.) estaría explicado por las diferencias en estatura (considerada como V.I. o factor)

8 INFERENCIAS sobre el valor del coeficiente r de Pearson OBJETIVO Comprobar si la correlación observada en la muestra, se debe al azar, o al hecho de que realmente las variables están asociadas en la población CONTRASTE DE HIPÓTESIS H o : NO EXISTE relación entre las variables; el valor del coeficiente r hallado en la muestra se debe al azar del muestreo. H 1 : EXISTE una correlación significativa entre las variables que garantiza que están realmente asociadas en la población Si p<,050 R Ho Existe correlación significativa Si p,050 A Ho NO existe correlación significativa El efecto que ejerce el tamaño de la muestra (n) sobre la p de significación es importante. Con el mismo valor de r: a mayor n menor valor de p (más significatividad). Por tanto, es imprescindible utilizar un tamaño de muestra adecuado a los objetivos de la investigación, calculado previamente.

9 Ejemplo, resuelto con IBM-SPSS.19 DIAGRAMA de DISPERSION simple, que muestra la relación entre 2 variables. Está editado para que muestre la tendencia lineal y los límites de los intervalos de confianza de los sujetos. Se observa una clara relación directa: a mayor edad, mayor memoria visual Correlaciones Memoria Visual (%) Edad (años) Memoria Visual (%) Correlación de Pearson 1,570 ** Sig. (bilateral),000 N Edad (años) Correlación de Pearson,570 ** 1 Sig. (bilateral),000 N **. La correlación es significativa al nivel 0,01 (bilateral). MATRIZ de CORRELACIONES, que contiene el valor de la r de Pearson, su p de significación y el tamaño de muestra utilizado Véase que la información aparece duplicada en cada cruce de fila y columna

10 Ejemplo, resuelto con IBM-SPSS.19 MATRIZ de CORRELACIONES, que contiene el valor de las r de Pearson, y sus p de significación, de cada variables con todas las demás. Correlaciones Tiempo Memoria Memoria Reacción Edad (años) Visual (%) Verbal (%) Medio Edad (años) Correlación de Pearson 1,570 **,371 **,289 ** Sig. (unilateral),000,001,008 N Memoria Visual (%) Correlación de Pearson,570 ** 1 -,037,347 ** DIAGRAMA de DISPERSION matricial, que muestra la relación entre un grupo de variables, todas con todas. Está editado para que muestre la tendencia lineal y los límites de los intervalos de confianza de los sujetos. Sig. (unilateral),000,382,002 N Memoria Verbal (%) Correlación de Pearson,371 ** -,037 1,377 ** Sig. (unilateral),001,382,001 N Tiempo Reacción Medio Correlación de Pearson,289 **,347 **,377 ** 1 Sig. (unilateral),008,002,001 N **. La correlación es significante al nivel 0,01 (unilateral).

11 Muchas gracias por su atención

Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla

Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla DOCUWEB FABIS Dot. úm 0702005 Cómo realizar paso a paso un contraste de hipótesis con SPSS para Windows: (III) Relación o asociación y análisis de la dependencia (o no) entre dos variables cuantitativas.

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL 0. Describiendo relaciones entre dos variables A menudo nos va a interesar describir la relación o asociación entre dos variables. Como siempre la metodología va a depender del tipo de variable que queremos

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)

Más detalles

2 Resolución de algunos ejemplos y ejercicios del tema 2.

2 Resolución de algunos ejemplos y ejercicios del tema 2. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones

Más detalles

CORRELACIONES CON SPSS

CORRELACIONES CON SPSS ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79

Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79 . Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Correlación entre variables

Correlación entre variables Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

Análisis de componentes principales

Análisis de componentes principales Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los

Más detalles

Análisis de Regresión y Correlación con MINITAB

Análisis de Regresión y Correlación con MINITAB Análisis de Regresión y Correlación con MINITAB Primeras definiciones y conceptos de la regresión El análisis de la regresión es una técnica estadística que se utiliza para estudiar la relación entre variables

Más detalles

6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"

6 Sexta. 6.1 Parte básica. Unidad Didáctica REGRESIÓN Y CORRELACIÓN 352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65.

