Relaciones entre variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relaciones entre variables"

Transcripción

1 Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón. Para lustrarlo retomemos los ejemplos menconados al prncpo del tema anteror. S sobre un grupo de personas observamos los valores que toman las varables Altura medda en cm Y Altura medda en metros es trval observar que la relacón que hay entre ambas es: Y =. 100 Obtener esta relacón es menos evdente cuando lo que medmos sobre el msmo grupo de personas es, por ejemplo, Altura medda en cm Y Peso en klos La razón es que no es certo que conocda la altura x de un ndvduo, podamos determnar de modo exacto su peso y (dos personas que mden 1,70 m pueden tener pesos de 60 y 65 klos). Sn embargo, alguna relacón entre ellas debe exstr, pues parece mucho más probable que un ndvduo de 2m pese más que otro que mda 1.20m. Esmás, nos puede parecer más o menos aproxmado una relacón entre ambas varables como la sguente Y = 110 ± (error). A la deduccón, a partr de una sere de datos, de este tpo de relacones entre varables, es lo que denomnamos regresón. 1

2 Medante las técncas de regresón de una varable Y sobre una varable, buscamos una funcón que sea una buena aproxmacón de una nube de puntos (x,y ),medante una curva. Para ello hemos de asegurarnos de que la dferenca entre los valores y e ŷ sea tan pequeña como sea posble. El térmno que hemos denomnado error debe ser tan pequeño como sea posble (ver fgura). El objetvo será buscar la funcón (tambén denomnada modelo de regresón) Ŷ = f () que mnmce dcho error. 2

3 Bondad de un ajuste Consderemos un conjunto de observacones sobre n ndvduos de una poblacón, en los que se mden certas varables e Y, x 1,x 2,...,x n Y y 1,y 2,...,y n Estamos nteresamos en hacer una regresón para determnar, de modo aproxmado, los valores de Y conocdos los de. Así,debemosdefnr certa varable Ŷ = f (), que debe tomar los valores ŷ 1 = f (x 1 ), ŷ 2 = f (x 2 ), ŷ n = f (x n ), 3

4 de modo que: y 1 ŷ 1 0, y 2 ŷ 2 0, y n ŷ n 0, Ello se puede expresar defnendo una nueva varable E = Y Ŷ que mda las dferencas entre los auténtcos valores de Y y los teórcos sumnstrados por la regresón, e 1 = y 1 ŷ 1, e 2 = y 2 ŷ 2, e n = y n ŷ n. ycalculandoŷ de modo que E tome valores cercanos a 0. Dcho de otro modo, E debe ser una varable cuya meda debe ser 0 y cuya varanza SE 2 debe ser pequeña (en comparacón con la de Y ). Por ello, se defne el coefcente de determnacón de la regresón de Y sobre, R 2, como R 2 = S2 Y S 2 E S 2 Y =1 S2 E. SY 2 S el ajuste de Y medante la curva de regresón Ŷ = f () es bueno, cabe esperar que la cantdad R 2 tome un valor próxmo a 1. Análogamente, s nos nteresa encontrar una curva de regresón para como funcón de Y,defnríamos ˆ = f (Y ) y se procedería del msmo modo en las defncones. El valor de R 2 srve, entonces, para medr de qué modo las dferencas entre los verdaderos valores de una varable y los de su aproxmacón medante una curva de regresón son pequeñas en relacón con los de la varabldad de la varable que ntentamos aproxmar. Por esta razón estas cantdades mden el grado de bondad del ajuste. Regresón lneal Laformadelafuncónf en prncpo, podría ser arbtrara, y tal vez se tenga que la relacón más exacta entre las varables peso y altura, defndas anterormente, sea algo de forma muy complcada. 4

5 Por el momento no pretendemos encontrar relacones complcadas entre varables, pues nos vamos a lmtar al caso de la regresón lneal. Con este tpo de regresones nos conformamos con encontrar relacones funconales de tpo lneal, es decr, buscamos cantdades a y b tales que se pueda escrbr Ŷ = a + b con el menor error posble entre Ŷ e Y. Observacón Obsérvese que la relacón anteror explca cosas como que s varía en 1 undad, Y varíalacantdadb. Portanto: 1. S b>0, las dos varables aumentan o dsmnuyen a la vez; 2. S b<0, cuando una varable aumenta, la otra dsmnuye. Por tanto, en el caso de las varables peso y altura lo lógco será encontrar que b>0. El problema que se plantea es, entonces, el de cómo calcular las cantdades a y b a partr de un conjunto de n observacones (x 1,y 1 ), (x 2,y 2 ),...,(x n,y n ), de forma que se mnmce el error. Las etapas en que se dvde el proceso son de forma esquemátca, las que sguen: 1. Dadas dos varables, Y, sobre las que defnmos Ŷ = a+b medmos el error que se comete al aproxmar Y medante Ŷ calculando la suma de las dferencas entre los valores reales y los aproxmados al cuadrado (para que sean postvas y no se compensen los errores): (y ŷ ) 2 = =1 =1 2. Una aproxmacón Ŷ = a + b de Y,sedefne a partr de dos cantdades a y b. Vamos a calcular aquellas que mnmzan la funcón e 2 Error (a, b) = (y ŷ ) 2 = =1 (y a bx ) 2 =1 3. Posterormente encontraremos fórmulas para el cálculo drecto de a y b que srvan para cualquer problema. 5

6 RegresóndeYsobre Para calcular la recta de regresón de Y sobre nos basamos en la sguente fgura Una vez que tenemos defndo el error de aproxmacón, los valores a y b que lo mnmzan se calculan dervando con respecto a ambas e gualando a cero (procedmento de los mínmos cuadrados): Mn (y a bx ) 2 = a,b y 2 + a 2 + b 2 x 2 2ay 2bx y +2abx = Mn a,b à Mn y 2 + na 2 + b 2 a,b Se derva e guala a 0: x 2 2a y 2b x y +2ab a = 2na 2 y +2b x =0 b = 2b x 2 2 x y +2a x =0 Despejando los valores de a y b, se obtenen las relacones buscadas: a = ȳ b x b = S Y S 2 La cantdad b se denomna coefcente de regresón de Y sobre. 6 x!.

7 Las msmas conclusones se sacan cuando ntentamos hacer la regresón de sobre Y, pero,paracalcularlarectaderegresón de sobre Y es totalmente ncorrecto despejar de Ŷ = a + b. La regresón de sobre Y se hace aproxmando por ˆ del modo ˆ = a+by donde a = x bȳ b = S Y S 2 Y pues de este modo se mnmza, en el sentdo de los mínmos cuadrados, los errores entre las cantdades x ylasˆx Ejemplo En una muestra de ndvduos se recogen datos sobre dos meddas antropométrcas e Y. Los resultados se muestran resumdos en los sguentes estadístcos: x =14 S =2 S Y =45 ȳ =100 S Y =25 Obtener el modelo de regresón lneal que mejor aproxma Y en funcón de. Utlzando este modelo, calcular de modo aproxmado la cantdad Y esperada cuando =15. Solucón: Lo que se busca es la recta, Ŷ = a + b, que mejor aproxma los valores de Y (según el crtero de los mínmos cuadrados) en la nube de puntos que resulta de representar en un plano (, Y ) las observacones. Los coefcentes de esta recta son: b = S Y S 2 Así, el modelo lneal consste en: = 45 4 =11,25 a = ȳ b x =100 11,25 14 = 57,5 Ŷ = 57,5+11,25 Por tanto, s x =15, el modelo lneal predce un valor de Y de: ŷ = 57,5+11,25 x = 57,5+11,25 15 = 111,25 En este punto, hay que preguntarse s realmente esta predccón puede consderarse fable. Para dar una respuesta, es necesaro estudar propedades de la regresón lneal que están a contnuacón. 7

8 Propedades de la regresón lneal Una vez que ya tenemos perfectamente defnda Ŷ nos preguntamos las relacones que hay entre la meda y la varanza de ésta y la de Y. La respuesta nos la ofrece la sguente proposcón: Proposcón En los ajustes lneales se conserva la meda, es decr ŷ =ȳ En cuanto a la varanza, no necesaramente es la msma para los verdaderos valores de Y y su aproxmacón Ŷ, pues sólo se mantenen en un factor de r 2,esdecr, Demostracón: Seteneque S 2 Ŷ = r2 S 2 Y ŷ = a + b x =(ȳ b x + b x) =ȳ S 2 = b 2 S 2 Ŷ = S2 Y S 2 S2 S 2 = = S 2 Y S 2 S2 Y S 2 Y = µ SY S S Y 2 S 2 Y = r 2 S 2 Y donde se ha utlzado la magntud que denomnamos coefcente de correlacón, r, yque ya defnmos anterormente como r 2 = Observacón µ 2 SY S S Y Como consecuenca de este resultado, podemos decr que la proporcón de varanza explcada por la regresón lneal es del r %. Nos gustaría obtener que r =1, pues en ese caso ambas varables tendrían la msma varanza, pero esto no es certo en general. Todo lo que se puede afrmar, como sabemos, es que 1 r 2 1, yportanto, 0 S 2 Ŷ S2 Y 8

9 Lacantdadquelefaltaalavaranzadelaregresón,S 2, para llegar hasta la varanza Ŷ total de Y, SY 2, es lo que se denomna varanza resdual, que no es más que la varanza de E = Y Ŷ,ya que SY 2 = 1 (y ȳ) 2 = 1 2 ŷ ŷ + e = n n =1 =1 = 1 ŷ ŷ e ŷ ŷ e = n n n =1 =1 =1 = S 2 + Ŷ S2 E + 1 ŷ ŷ e = S 2 n + Ŷ S2 E ya que el tercer sumando se anula según las ecuacones normales: Por ello, ŷ ŷ e = =1 = b = b =1 e (a + bx [a + b x]) = =1 e (x x) =b =1 e x =0 =1 S 2 E = S 2 Y S 2 Ŷ Obsérvese que entonces la bondad del ajuste es e x b x =1 e = =1 R 2 = S2 Y S2 E S 2 Y =1 S2 E S 2 Y =1 S2 Y S 2 Ŷ S 2 Y = = 1 S2 Y r 2 S 2 Y S 2 Y loqueresummosenlasguenteproposcón: Proposcón =1 1 r 2 = r 2 Para los ajustes de tpo lneal se tene que el coefcente de determnacón es gual a r 2, y por tanto representa la proporcón de varanza explcada por la regresón lneal: R 2 = r 2. Por ello: S r 1 el ajuste es bueno, es decr, Y se puede calcular de modo bastante aproxmado a partr de y vceversa. 9

10 Ejemplo S r 0 las varables e Y no están relaconadas (lnealmente al menos), por tanto no tene sentdo hacer un ajuste lneal. Sn embargo no es seguro que las dos varables no posean nnguna relacón en el caso r =0, ya que s ben el ajuste lneal puede no ser procedente, tal vez otro tpo de ajuste de tpo cuadrátco sí lo sea. De una muestra de ocho observacones conjuntas de valores de dos varables e Y, se obtene la sguente nformacón: x =24 x y =64 y =40 Calcular: S 2 Y =12 S 2 =6 1. La recta de regresón de Y sobre. Explcar el sgnfcado de los parámetros. 2. El coefcente de determnacón. Comentar el resultado e ndque el tanto por cento de la varacón de Y que no está explcada por el modelo lneal de regresón. 3. S el modelo es adecuado, cuál es la predccón ŷ para x =4? Solucón: 1. En prmer lugar calculamos las medas y las covaranza entre ambas varables: P x = x = 24 n 8 =3 P ȳ = y = 40 n 8 =5 P S Y = x y x ȳ = 64 n 8 3 5= 7 Con estas cantdades podemos determnar los parámetros a y b de la recta. La pendente de la msma es b, y mde la varacón de Y cuando aumenta en una undad: b = S Y = 7 S 2 6 = 1,167 Al ser esta cantdad negatva, tenemos que la pendente de la recta es negatva, es decr,ameddaque aumenta, la tendenca es a la dsmnucón de Y.Encuantoalvalor de la ordenada en el orgen, a, tenemos a =ȳ b x =5 10 µ 7 3=8,5 6

11 Así, la recta de regresón de Y como funcón de es Ŷ =8,5 1, El grado de bondad del ajuste lo obtenemos a partr del coefcente de determnacón: R 2 = r 2 = µ SY S S Y 2 = 7 =0,68 = 68 % 6 12 Es decr, el modelo de regresón lneal explca el 68 % de la varabldad de Y en funcón de la de. Por tanto, queda un 32 % de varabldad no explcada. 3. La predccón que realza el modelo lneal de regresón para x =4es: ŷ =8,5 1,167 x =8,5 1,167 4=3,83 que hay que consderar con certas reservas pues, como hemos vsto en el apartado anteror, hay una razonable cantdad de varabldad que no es explcada por el modelo. Ejemplo En un grupo de 8 pacentes se mden las cantdades antropométrcas peso y edad, obtenéndose los sguentes resultados: Resultado de las medcones edad Y peso Exste una relacón lneal mportante entre ambas varables? Calcular la recta de regresón de la edad en funcón del peso y la del peso en funcón de la edad. Calcular la bondad del ajuste En qué medda, por térmno medo, varía el peso cada año? En cuánto aumenta la edad por cada klo de peso? Solucón: Para saber s exste una relacón lneal entre ambas varables se calcula el coefcente de correlacón lneal, que vale: r = S Y S S Y = 15,20 2,32 6,96 =0,94 11

12 ya que x = 79 = x = 79 8 =9,88 y = 389 = ȳ = =48,63 x 2 = 823 = S 2 = ,882 =5,36 = S =2,32 y 2 = 19,30 = SY 2 = 19,30 48,63 2 =48,48 = S Y =6,96 8 P x y = 3,96 = S Y = x y x ȳ = 3,96 9,88 48,63 = 15,20 n 8 Por tanto el ajuste lneal es muy bueno. Se puede decr que el ángulo entre el vector formado por las desvacones del peso con respecto a su valor medo y el de la edad con respecto a su valor medo, θ, es r =cosθ = θ =arccos(r) 19 grados es decr, entre esos vectores hay un buen grado de paralelsmo (sólo unos 19 grados de desvacón). La recta de regresón del peso en funcón de la edad es es Ŷ = a 1 + b 1 =20,61 + 2,84 a 1 = ȳ b 1 x =20,61 b 1 = S Y =2,84 S 2 La recta de regresón de la edad como funcón del peso ˆ = a 2 + b 2 Y = 5,37 + 0,31 Y a 2 = x b 2 ȳ = 5,37 b 2 = S Y =0,31 SY 2 que, como se puede comprobar, no resulta de despejar en la recta de regresón de Y sobre. La bondad del ajuste es R 2 = r 2 =0,889, portantopodemosdecrqueel88,9%de la varabldad del peso en funcón de la edad es explcada medante la recta de regresón correspondente. Lo msmo podemos decr en cuanto a la varabldad de la edad en funcón 12

13 del peso. Del msmo modo, puede decrse que hay un , 94 = 11, 06 % de varanza que no es explcada por las rectas de regresón. Por tanto, la varanza resdual de la regresón del peso en funcón de la edad es SE 2 = 1 r 2 SY 2 =0,11 48,48 = 5,33 yladelaedadenfuncóndelpeso: SE 2 = 1 r 2 S 2 =0,11 5,36 = 0,59 Por últmo, la cantdad en que varía el peso de un pacente cada año es, según la recta de regresón del peso en funcón de la edad, la pendente de esta recta es b 1 =2,84 Kg/año. Cuando dos personas dferen en peso, en promedo la dferenca de edad entre ambassergeporlacantdadb 2 =0, 3136 años/kg de dferenca. 13

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

Efectos de la temporalidad sobre los beneficios de las empresas manufactureras españolas

Efectos de la temporalidad sobre los beneficios de las empresas manufactureras españolas Efectos de la temporaldad sobre los benefcos de las empresas manufactureras españolas César Rodríguez Gutérrez Unversdad de Ovedo Códgo JEL: J21, J41 Palabras clave: Empleo temporal, benefcos, productvdad

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA.

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. SEGUNDA PARTE. (TRABAJO PRESENTADO EN EL CONGRESO DE LA SOCIEDAD ARGENTINA DE ESTADISTICA)

Más detalles

Tutorial sobre Máquinas de Vectores Soporte (SVM)

Tutorial sobre Máquinas de Vectores Soporte (SVM) Tutoral sobre Máqunas de Vectores Soporte SVM) Enrque J. Carmona Suárez ecarmona@da.uned.es Versón ncal: 2013 Últma versón: 11 Julo 2014 Dpto. de Intelgenca Artcal, ETS de Ingenería Informátca, Unversdad

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES DEPARTAMENTO DE QUÍMICA FÍSICA FACULTAD DE CIENCIAS CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES JOSÉ ALEJO PÉREZ RASCO Trabajo para optar al título de Doctor en Cencas Químcas

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Capítulo 3. SISTEMAS DE PARTÍCULAS

Capítulo 3. SISTEMAS DE PARTÍCULAS Capítulo 3. SISTEMAS DE PARTÍCULAS 3.1. Introduccón En la mayoría de los sstemas partculados esten partículas de dstnto tamaño tal como se observa en la Fgura 3.1. Muchos de los métodos que mden tamaño

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

El análisis de desviaciones sobre el resultado previsto

El análisis de desviaciones sobre el resultado previsto Tema 6 El análss de desvacones sobre el resultado prevsto Trabajar con presupuestos supone, como fase fnal lógca, el comparar las cfras prevstas con las reales, y proceder a un «análss de desvacones».

Más detalles

TERMÓMETROS Y ESCALAS DE TEMPERATURA

TERMÓMETROS Y ESCALAS DE TEMPERATURA Ayudantía Académca de Físca B EMPERAURA El concepto de temperatura se basa en las deas cualtatvas de calente (temperatura alta) y río (temperatura baja) basados en el sentdo del tacto. Contacto térmco.-

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

Jordi Esteve Comas. Monográfico sobre inestabilidad financiera.

Jordi Esteve Comas. Monográfico sobre inestabilidad financiera. Jord Esteve Comas Cclos, tendencas y estaconaldad en la bolsa española Monográfco sobre nestabldad fnancera. Quaderns de Polítca Econòmca. Revsta electrònca. 2ª época. Vol. 10, Mayo -Agosto 2005 Edta:

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS ORESTALES USO DE CALC DE OPENOICE EN EL ANÁLISIS DE DISEÑOS EXPERIMENTALES TESIS PROESIONAL QUE COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE: LICENCIADO

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Estimación de la Demanda: Pronósticos

Estimación de la Demanda: Pronósticos UNIVERSIDAD SIMON BOLIVAR Estmacón de la Demanda: Pronóstcos PS-4161 Gestón de la Produccón I 1 Bblografía Recomendada Título: Dreccón de la Produccón: Decsones Estratégcas. Capítulo 4: Prevsón Autores:

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción A t f l E D T A C l f l N UMITAS ACUERDO DE ACREDITACIÓN IST 184 Programa de Magster en Cencas mencón Oceanografía Unversdad de Concepcón Con fecha 10 de octubre de 2012, se realza una sesón del Consejo

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Anál de ere temporale Fernando Berzal, berzal@acm.org Anál de ere temporale Caracterítca de la ere temporale Vualzacón de ere temporale Fltrado de ere temporale Meda móvle Suavzado exponencal Técnca de

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

2 Tiempo, causalidad y estado global

2 Tiempo, causalidad y estado global 2 Tempo, causaldad y estado global Contendo 2.2 Tempo físco 2.2.1 Sncronzacón externa 2.2.2 Sncronzacón nterna 2.2.3 Compensacón de desvacones 2.2.4 Ejemplos 2.3 Tempo lógco y orden de eventos 2.3.1 Modelo

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías:

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías: II.5. Regstro de mágenes médcas El regstro es la determnacón de una transformacón geométrca de los puntos en una vsta de un objeto con los puntos correspondentes en otra vsta del msmo objeto o en otro

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Reconocimiento de Imágenes Empleando Redes de Regresión General y la Técnica TVS

Reconocimiento de Imágenes Empleando Redes de Regresión General y la Técnica TVS Reconocmento de Imágenes Empleando Redes de Regresón General y la Técnca TVS Rcardo García-Herrera & Waltero Wolfgang Mayol-Cuevas Laboratoro de INvestgacón para el Desarrollo Académco Depto. Ingenería

Más detalles

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS CAPACIDAD DE LAS OJAS DE CÁLCULO EN EL ANÁLISIS Y OPIMIZACIÓN DE PROCESOS Y SISEMAS A. Rvas y. Gómez-Acebo Departamento de Ingenería Mecánca-Área de Ingenería érmca y de Fludos ECNUN - Escuela Superor

Más detalles