CO5411. Prof. Bernardo Feijoo. 13 de febrero de Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CO5411. Prof. Bernardo Feijoo. 13 de febrero de Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar"

Transcripción

1 Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar 13 de febrero de 2008

2 Contenido 1

3 Contenido 1

4 Existe un vector x 0 que cumple Bx = a a T u 0 para todos los u que satisfacen B T u 0.

5 Contenido 1

6 El problema Esta estrategia se aplica a problemas de la forma: max s.a. c T x + f (y) Ax + F (y) b x 0, y S (1) donde A es m n, c y x tienen tamaño n, y tiene tamaño p, f es una función real de y, F tiene tamaño m y sus componentes son funciones reales de y, b tiene tamaño m, y S es un subconjunto compacto arbitrario de R p. Suponemos además que f y F son continuas en S. Este formato incluye Programación Entera.

7 La idea Como (1) es lineal en x, para valores jos de y, es natural intentar resolverlo jando un valor de y, obteniendo un LP, resolverlo, luego un mejor y, etc. Es importante mencionar que no todo y puede servir. Es necesario que el y elegido haga el LP resultante factible. Esto es, y debe vivir en el conjunto: R = {y existe x 0 tal que Ax b F (y), y S} A los vectores y en R los llamaremos factibles.

8 La idea Nos interesa tratar de caracterizar R mejor. Para un y jo, consideremos el sistema lineal Ax + s = b F (y) x 0, s 0 que proviene de añadir holguras s al sistema que dene R.

9 La idea Podemos aplicar el y obtenemos que y es factible si y sólo si y S y (b F (y)) T u 0 para todos los u que satisfacen A T u 0, u 0 o dicho de otra manera: y S y (b F (y)) T u 0 para todos los u que satisfacen A T u 0, u 0

10 La idea Si R es vacío entonces el problema original (1) es no factible. Suponiendo que sea no vacío, reescribimos (1) como { { }} max f (y) + max c T x Ax b F (y), x 0 y R (2)

11 La idea Para y jo, la maximización interna es un programa lineal: max s.a. c T x Ax b F (y) x 0 (Primal) cuyo dual es min s.a. (b F (y)) T u A T u c u 0 (Dual) Si y R, el primal es factible y, en consecuencia, los valores óptimos de estos problemas son los mismos (esto se extiende al caso cuando el dual es no factible, primal no acotado, valiendo + ambos problemas).

12 La idea Substituyendo entonces un problema por otro en (2), obtenemos: { { }} max f (y) + min (b F (y)) T u A T u c, u 0 y R Consideremos ahora la región factible del dual, el poliedro: P = { } u A T u c, u 0 (3) Esta región es independiente de y.

13 La idea Si P es vacío, el primal es no acotado lo mismo que el problema original (1). Si P no es vacío, el mínimo en (3) se obtiene en una de las SBF de P o el valor va a sobre uno de las DBFs de P (que son las mismas de C ). Pero este último caso implicaría que el primal no es factible y no consideramos este caso.

14 La idea sólo necesitamos considerar las SBF de P, llamémoslas v r, r = 1,..., M, y (3) se puede reescribir como: { f (y) + min (b F 1 r M (y))t v r max y R } (4) que se puede escribir como max s.a. z z f (y) + (b F (y)) T v r, r = 1,..., M y R

15 La idea como el cono C = { } u A T u 0, u 0 es poliédrico se puede generar con un número nito de direcciones extremas. De manera que u C tiene una representación: N u = q s w s, con los q s 0. s=1

16 La idea sustituyendo, obtenemos N q s (b F (y)) T w s 0 s=1 que es cierto para todo q s 0, si y sólo si (b F (y)) T w s 0, s = 1,..., N

17 La idea Entonces un vector y S será factible si y sólo si satisface este conjunto nito de restricciones. Entonces podemos reescribir el conjunto R como R = { y (b F (y)) T w s 0, } s = 1,..., N, y S

18 La idea Usando la denición de R queda nalmente: max z s.a. z f (y) + (b F (y)) T v r, r = 1,..., M 0 (b F (y)) T w s, s = 1,..., N y S (5) A la región factible de (5) la llamamos G.

19 El teorema Todo este desarrollo se puede resumir en un teorema: Teorema: (Los problemas (1) y (5) son equivalentes) 1 (1) tiene una solución factible (5) tiene una solución factible. 2 (1) es factible sin tener solución óptima (5) es factible sin tener solución óptima. 3 Si (z, y ) es solución óptima de (5) y x es solución óptima de (Primal), entonces (x, y ) es solución óptima de (1) y z = c T x + f (y ). 4 Si (x, y ) es solución óptima de (1) y z = c T x + f (y ), entonces (z, y ) es solución óptima de (5).

20 Entonces para resolver (1) basta resolver (5) y luego resolver (Primal) para obtener los valores óptimos de x. El problema es que (5) puede tener muchísimas restricciones y que habría que generar los v r y los w s para conocerlas explícitamente, lo cual puede resultar complicado. Sin embargo sabemos que en una solución óptima sólo una pequeña cantidad de las restricciones son activas (satisfechas como igualdad).

21 Esto motiva la estrategia de relajación- restricción siguiente: 1 Resolver una relajación de (5) con pocas restricciones. 2 Vericar, de manera relativamente sencilla, si el resto de las restricciones son satisfechas por la solución obtenida en el paso (1.). 1 Si lo son, parar, la solución actual es óptima para (5). 2 Si no, añadir una de estas restricciones que son violadas. 3 Generar una nueva relajación (más estricta) e ir a (1.). La vericación del paso (2.) se hace resolviendo (Dual) (o (Primal)).

22 Para desarrollar la metodología necesitamos el siguiente lema: Lema: Si (5) es factible, entonces z no tiene una cota superior nita en G el poliedro P es vacío.

23 [ =] Si P es vacío carece de SBFs o DBFs, por lo tanto las restricciones que denen G se reducen a una sola: y S y entonces ( si z 0, y 0) ( ) G se tiene que z, y 0 G para cualquier valor de z, en otras palabras no tiene cota superior nita.

24 [= ] Por reducción al absurdo, si P no es vacío entonces tiene al menos una SBF, ˆv, de manera que las restricciones de (5) incluyen: z f (y) + (b F (y)) T ˆv de tal manera que si tenemos un (z, y) G, el valor de z debe satisfacer: { } z max f (y) + (b F (y)) T ˆv y S pero S es compacto y F y f son continuas allí, por lo tanto el lado derecho es nito y hemos encontrado nuestra cota superior.

CO5411. Dantzig-Wolfe / Descomposición de Benders. Prof. Bernardo Feijoo. 06 de febrero de 2008

CO5411. Dantzig-Wolfe / Descomposición de Benders. Prof. Bernardo Feijoo. 06 de febrero de 2008 Dantzig-Wolfe / Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar 06 de febrero de 2008 Contenido 1 Dantzig-Wolfe 2 Contenido Dantzig-Wolfe 1 Dantzig-Wolfe 2 Ahora la nueva base produce

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0 CO-34 (S8) 25/3/28 8 Formalizaremos lo visto en la clase anterior. Considere un problema en forma estándar max s.a. c T x Ax b x un diccionario general para dicho problema x r = b r + a rs x s, s NB z

Más detalles

Se desea resolver el problema. P : mín f(x) (5.1)

Se desea resolver el problema. P : mín f(x) (5.1) Capítulo 5 Teoría Lagrangiana 5.1. Condiciones para problemas con restricciones de igualdad. Se desea resolver el problema P : mín f(x) (5.1) s.a : h i (x) = 0 i = 1, 2..., m donde f : IR n IR y h i :

Más detalles

Auxiliar 7: Dualidad

Auxiliar 7: Dualidad IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Tema 18. Programación lineal Formulación primal de un programa lineal

Tema 18. Programación lineal Formulación primal de un programa lineal Tema 18 Programación lineal 18.1. Formulación primal de un programa lineal Dentro de la programación matemática hablamos de programación lineal (PL) si tanto la función objetivo como las restricciones

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Problemas resueltos C3 IN

Problemas resueltos C3 IN Problemas resueltos C3 IN77 28 Profesores: Cristián Cortés, Daniel Espinoza Auxiliares: Gustavo Angulo, Diego Morán y José Mu~noz P Sea S = {s,..., s n } subconjunto de R n y considere y R n \ conv(s).

Más detalles

La factorización eta CO-3411 (S08) 09/03/

La factorización eta CO-3411 (S08) 09/03/ CO-3411 (S08) 09/03/008 74 La factorización eta Esta factorización es una forma de llevar la matriz A B en cada iteración que evita tener que resolver los sistemas lineales involucrados desde cero, pudiendo

Más detalles

Conjunto Factible. Restricciones en el modelo. Restricciones en el modelo PROGRAMACION LINEAL PARTE 2 MÉTODO GRAFICO ADM- METODO GRAFICO

Conjunto Factible. Restricciones en el modelo. Restricciones en el modelo PROGRAMACION LINEAL PARTE 2 MÉTODO GRAFICO ADM- METODO GRAFICO Gráfica de Restricciones PROGRAMACION LINEAL PARTE MÉTODO GRAFICO En esencia una restricción es una limitación al modelo de programación lineal. Una restricción viene dada por una desigualdad. El gráfico

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Matemáticas.

Matemáticas. euresti@itesm.mx El método gráfico de solución de problemas de programación lineal (PL) sólo aplica a problemas con dos variables de decisión; sin embargo, ilustra adecuadamente los conceptos que nos permitirán

Más detalles

Control 2 IN mayo 2009

Control 2 IN mayo 2009 Profs: Auxs: Daniel Espinoza Gonzalo Romero Víctor Bucarey Nelson Devia Jocelyn González Daniel Lillo Fernando Solari Control 2 IN3701 28 mayo 2009 Pregunta 1 La empresa de pigmentos LILLO & Co. debe decidir

Más detalles

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si,

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si, Unidad. Números Reales.1 Números Naturales, Enteros, Racionales, Irracionales y Reales Propiedad de Completez (Parte ) Denición 1. (1) Si A es un subconjunto de un campo ordenado F y u F, se dice que es

Más detalles

Análisis de sensibilidad 1

Análisis de sensibilidad 1 Análisis de sensibilidad Planteamiento general Cambios en el vector de recursos 3 Cambios en el vector de costes 4 Cambios en un vector a j no básico 5 Nuevas variables 6 Nuevas restricciones Planteamiento

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros:

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros: Tema 5 Programación entera En este tema introducimos problemas lineales en los que algunas o todas las variables están restringidas a tomar valores enteros. Para resolver este tipo de problemas se han

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 Contenidos

Más detalles

máx 5x 1 + 7x 2 s.a 2x 1 + x x 1 + 9x 2 41 x 1 0, x 2 0, enteras, z opt z opt 38

máx 5x 1 + 7x 2 s.a 2x 1 + x x 1 + 9x 2 41 x 1 0, x 2 0, enteras, z opt z opt 38 Programación Lineal Entera / Investigación Operativa PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 4. Resuelve el siguiente problema de programación entera por el método Branch and Bound: máx 5x + 7x s.a

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Algoritmo de Karmarkar

Algoritmo de Karmarkar Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Algoritmo de Karmarkar Marcel Goic F. 1 1 Esta es una versión bastante preliminar

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

El axioma del innito. Capítulo El conjunto ω

El axioma del innito. Capítulo El conjunto ω Capítulo 2 El axioma del innito 2.1. El conjunto ω Ya observamos que con los axiomas anteriores podemos formar conjuntos nitos tan grandes como queramos. El axioma que introduciremos ahora nos permitirá

Más detalles

(2.b) PROPIEDADES DE LOS MODELOS LINEALES

(2.b) PROPIEDADES DE LOS MODELOS LINEALES (2.b) PROPIEDADES DE LOS MODELOS LINEALES ESTUDIO GRÁFICO DE UN P.P.L. EN R 2. Caracterización de la región factible. Resolución gráfica del problema. Óptimos alternativos. Problemas no factibles y no

Más detalles

Unidad III Teoría de la Dualidad.

Unidad III Teoría de la Dualidad. Curso de investigación de operaciones http://www.luciasilva.8k.com/5.5.htm Unidad III Teoría de la Dualidad. III.1 FORMULACIÓN DEL PROBLEMA DUAL La Teoría de la Dualidad es una de las herramientas que

Más detalles

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo?

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? TEST IO-I T1. CONCEPTOS PREVIOS C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? a) Puede tener puntos extremos. b) Puede no tener puntos extremos. c) Puede tener vértices. C1.2. Es convexo

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

CO5411. Algoritmos de Puntos Exteriores

CO5411. Algoritmos de Puntos Exteriores CO5411 Algoritmos de Puntos Exteriores Prof. Bernardo Feijoo Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar 12 de marzo de 2008 Prof. Bernardo Feijoo (Departmento de Cómputo Cientíco

Más detalles

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución CAPÍTULO II METODOLOGÍA DE SOLUCIÓN Este capítulo es de suma importancia ya que en él se explica la metodología de solución utilizada en este trabajo para resolver de manera exacta el Problema de Localización

Más detalles

Optimización combinatoria Flujo en redes. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Optimización combinatoria Flujo en redes. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Optimización combinatoria Flujo en redes Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Optimización combinatoria: definición y formulación de PE El problema

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Conversión a la Forma Estándar

Conversión a la Forma Estándar 10 de junio de 2014 Introducción Introducción En esta lectura daremos una introducción al método Simplex desarrollado por George Bernard Dantzig (8 de noviembre de 1914 13 de mayo de 2005) en 1947. Este

Más detalles

3. Algoritmos de puntos interiores para. Programación Lineal Introducción CO-5411 (S08) 23/02/

3. Algoritmos de puntos interiores para. Programación Lineal Introducción CO-5411 (S08) 23/02/ CO-5411 S08) 23/02/2008 35 3. Algoritmos de puntos interiores para Programación Lineal 3.1. Introducción A nales de la década de los años 40, George B. Dantzig diseña el algoritmo Simplex y da comienzo

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Programación Lineal. Julio Yarasca. 13 de diciembre de 2015 CEPREUNI. Julio Yarasca (CEPREUNI) Programación Lineal 13 de diciembre de / 21

Programación Lineal. Julio Yarasca. 13 de diciembre de 2015 CEPREUNI. Julio Yarasca (CEPREUNI) Programación Lineal 13 de diciembre de / 21 Programación Lineal Julio Yarasca CEPREUNI 13 de diciembre de 2015 Julio Yarasca (CEPREUNI) Programación Lineal 13 de diciembre de 2015 1 / 21 Introducción Figura: George Dantzing Julio Yarasca (CEPREUNI)

Más detalles

Universidad Nacional de Ingeniería. UNI RUACS. Investigación de Operaciones I 3T1 I.S. Docente: Ing. Mario Pastrana. Nombres: Frania Flores Zeledón.

Universidad Nacional de Ingeniería. UNI RUACS. Investigación de Operaciones I 3T1 I.S. Docente: Ing. Mario Pastrana. Nombres: Frania Flores Zeledón. Universidad Nacional de Ingeniería. UNI RUACS Investigación de Operaciones I 3T1 I.S. Docente: Ing. Mario Pastrana. Nombres: Frania Flores Zeledón. Tema: Teoría de la Dualidad. 28/ Septiembre/2011 Teoría

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari Fundamentos de Programación Entera A. Revisión Carlos Testuri Germán Ferrari Departamento de Investigación Operativa Instituto de Computación Facultad de Ingeniería Universidad de la República 2012-2018

Más detalles

Teórica VIII. Modelos y Optimización I. Curso 2018 Segundo Cuatrimestre

Teórica VIII. Modelos y Optimización I. Curso 2018 Segundo Cuatrimestre Teórica VIII Nuevamente recordamos que este material es de apoyo a las clases teóricas. Si no asistieron a la clase, les faltarán varias cosas que tienen que ver con el trabajo en clase y con las explicaciones

Más detalles

Programación entera 1

Programación entera 1 Programación entera 1 1. El modelo de programación entera. 2. Aplicaciones de la programación entera. 3. Solución gráfica de problemas enteros. 4. El algoritmo de ramificación y acotación. 5. El algoritmo

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Escuela de algoritmos de aproximación

Escuela de algoritmos de aproximación Escuela de algoritmos de aproximación Módulo 2: Introducción a los algoritmos de aproximación Francisco Javier Zaragoza Martínez Universidad Autónoma Metropolitana Unidad Azcapotzalco ITAM, 14 de septiembre

Más detalles

Introducción al análisis convexo y los fundamentos de la programación matemática

Introducción al análisis convexo y los fundamentos de la programación matemática Introducción al análisis convexo y los fundamentos de la programación matemática René Meziat texto guía: curso análisis convexo Departamento de Matemáticas Universidad de los Andes Bogotá, 2004-2005 Índice

Más detalles

max z = c T x sujeto a Ax b

max z = c T x sujeto a Ax b Tema 4 Análisis de sensibilidad El análisis de sensibilidad se realiza después de obtener la solución óptima de un modelo lineal para deteminar como afectan los cambios en los parámetros del modelo a la

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA 11 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE ENUMERACIÓN, RAMIFICACIÓN Y ACOTACIÓN Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Programación Lineal. Yolanda Hinojosa

Programación Lineal. Yolanda Hinojosa Programación Lineal Yolanda Hinojosa Contenido Formulación primal de un programa lineal. Propiedades Algoritmo del simplex Algoritmo dual del simplex Formulación dual de un programa lineal. Propiedades

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Ejercicios de Programación Entera