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65. .1. DIAGRAMAS DE DISPERSIÓN Diagramas de Dispersión Los Diagramas de Dispersión o Gráficos de Correlación permiten estudiar la relación entre 2 variables. Dadas 2 variables X e Y, se dice que existe una

Más detalles

T. 8 Estadísticos de asociación entre variables

T. 8 Estadísticos de asociación entre variables T. 8 Estadísticos de asociación entre variables. Concepto de asociación entre variables. Midiendo la asociación entre variables.. El caso de dos variables categóricas.. El caso de una variable categórica

Más detalles

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH Cuando se estudian en forma conjunta dos características (variables estadísticas) de una población o muestra, se dice que estamos analizando una variable

Más detalles

UNED. DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple

UNED. DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple 011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple 1 Índice 8.1 Introducción... 3 8. Objetivos... 4 8.3 Análisis de Regresión Simple... 4 8.3.1

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en

Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en Procesamiento de información para la investigación utilizando el programado Excel recopilados. Los participantes rán en Julio E. Rodríguez Torres el Joel uso O. Lucena de Excel. Quiles Centro para la Excelencia

Más detalles

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3

Más detalles

Análisis de Correlación Simple, Múltiple, Parcial

Análisis de Correlación Simple, Múltiple, Parcial Capítulo VIII Análisis de Correlación Simple, Múltiple, Parcial Correlación Es la medida del grado de relación entre dos o más variables. Con variables nominales suele utilizarse el término Asociación

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Práctica 2. Estadística Descriptiva

Práctica 2. Estadística Descriptiva Práctica 2. Estadística Descriptiva Ejercicio 1 Mucha gente manifiesta reacciones de alergia sistémica a las picaduras de insectos. Estas reacciones varían de paciente a paciente, no sólo en cuanto a gravedad,

Más detalles

Relación entre variables cuantitativas

Relación entre variables cuantitativas Investigación: Relación entre variables cuantitativas 1/8 Relación entre variables cuantitativas Pita Fernández S., Pértega Díaz S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario

Más detalles

Capítulo 9. Regresión lineal simple

Capítulo 9. Regresión lineal simple Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH 1) ANÁLISIS DE CORRELACIÓN Dado dos variables, la correlación permite hacer estimaciones del valor de una de ellas conociendo el valor de la otra variable.

Más detalles

TEMA 5 ESTUDIOS CORRELACIONALES.

TEMA 5 ESTUDIOS CORRELACIONALES. TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES. Facultad de Psicología y Ciencias Sociales. Carrera Sociología

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES. Facultad de Psicología y Ciencias Sociales. Carrera Sociología UNIVERSIDD DE CIENCIS EMPRESRILES Y SOCILES Facultad de Psicología y Ciencias Sociales Carrera Sociología Curso ESTDÍSTIC STIC I Clase 6: nálisis de Correlación n Lineal Simple Prof. Titular: Lic. Rubén

Más detalles

Estudio comparativo de los currículos de probabilidad y estadística español y americano

Estudio comparativo de los currículos de probabilidad y estadística español y americano Estudio comparativo de los currículos de probabilidad y estadística español y americano Jaldo Ruiz, Pilar Universidad de Granada Resumen Adquiere las mismas capacidades en Probabilidad y Estadística un

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

TEMA 9 DISTRIBUCIONES BIDIMENSIONALES

TEMA 9 DISTRIBUCIONES BIDIMENSIONALES Tema 9 Distribuciones bidimensional Matemáticas CCI 1º Bachillerato 1 TEMA 9 DITRIBUCIONE BIDIMENIONALE NUBE DE PUNTO Y COEFICIENTE DE CORRELACIÓN EJERCICIO 1 : Las notas de 10 alumnos y alumnas de una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

Técnicas Cuantitativas para el Management y los Negocios

Técnicas Cuantitativas para el Management y los Negocios Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 romero@econ.unicen.edu.ar Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis

Más detalles

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS UNIVERSIDAD DE LOS ANDES FACULTAD DE ODONTOLOGIA MERIDA EDO. MERIDA PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS Mérida, Febrero 2010. Integrantes: Maria A. Lanzellotti L. Daniela Paz U. Mariana

Más detalles

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

12 Distribuciones bidimensionales

12 Distribuciones bidimensionales Solucionario Distribuciones bidimensionales ACTIVIDADES INICIALES.I. Halla la ecuación de la recta que pasa por el punto A(, ) y tiene por pendiente. Calcula la ordenada en el origen y represéntala. La

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

Finanzas de Empresas Turísticas

Finanzas de Empresas Turísticas Finanzas de Empresas Turísticas Prof. Francisco Pérez Hernández (f.perez@uam.es) Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid 1 Departamento de Financiación e Investigación

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

LAS MATRICES. OPERACIONES CON MATRICES.

LAS MATRICES. OPERACIONES CON MATRICES. DP. - AS - Matemáticas ISSN: - X www.aulamatematica.com LAS MATRICES. OPERACIONES CON MATRICES. Escribe una matri A de dimensión señala cuál es el elemento a B Escribe una matri B de dimensión señala cuál

Más detalles

ESTADÍSTICA DESCRIPTIVA CON SPSS

ESTADÍSTICA DESCRIPTIVA CON SPSS ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos

Más detalles

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011 NOMBRE DE LA ASIGNATURA Métodos, Diseño y Técnicas de Investigación en Psicología OBLIGATORIA /CRÉDITOS 4,5 Titulación en la que se imparte/ Curso /Cuatrimestre: Psicopedagogía / 1º / 1º Curso académico:

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 2014/2015 Asignatura: MATEMÁTICAS APLICADAS A LAS CC.SS. II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad 0. INTRODUCCIÓN

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS HUMANAS ESCUELA DE GEOGRAFIA PROGRAMA DE CURSO

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS HUMANAS ESCUELA DE GEOGRAFIA PROGRAMA DE CURSO PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS HUMANAS ESCUELA DE GEOGRAFIA PROGRAMA DE CURSO 1. DATOS INFORMATIVOS 1.1 ASIGNATURA: ESTADISTICA II 1.2 NIVEL CUARTO y SEGUNDO 1.3 NÚMERO

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

Estadística aplicada y modelización. 15 de junio de 2005

Estadística aplicada y modelización. 15 de junio de 2005 Estadística aplicada y modelización. 15 de junio de 2005 SOLUCIÓN MODELO A 1. En una población de fumadores se quiere examinar la relación entre el número de cigarrillos que consumen diariamente y el número

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

Tema 2: Estadística Descriptiva Multivariante

Tema 2: Estadística Descriptiva Multivariante Tema 2: Estadística Descriptiva Multivariante Datos multivariantes: estructura y notación Se llama población a un conjunto de elementos bien definidos. Por ejemplo, la población de las empresas de un país,

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

Estadística en Ciencias de la Salud

Estadística en Ciencias de la Salud Estadística en Ciencias de la Salud Curso 2013 2014 Apuntes de Estadística en Ciencias de la Salud Botella-Rocamora, P. 1, Alacreu-García, M. 1, Martínez-Beneito, M.A. 2 1 Depto.Ciencias Físicas, Matemáticas

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: ESTADÍSTICA DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico ESTI Numérico 1. OBJETIVOS GENERALES Desarrollar habilidades para organizar, representar

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

Muy en desacuerdo 1 2 3 4 5 Muy de acuerdo

Muy en desacuerdo 1 2 3 4 5 Muy de acuerdo Aplicación del análisis factorial a la valoración por parte de los estudiantes de las asignaturas de la ETSICCP de Barcelona en sus distintas titulaciones. Camino Balbuena Martínez, Dpt. de Matemática

Más detalles

Segunda sesión de contenidos: El cuestionario Vida Académica: Desde las hipótesis al análisis informatizado de los datos.

Segunda sesión de contenidos: El cuestionario Vida Académica: Desde las hipótesis al análisis informatizado de los datos. Análisis y proceso de datos aplicado a la Psicología -----Práctica con ordenador----- Segunda sesión de contenidos: El cuestionario Vida Académica: Desde las hipótesis al análisis informatizado de los

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

TEMA 9: Desarrollo de la metodología de Taguchi

TEMA 9: Desarrollo de la metodología de Taguchi TEMA 9: Desarrollo de la metodología de Taguchi 1 La filosofía de la calidad de Taguchi 2 Control de calidad Off Line y On Line Calidad Off Line Calidad On Line 3 Función de pérdida 4 Razones señal-ruido

Más detalles

La práctica del análisis de correspondencias

La práctica del análisis de correspondencias La práctica del análisis de correspondencias MICHAEL GREENACRE Catedrático de Estadística en la Universidad Pompeu Fabra Separata del capítulo Biplots en análisis de correspondencias Primera edición: julio

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Comparación de proporciones

Comparación de proporciones 11 Comparación de proporciones Neus Canal Díaz 11.1. Introducción En la investigación biomédica se encuentran con frecuencia datos o variables de tipo cualitativo (nominal u ordinal), mediante las cuales

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

MURCIA JUNIO 2004. + = 95, y lo transformamos 2

MURCIA JUNIO 2004. + = 95, y lo transformamos 2 MURCIA JUNIO 4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OBSERVACIONES IMPORTANTES: El alumno deberá responder a una sola de las dos cuestiones de cada uno de los bloques. La puntuación de las dos

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles