ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1"

Transcripción

1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los datos... 9 Tipos de problemas de Data Mining y enfoques para su resolución Problemas descriptivos Problemas predictivos Técnicas de Data Mining El éxito de un proyecto de Data Mining: consideraciones finales Capítulo 2. El entorno de Enterprise Miner La herramienta Enterprise Miner Preparación de los datos Abrir Enterprise Miner Navegador del Proyecto Conjunto de herramientas de análisis de SAS Enterprise Miner Zona de trabajo Barra de Herramientas Menú principal de aplicaciones File Edit View Options Actions Help Comenzar un proyecto nuevo Acerca de los datos y los nodos... 35

2 VIII DATA MINING. SOLUCIONES CON ENTERPRISE MINER RA-MA Capítulo 3. Selección de datos y muestras. Exploración El nodo de datos (Input Data Source Node) Conexión de nodos en un diagrama activo El nodo de muestreo (Sampling Node) El nodo partición de datos (Data Partition Node) Nodo explorador de distribuciones (Distribution Explorer Node) Nodo multigráficos (Multiplot node) Nodo de exploración de patrones (Insight Node) Nodo de asociaciones (Association Node) Nodo de selección de variables (Variable Selection Node) Nodo de análisis de relaciones (Link Analisis Exp. Node) Visor de resultados Capítulo 4. Exploración y análisis interactivo de datos. El nodo Insight El nodo de análisis interactivo (Insight) Introducción de datos Edición de datos Presentación de ventanas Trabajo con variables Búsqueda y selección de datos Análisis de datos Análisis univariante y bivariante Análisis de la distribución de una variable Ajustar Modelos (Fit Y X) Análisis Multivariante (Multivariate) Capítulo 5. Depuración y modificación de datos Nodo de asignación de atributos (Data Set Attributes Node) Nodo de transformación de variables (Transform Variables Node) Nodo de filtro de datos (Filter Outliers Node) Nodo de reemplazo (Replacement Node) Imputación de la información faltante Resultados Nodo para series temporales (Time Series Node, Exp.) Trabajo con el nodo de series temporales Visor de resultados

3 RA-MA ÍNDICE IX Capítulo 6. Análisis cluster Métodos descriptivos: Técnicas del análisis de interdependencia Análisis en componentes principales Análisis factorial Análisis de correspondencias Escalamiento multidimensional Análisis de conglomerados (análisis cluster) Nodo de Enterprise Miner para el análisis cluster (Clustering Node) Trabajando con el nodo de Análisis Cluster Visor de resultados Ejemplo de Clustering Capítulo 7. Modelos: regresión múltiple y logística Métodos explicativos: Técnicas del análisis de la dependencia Regresión múltiple Análisis canónico (correlación canónica) Análisis discriminante Modelos de elección discreta Modelo ANOVA (Análisis de la varianza simple) Modelo ANCOVA (Análisis de la covarianza simple) Modelo MANOVA (Análisis de la varianza múltipe) Modelo MANCOVA (Análisis de la covarianza múltiple) Regresión múltiple y modelos de elección discreta con variables ficticias Nodo de regresión de Enterprise Miner Especificación del modelo Resultados de la regresión Model Manager Ejemplo de regresión múltiple Resultados Ejemplo de regresión logística Capítulo 8. Árboles de decisión Extracción de reglas mediante árboles de decisión Conceptos previos Metodología de construcción de reglas del algoritmo del nodo Tree de Enterprise Miner CHAID C&RT (Classification and Regression Trees) C4.5 y C

4 X DATA MINING. SOLUCIONES CON ENTERPRISE MINER RA-MA Nodo de árboles de decisión (Tree Node) Opciones para los árboles de decisión Elementos de los árboles de decisión El visor de resultados del nodo de árboles de decisión Entrenamiento interactivo (Interactive Training) Ejemplo de árbol de decisión Capítulo 9. Redes Neuronales Introducción a las redes neuronales Las Redes Neuronales Biológicas Las Redes Neuronales Artificiales Un poco de historia Características generales de las RNAs Una clasificación de las RNAs El aprendizaje del MLP: el algoritmo Backpropagation Principales ventajas y desventajas de las RNAs Nodo de Redes Neuronales Artificiales (Neural Network Node) Trabajo con el nodo de redes neuronales Ejecución del nodo de redes neuronales Visor de resultados Ejemplo de red nueronal Capítulo 10. Redes neuronales y componentes principales. Modelos de usuario Nodo de análisis de componentes principales para uso individual o en redes neuronales (PRINCOMP/DMNEURAL Node) Funciones de activación Trabajo con el nodo PRINCOMP/DMNEURAL Ejecución del nodo PRINCOMP/DMNEURAL Resultados del nodo PRINCOMP/DMNEURAL Nodo de modelo creado por el usuario (User Defined Node) Trabajo con el nodo Data Set Attributes Visor de resultados Nodo de combinación de modelos (Ensemble Node) Trabajando con el nodo de combinación de modelos Visor de resultados Nodo de razonamiento basado en la memoria (Memory-Based Reasoning, Exp.) Trabajando con el nodo de razonamiento basado en la memoria Visor de resultados Nodo de modelo en dos etapas (Two Stage Model Node) Trabajando con el nodo de modelo en dos etapas Visor de resultados

5 RA-MA ÍNDICE XI Nodo para mapas autoorganizados (SOM/KOHONEN NODE) Kohonen VQ Self Organizing Maps Trabajo con el nodo de SOM/KOHONEN Visor de resultados Ejemplo de PRINCOMP/DMNEURAL Ejemplo de redes autoorganizadas SOM/KOHONEN Capítulo 11. Valoración y comparación de modelos Nodo de valoración (Assessment) Trabajo con el nodo de valoración Gráficos del nodo Assessment LIFT (Gráfico de ganancias) DIAGNOSTIC (Gráfico de clasificación) THRESHOLD-BASED (Gráfico de clasificación basado en el umbral) Curvas ROC Scatter Plot (Gráfico de dispersión) Nodo de informes (Reporter Node) Opciones por defecto del nodo Reporter Localización de los fichero de informes Ejemplo de combinación de modelos Capítulo 12. Predicción y utilidades Nodo de predicción de nuevos datos (Score) Trabajo con el nodo de predicción Nodo de predicción en lenguaje C (C*Score) Principales limitaciones del nodo C*Score Trabajo con el nodo C*Store Visor de resultados Nodo de utilidades (Utility) y nodo de tratamiento de grupos (Group Processing) Trabajo con el nodo de tratamiento de grupos Visor de resultados en model manager Nodo de base de datos para Data Mining (Data Mining Database Node) Trabajo con el nodo de base de datos para Data Mining Visor de resultados Nodo de código de programación SAS (SAS Code Node) Trabajando con el nodo de código de programación SAS Nodo de punto de control (Control Point Node) Nodo de subdiagrama (Subdiagram Node)

6 XII DATA MINING. SOLUCIONES CON ENTERPRISE MINER RA-MA Capítulo 13. Data Mining y reducción de la dimensión con variables cuantitativas: Componentes Principales Data Mining y técnicas emergentes de análisis de datos Introducción a las técnicas de reducción de la dimensión Análisis en componentes principales Cálculo de las componentes principales Puntuaciones o medición de las componentes Número de componentes principales a retener Criterio de la media aritmética Criterio del gráfico de sedimentación Matriz de cargas factoriales, comunalidad y círculos de correlación Rotación de las componentes Técnicas de Data Mining con SAS STAT Componentes principales en SAS. Procedimiento PRINCOMP y Procedimiento FACTOR Ejemplo de componentes principales Capítulo 14. Data Mining y reducción de la dimensión con variables cuantitativas: Análisis Factorial Análisis factorial Contrastes en el modelo factorial Rotación de los factores Rotaciones ortogonales Rotaciones oblicuas Interpretación gráfica de los factores Puntuaciones o medición de los factores Análisis factorial con SAS. Procedimiento FACTOR Ejemplo de análisis factorial Capítulo 15. Data Mining y reducción de la dimensión con variables cualitativas: Correspondencias Análisis de correspondencias Análisis de correspondencias simples ACS Análisis de correspondencias múltiples ACM Análisis de correspondencias en SAS. Procedimiento CORRESP Ejemplo de análisis de correspondencias simple Ejemplo de análisis de correspondencias múltiple

7 RA-MA ÍNDICE XIII Capítulo 16. Técnicas de Data Mining para clasificación ad hoc: Análisis discriminante El análisis discriminante como técnica de Data Mining Hipótesis en el modelo discriminante Estimación del modelo discriminante Contrastes de significación en el modelo discriminante Selección de variables discriminantes Interpretación de la función discriminante Clasificación de los individuos Análisis discriminante canónico SAS y el análisis discriminante: Procedimiento DISCRIM Ejemplo de análisis discriminante SAS y el análisis discriminante canónico: Procedimiento CANDISC Ejemplo de análisis discriminante canónico SAS y el análisis discriminante paso a paso: Procedimiento STEPDISC y ejemplo práctico Capítulo 17. Técnicas de Data Mining de clasificación post hoc: Análisis cluster El análisis cluster como técnica de Data Mining El planteamiento del análisis cluster El concepto de distancia Distancia ultramétrica y algoritmos de clasificación Medidas de similitud Técnicas en el análisis cluster... Clusters jerárquicos, secuenciales, aglomerativos y exclusivos (S.A.H.N.) El dendograma en el análisis cluster Análisis cluster no jerárquico Análisis cluster jerárquico con SAS. Procedimientios CLUSTER, ACECLUS y TREE Ejemplo de análisis cluster jerárquico Análisis cluster no jerárquico. Procedimiento FASTCLUS Ejemplo de análisis cluster no jerárquico Análisis cluster jerárquico y no jerárquico. Procedimiento VARCLUS Ejemplo de análisis cluster general Índice alfabético

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas...

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... , INDICE Introducción, ; XVII Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... Aproximación al concepto de minería de datos... El proceso de extracción del conocimiento... Técnicas de minería

Más detalles

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Introducción... XI Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Finalidad de los sistemas de información y origen del Business Intelligence... 1 Herramientas para la toma

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

DYANE Versión 4 Diseño y Análisis de Encuestas

DYANE Versión 4 Diseño y Análisis de Encuestas DYANE Versión 4 Diseño y Análisis de Encuestas Miguel Santesmases Mestre 1. DESCRIPCIÓN GENERAL DEL PROGRAMA DYANE 1. FINALIDAD Y MÉTODO DEL PROGRAMA DYANE (Diseño y Análisis de Encuestas) es un programa

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

320514 - APTM - Análisis de Procesos Textiles y de Mercados

320514 - APTM - Análisis de Procesos Textiles y de Mercados Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 320 - EET - Escuela de Ingeniería de Terrassa 714 - ETP - Departamento de Ingeniería Textil y Papelera MÁSTER UNIVERSITARIO

Más detalles

DYANE Versión 4 Diseño y Análisis de Encuestas

DYANE Versión 4 Diseño y Análisis de Encuestas DYANE Versión 4 Diseño y Análisis de Encuestas Miguel Santesmases Mestre ÍNDICE Prólogo 1. Finalidad de la obra 2. Novedades de la cuarta versión del programa. 2.1. Diseño de cuestionarios electrónicos.

Más detalles

Introducción al DataMining

Introducción al DataMining Introducción al DataMining Lluís Garrido garrido@ecm.ub.es Universitat de Barcelona Índice Qué es el DataMining? Qué puede hacer el DataMining? Cómo hacer el DataMining? Técnicas Metodología del DataMining

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE

APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE TRAINING 2007 APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE Fundamentos en el Uso y Aplicaciones con SPSS Introducción a la Sintaxis Estadísticas

Más detalles

ANÁLISIS DE ENCUESTAS

ANÁLISIS DE ENCUESTAS ANÁLISIS DE ENCUESTAS TÉCNICAS MULTIVARIANTES 1. Introducción 2. Clasificación de las técnicas 3. Etapas de análisis 4. Supuestos básicos 5. Valores perdidos y anómalos introducción Definición. i ió -

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

Anexo No. 02 FICHA TECNICA FONDO FINANCIERO DE PROYECTOS DE DESARROLLO FONADE

Anexo No. 02 FICHA TECNICA FONDO FINANCIERO DE PROYECTOS DE DESARROLLO FONADE Anexo No. 02 FICHA TECNICA FONDO FINANCIERO DE PROYECTOS DE DESARROLLO FONADE Unidad Administrativa Especial de Gestión Pensional y Contribuciones Parafiscales de la Protección Social UGPP Objeto: ADQUISICIÓN

Más detalles

INVESTIGACION COMERCIAL

INVESTIGACION COMERCIAL ASIGNATURA: INVESTIGACION COMERCIAL Curso 2014/2015 (Código:01425020) 1.OBJETIVOS En la medida en que el Marketing es un cuerpo científico de conocimientos aplica el método científico al proceso de investigación

Más detalles

Lo que no se mide, lo que de alguna manera no se capta, NO EXISTE. Teodoro Luque Martinez

Lo que no se mide, lo que de alguna manera no se capta, NO EXISTE. Teodoro Luque Martinez Técnicas Estadísticas en Análisis de Mercados Lo que no se mide, lo que de alguna manera no se capta, NO EXISTE. Teodoro Luque Martinez Xavier Barber: xbarber@goumh.es (en asunto SIEMPRE 3º Grado Estadística

Más detalles

MARKETING AGRARIO SEGMENTACION DE MERCADO

MARKETING AGRARIO SEGMENTACION DE MERCADO MARKETING AGRARIO SEGMENTACION DE MERCADO CONCEPTO DE SEGMENTACIÓN El concepto de mercado admite varias acepciones. En la teoría económica actual se entiende el mercado fundamentalmente como un conjunto

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos KNime - Introducción KNime Significa KoNstanz Information MinEr. Se pronuncia [naim]. Fue desarrollado en la Universidad de Konstanz (Alemania). Esta escrito en Java y su entorno grafico esta desarrollado

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación experimental en psicología [Design of experimental research in psychology] (2nd ed.). Valencia, Spain: Cristóbal

Más detalles

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos Anteproyecto de Tesis de Magíster en Ingeniería del Software Tesista: Lic. Matilde

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

TFG Educational Data Mining & Learning Analytics

TFG Educational Data Mining & Learning Analytics TFG Educational Data Mining & Learning Analytics Estudio de las Matriculaciones de A.D.E. en la UOC Autor: Antonio Blanco Carpintero Tutor: Ramón Caihuelas Quiles Introducción Educational Data Mining Soporte

Más detalles

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS Por qué es importante la Minería de Datos? 2 La Minería de Datos es un proceso que permite obtener conocimiento a partir de los datos

Más detalles

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Máster en ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Temario MÓDULO 0: HOMOGENEIZACIÓN Homogeneización en bases matemáticas 3,0 Cr. ECTS Espacios de Medida Algebra. Matrices y Determinantes

Más detalles

CURSOS IBM SPSS STATISTICS. Representante exclusivo para la Región Andina

CURSOS IBM SPSS STATISTICS. Representante exclusivo para la Región Andina CURSOS IBM SPSS STATISTICS Representante exclusivo para la Región Andina Contenido Taller de Aplicación de la Simulación de Monte Carlo 3 Manejo Operativo 4 Tablas 4 Análisis de Calidad de Datos 5 Manejo

Más detalles

Tabla de contenidos. Tabla de contenidos. Índice de tablas. Índice de figuras. Resumen. Abstract. Agradecimientos

Tabla de contenidos. Tabla de contenidos. Índice de tablas. Índice de figuras. Resumen. Abstract. Agradecimientos Tabla de contenidos Tabla de contenidos Índice de tablas Índice de figuras Resumen Abstract Agradecimientos VII XI XII XV XVII XIX 1. Introducción 1 1.1. Planteamiento del problema... 1 1.2. Objetivos

Más detalles

STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico. Mejoras de la versión 17.1

STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico. Mejoras de la versión 17.1 STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico STATGRAPHICS ofrece más de 230 procedimientos de Análisis Exploratorio de Datos, Estadística Descriptiva e Inferencial, Modelos

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS UNIVERSIDAD DE LOS ANDES FACULTAD DE ODONTOLOGIA MERIDA EDO. MERIDA PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS Mérida, Febrero 2010. Integrantes: Maria A. Lanzellotti L. Daniela Paz U. Mariana

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

IBM SPSS Decision Trees

IBM SPSS Decision Trees IBM Software IBM SPSS Statistics 19 IBM SPSS Decision Trees Identifique grupos y pronostique resultados con facilidad Funciones destacadas Con IBM SPSS Decision Trees podrá: Crear árboles de clasificación

Más detalles

Detección de Patrones de Daños y Averías en la Industria Automotriz

Detección de Patrones de Daños y Averías en la Industria Automotriz Universidad Tecnológica Nacional Facultad Regional Buenos Aires Tesis de Magister en Ingeniería en Sistemas de Información Detección de Patrones de Daños y Averías en la Industria Automotriz Directora:

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

ANÁLISIS MULTIVARIANTE. Créditos. Teóricos: 6 Prácticos: 3 Total: 9. Profesoras: Agurtzane Amparan, Silvia Marcaida y Arantza Urkaregi

ANÁLISIS MULTIVARIANTE. Créditos. Teóricos: 6 Prácticos: 3 Total: 9. Profesoras: Agurtzane Amparan, Silvia Marcaida y Arantza Urkaregi Presentación ANÁLISIS MULTIVARIANTE MATEMÁTICAS SEGUNDO CICLO OPTATIVA SEGUNDO CUATRIMESTRE Créditos. Teóricos: 6 Prácticos: 3 Total: 9 Profesoras: Agurtzane Amparan, Silvia Marcaida y Arantza Urkaregi

Más detalles

Temario: Curso de Stata Capacitación

Temario: Curso de Stata Capacitación Objetivo del curso: Nuestro curso de Stata tiene como objetivo el contar con los conocimientos suficientes para: manipular una base de datos para obtener estadísticos descriptivos. Fusionar, colapsar y

Más detalles

Introducción Qué es Minería de Datos?

Introducción Qué es Minería de Datos? Conceptos Básicos Introducción Qué es Minería de Datos? Extracción de información o de patrones (no trivial, implícita, previamente desconocida y potencialmente útil) de grandes bases de datos. Introducción

Más detalles

Minitab Training. Blackberry&Cross es aliado oficial de Minitab Inc., en Centroamérica, así como aliado y comercializador de BBCross Learning Center.

Minitab Training. Blackberry&Cross es aliado oficial de Minitab Inc., en Centroamérica, así como aliado y comercializador de BBCross Learning Center. Minitab Training Minitab Statiscal Software, Quality Companion, sus logotipos, marcas y demás símbolos distintivos son propiedad de Minitab Inc. Blackberry&Cross, su logotipo, y demás símbolos distintivos

Más detalles

AYUDA SOBRE CONSULTAS (QUERY)

AYUDA SOBRE CONSULTAS (QUERY) AYUDA SOBRE CONSULTAS (QUERY) Los portales de datos de la biblioteca electrónica del FMI cuentan con una poderosa herramienta de búsqueda y visualización. Con la herramienta Query (consulta), los usuarios

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS.

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS. Universitat de Barcelona. Institut de Ciències de l Educació Cómo aplicar un cluster jerárquico en SPSS Ruth Vilà-Baños, María-José Rubio-Hurtado, Vanesa Berlanga-Silvente, Mercedes Torrado-

Más detalles

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Materia: Estadística Aplicada a la Investigación Profesora: Dra. Hebe Goldenhersh Octubre del 2002 1 Determinación de

Más detalles

Habilidades y Herramientas para trabajar con datos

Habilidades y Herramientas para trabajar con datos Habilidades y Herramientas para trabajar con datos Marcelo Ferreyra X Jornadas de Data Mining & Business Intelligence Universidad Austral - Agenda 2 Tipos de Datos Herramientas conceptuales Herramientas

Más detalles

CURSO ESTADÍSTICA APLICADA CON R

CURSO ESTADÍSTICA APLICADA CON R CURSO ESTADÍSTICA APLICADA CON R Organizado por: Instituto IMDEA Alimentación Facultad de Ciencias de la Universidad Autónoma de Madrid MADRID, de Septiembre a Diciembre de 2015 Estadística Aplicada con

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Área de Comercialización e Investigación de Mercados. Área de Organización de Empresas. Universidad de Extremadura.

Área de Comercialización e Investigación de Mercados. Área de Organización de Empresas. Universidad de Extremadura. Área de Comercialización e Investigación de Mercados. Área de Organización de Empresas. Universidad de Extremadura. GUÍA PARA REALIZAR UNA INVESTIGACIÓN DE MERCADOS INTRODUCCIÓN Esta guía pretende ofrecer

Más detalles

Análisis de los determinantes del riesgo de crédito. Aplicación de técnicas emergentes en el marco de los acuerdos de Basilea II y Solvencia II

Análisis de los determinantes del riesgo de crédito. Aplicación de técnicas emergentes en el marco de los acuerdos de Basilea II y Solvencia II REVISTA ESPAÑOLA DE FINANCIACIÓN Y CONTABILIDAD Vol. XXXVI, n.º 135 julio-septiembre 2007 pp. 649-653 649 Análisis de los determinantes del riesgo de crédito. Aplicación de técnicas emergentes en el marco

Más detalles

En el presente documento se realizará una introducción al programa con el objetivo de facilitar su rápida utilización por un usuario sin

En el presente documento se realizará una introducción al programa con el objetivo de facilitar su rápida utilización por un usuario sin IINTRODUCCIIÓN all SPSS,, MANEJO Y PROCESAMIIENTO BÁSIICO DE DATOS BÁSIICO EN SPSS En el presente documento se realizará una introducción al programa con el objetivo de facilitar su rápida utilización

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Finanzas e Investigación de Mercados"

Finanzas e Investigación de Mercados DIPLOMATURA: "Análisis de Datos para Negocios, Finanzas e Investigación de Mercados" Seminario: Introducción a Data Mining y Estadística Dictado: Sábado 13, 20,27 de Abril, 04 de Mayo en el horario de

Más detalles

25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS

25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS 25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS A. MÉTODOS Y DISEÑOS DE INVESTIGACIÓN EN PSICOLOGÍA 1. Psicología, Ciencia

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE INGENIERÍA TÉCNICAS ESTADÍSTICAS DE CLASIFICACIÓN, UN EJEMPLO DE ANÁLISIS CLUSTER M O N O G R A F

Más detalles

Statistical Software. Aprenda más al respecto

Statistical Software. Aprenda más al respecto Statistical Software Actualice ahora para obtener acceso a más de 70 nuevas características y mejoras que incluyen herramientas estadísticas más poderosas, un nuevo Asistente que le guiará paso a paso

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL

UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL SEGMENTACiÓNDE LOS CONTRIBUYENTESQUE DECLARANIVA. UTILIZANDOTÉCNICASDE DATAMINING MEMORIA PARA OPTAR AL

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Facultad de Ciencias

Facultad de Ciencias Facultad de Ciencias Trabajo Fin de Grado Grado en Estadística Métodos de predicción de fuga con grandes volúmenes de datos Autor: D. Raquel García Fernández Tutor/es: D. Eusebio Arenal Gutiérrez Página

Más detalles

TEMARIO DEL CURSO DE EXCEL EN SUS NIVELES BÁSICO, INTERMEDIO Y AVANZADO

TEMARIO DEL CURSO DE EXCEL EN SUS NIVELES BÁSICO, INTERMEDIO Y AVANZADO TEMARIO DEL CURSO DE EXCEL EN SUS NIVELES BÁSICO, INTERMEDIO Y AVANZADO Excel 2013 es la nueva versión de la hoja de cálculo del paquete integrado Microsoft Office 2013, presente en la mayoría de las distribuciones

Más detalles

RESUMEN DE PROCEDIMIENTOS EN SPSS. Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida

RESUMEN DE PROCEDIMIENTOS EN SPSS. Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida RESUMEN DE PROCEDIMIENTOS EN SPSS Operaciones con variables y/o datos Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida Recodificación de variables

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN Eduardo CRIVISQUI ADVERTENCIA SÓLO EL CONOCIMIENTO DE LAS PROPIEDADES LÓGICAS DE LOS MÉTODOS ESTADÍSTICOS PERMITE EVITAR EL EMPLEO «A CIEGAS» DE LOS MISMOS.

Más detalles

GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV

GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV 1. NORMAS DE TRABAJO DURANTE LAS PRÁCTICAS. La asistencia a las

Más detalles

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA PF-3808 Minería de Datos II Semestre del 2009 Profesor: Dr. Francisco J. Mata (correo: fmatach@racsa.co.cr;

Más detalles

PLAN DE CAPACITACIÓN 2012

PLAN DE CAPACITACIÓN 2012 PLAN DE CAPACITACIÓN 2012 Escuela Nacional de Estadística e Informática Centro Nacional de Formación y Capacitación en Estadística Lima, abril 2012 Escuela Nacional de Estadística e Informática Preparado

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II.

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II. PROGRAMA DE ESTUDIOS A. ANTECEDENTES GENERALES Nombre de la asignatura Carácter de la asignatura Pre requisitos Co requisitos Créditos Ubicación dentro del plan de estudio Número de clases por semana Número

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

OFIMÁTICA TEMARIO WORD EXCEL ACCES POWER POINT MICROSOFT WORD

OFIMÁTICA TEMARIO WORD EXCEL ACCES POWER POINT MICROSOFT WORD OFIMÁTICA TEMARIO WORD EXCEL ACCES POWER POINT I. INTRODUCCIÓN A WORD II. MICROSOFT WORD Qué es un procesador de textos y para qué sirve?. Ventajas y desventajas del procesador de textos Word. INSTALAR

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source Inteligencia Artificial y Seguridad Informática en plataformas Open Source Jornadas de Software Libre y Seguridad Informática Santa Rosa La Pampa 4 y 5 de Diciembre de 2009 AGENDA Primera Parte Definiciones

Más detalles

Aplicación de análisis de conglomerados* y redes neuronales artificiales para la clasificación y selección de candidatos a residencias médicas

Aplicación de análisis de conglomerados* y redes neuronales artificiales para la clasificación y selección de candidatos a residencias médicas original Aplicación de análisis de conglomerados* y redes neuronales artificiales para la clasificación y selección de candidatos a residencias médicas Cluster analysis* and artificial neural networks

Más detalles

HERRAMIENTA DE INTEGRACION DE ALGORITMOS DE INDUCCION Y MAPA AUTO-ORGANIZADOS Anteproyecto de Tesis de Magíster en Ingeniería del Software

HERRAMIENTA DE INTEGRACION DE ALGORITMOS DE INDUCCION Y MAPA AUTO-ORGANIZADOS Anteproyecto de Tesis de Magíster en Ingeniería del Software HERRAMIENTA DE INTEGRACION DE ALGORITMOS DE INDUCCION Y MAPA AUTO-ORGANIZADOS Anteproyecto de Tesis de Magíster en Ingeniería del Software Tesista: Ing. Esteban Sal Directores: Prof. Ramòn Garcia-Martinez,

Más detalles

Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños, Cómo aplicar árboles de decisión en SPSS

Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños, Cómo aplicar árboles de decisión en SPSS Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar árboles de decisión en SPSS. Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños Fecha de presentación:

Más detalles

Sistema Inteligente de Exploración

Sistema Inteligente de Exploración Observatorio Municipal de Estadística Sistema Inteligente de Exploración Capítulos 1. Consideraciones iniciales y requerimientos... 2 2. Navegación... 3 3. Consulta de indicadores... 5 3.1. Elaboración

Más detalles

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Verónica Escobar González, Claudio Barrientos Ochoa, Sergio Barrientos Ochoa, Dirección de Modelamiento Geometalúrgico

Más detalles

Máster en Economía y Organización de empresas

Máster en Economía y Organización de empresas Máster en Economía y Organización de empresas Módulo III: Competencias para la preparación de trabajo fin de Máster Dr. Eulogio Cordón Pozo ÍNDICE DE CONTENIDOS! 1. Paquetes estadísticos disponibles 2.

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN

PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN DISEÑADO PARA Ingenieros de Producción, completación, yacimientos y perforación; geólogos

Más detalles

30 oct. SAP Fraud Management. El Camino a la transparencia. La necesidad Gestionar en tiempo real. El medio Una plataforma in-memory

30 oct. SAP Fraud Management. El Camino a la transparencia. La necesidad Gestionar en tiempo real. El medio Una plataforma in-memory SAP Fraud Management 30 oct 2014 El Camino a la transparencia SAP Fraud Management La necesidad Gestionar en tiempo real El medio Una plataforma in-memory La necesidad Gestionar en tiempo real 3 La necesidad:

Más detalles

MÉTODOS ESTADÍSTICOS APLICADOS A SARLAFT. Nicolás Corredor Matiz Bogotá, 7 de febrero de 2008

MÉTODOS ESTADÍSTICOS APLICADOS A SARLAFT. Nicolás Corredor Matiz Bogotá, 7 de febrero de 2008 MÉTODOS ESTADÍSTICOS APLICADOS A SARLAFT Nicolás Corredor Matiz Bogotá, 7 de febrero de 2008 CONTENIDO 1 KNIGHT FINANCIAL 2 INTRODUCCIÓN 3 GENERACIÓN DE DE ALERTAS II II II III III VISUALIZACIÓN ÁRBOLES

Más detalles

Kaizen Sigma Consulting. MINITAB Release 14 Software Estadístico CONTENIDO: PRESENTACION DE LOS PARTICIPANTES. Objetivo:

Kaizen Sigma Consulting. MINITAB Release 14 Software Estadístico CONTENIDO: PRESENTACION DE LOS PARTICIPANTES. Objetivo: MINITAB Release 14 Software Estadístico Objetivo: Optimizar el análisis de datos que caracterizan a un proceso, producto o servicio a través de las diferentes aplicaciones gráficas y estadísticas que presenta

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la

Más detalles

Trabajo Practico N 12

Trabajo Practico N 12 Trabajo Practico N 12 Minería de Datos CATEDRA: Actualidad Informática Ingeniería del Software III Titular: Mgter. Horacio Kuna JTP: Lic. Sergio Caballero Auxiliar: Yachesen Facundo CARRERAS: Analista

Más detalles

Temario: Análisis Econométrico con EViews Capacitación

Temario: Análisis Econométrico con EViews Capacitación Objetivo del curso: El objetivo del curso es instruir al participante en el uso de EViews para el análisis de su información y la aplicación de la metodología econométrica idónea para sus datos: Creación

Más detalles

Análisis de Homogeneidad en ViSta The Visual Statistics System *

Análisis de Homogeneidad en ViSta The Visual Statistics System * Análisis de Homogeneidad en ViSta The Visual Statistics System * 1. Introducción Rubén D. Ledesma Pedro M. Valero Mora Forrest W. Young Este documento describe el funcionamiento de un módulo de Análisis

Más detalles