Ejercicios de Programación Entera Ejercicios de Programación Entera Investigación Operativa Ingeniería Informática, UC3M Curso 08/09. En una ciudad se intenta disminuir la contaminación reduciendo la circulación interurbana. Un primer

Más detalles

Control 2 13 de Mayo 2009

Control 2 13 de Mayo 2009 Control 2 13 de Mayo 2009 Profs: Auxs: Guillermo Durán Richard Weber Fernanda Bravo, André Carboni, Rodrigo Wolf Pregunta 1 1. (1.2 Ptos.) Cuáles son los 3 criterios principales que guían el algoritmo

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

RAMIFICAR-ACOTAR Y PLANOS DE CORTE

RAMIFICAR-ACOTAR Y PLANOS DE CORTE RAMIFICAR-ACOTAR Y PLANOS DE CORTE ELISA SCHAEFFER Programa de Posgrado en Ingeniería de Sistemas (PISIS) elisa@yalma.fime.uanl.mx INVESTIGACIÓN DE OPERACIONES EL MÉTODO RAMIFICAR-ACOTAR (RA) (ingl. Branch

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Procesos de Control Semi-Markovianos con Costos Descontados

Procesos de Control Semi-Markovianos con Costos Descontados Capítulo 1 Procesos de Control Semi-Markovianos con Costos Descontados 1.1. Introducción En este capítulo se introduce el problema de control óptimo semi-markoviano (PCO) con respecto al índice en costo

Más detalles

Geometría y Poliedros

Geometría y Poliedros IN3701, Optimización 3 de agosto de 2009 Contenidos 1 Definiciones Básicas Definición 2.1 S R n es un poliedro si S = {x R n : Ax b} para algún A R m n, b R m. Definición 2.2 S R n es acotado si existe

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

3.1. Motivación gráfica del método Simplex

3.1. Motivación gráfica del método Simplex l método Simplex. Algoritmo de las dos fases.. Motivación gráfica del método Simplex l método gráfico de resolución nos garantiza que si la región de soluciones posibles es acotada, como ocurre en los

Más detalles

Kg P1 Kg P Unidades Vitamina A

Kg P1 Kg P Unidades Vitamina A Dualidad El concepto de dualidad desempeña importantes papeles dentro de la programación lineal (también en la no lineal), tanto desde un punto de vista teórico como práctico. Todo programa lineal lleva

Más detalles

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Mercados de activos financieros: un ejemplo

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Mercados de activos financieros: un ejemplo Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera Eco-4405, 205 Mercados de activos financieros: un ejemplo Ricard Torres Índice general Estructura básica 2 Óptimos de Pareto

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Matemáticas

Matemáticas al Método al Método Matemáticas al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de 1914-13 de mayo de 2005) en 1947. Este método se

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Relaciones de Recurrencia

Relaciones de Recurrencia Relaciones de Recurrencia Elvio Accinelli Abstract Estas notas no pretenden ser más que una sugerencia para el comienzo del tema Relaciones de Recurrencia. En realidad es el esquema de como pienso abordar

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

Problema de Cauchy. Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial

Problema de Cauchy. Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial Problema de Cauchy Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial x (t) = F(t, x(t)) x(t 0 ) = x 0 La función incógnita x es una función

Más detalles

Clasificación de Sistemas. Clasificación de Sistemas. Clasificación de Sistemas. Clasificación de Sistemas

Clasificación de Sistemas. Clasificación de Sistemas. Clasificación de Sistemas. Clasificación de Sistemas Clasificación de Sistemas Clasificación de Sistemas Simples, complicados o complejos Deterministas o probabilistas Centralizados o distribuidos Reactivos o proactivos Rígidos o adaptativos Simples, complicados

Más detalles

El problema del agente viajero

El problema del agente viajero CO- (F0) //00 El problema del agente viajero Un vendedor tiene que visitar n + ciudades, cada una exactamente una vez. La distancia entre cada par de ciudades viene dada por d ij (en general d ij d ji

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS TEMA 4- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS 41 - Introducción Denición: Un sistema de ecuaciones diferenciales de primer orden en el que sus derivadas estén dadas explícitamente se puede expresar

Más detalles

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante MATEMÁTICAS II Examen del //004 Solución Importante Las calificaciones se harán públicas en la página web de la asignatura y en el tablón de anuncios del Dpto. de Métodos Cuantitativos en Economía y Gestión

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR Optimización bajo Incertidumbre 0. Revisión Carlos Testuri Germán Ferrari Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR 2003-17 Contenido 1 Revisión Probabilidad

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma: TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles