Materia: INGENIERÍA DE EXPLOTACION DE INFORMACIÓN. Docente Titular: Dra. Paola Britos Dr. Ramon Garcia-Martinez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Materia: INGENIERÍA DE EXPLOTACION DE INFORMACIÓN. Docente Titular: Dra. Paola Britos Dr. Ramon Garcia-Martinez"

Transcripción

1 Carrera: Magister en Sistemas de Información Materia: INGENIERÍA DE EXPLOTACION DE INFORMACIÓN Area: Asignaturas Obligatorias Docente Titular: Dra. Paola Britos Dr. Ramon Garcia-Martinez Año: 2014 Cuatrimestre: Tercero - 1 -

2 1 - Fundamentación Hace ya una década, un estudio de la Universidad de California en Berkeley señaló que la información disponible en Internet crecía a razón de 92 petabytes (10 15 bytes) por año. Se ha señalado que esta información esta disponible para procesos de descubrimiento de conocimiento con independencia que se encuentre en fuentes estructuradas ó desestructuradas. La Inteligencia de Negocio propone un abordaje interdisciplinario (dentro del que se encuentran los Sistemas de Información), que tomando todos los recursos de información disponibles y el uso de herramientas analíticas y de síntesis con capacidad de transformar la información en conocimiento, se centra en generar a partir de estos, conocimiento que contribuya con la toma de decisiones de gestión y generación de planes estratégicos en las organizaciones. La Explotación de Información es la sub-disciplina del campo de los Sistemas de Información que aporta a la Inteligencia de Negocio las herramientas para la transformación de información en conocimiento. La explotación de información se ha definido como la búsqueda de patrones interesantes y de regularidades importantes en grandes masas de información. Los métodos tradicionales de análisis de datos incluyen el trabajo con variables estadísticas, varianza, desviación estándar, covarianza y correlación entre los atributos; análisis de componentes (determinación de combinaciones lineales ortogonales que maximizan una varianza determinada), análisis de factores (determinación de grupos correlacionados de atributos), análisis de clusters (determinación de grupos de conceptos que están cercanos según una función de distancia dada), análisis de regresión (búsqueda de los coeficientes de una ecuación de los puntos dados como datos), análisis multivariable de la varianza, y análisis de los discriminantes. Todos estos métodos están orientados numéricamente. Son esencialmente cuantitativos. En contraposición, los métodos de la explotación de información, permiten obtener resultados de análisis de la masa de información que los métodos convencionales no logran tales como: [a] los algoritmos TDIDT que permiten el desarrollo de descripciones simbólicas de los datos para diferenciar entre distintas clases; [b] los mapas auto organizados que pueden ser aplicados a la construcción de particiones de grandes masas de información, exhibiendo la ventaja de ser tolerantes al ruido y la capacidad de extender la generalización al momento de necesitar manipular datos nuevos; ó [c] las redes bayesianas pueden ser aplicadas para identificar atributos discriminantes en grandes masas de información, detectar patrones de comportamiento en análisis de series temporales. En este contexto, surge la necesidad de formar recursos en: [a] la aplicación de procesos de explotación de información que permitan obtener conocimiento a partir de grandes masas de información disponible; [b] la exploración de nuevas aplicaciones de las - 2 -

3 tecnologías involucradas; y [c] el manejo de los ambientes disponibles que soportan dichos procesos y tecnologías. 2 - Objetivos: - Que el alumno se familiarice con los conceptos básicos de la explotación de información, las tecnologías asociadas y su aplicación a la inteligencia de negocios. - Que el alumno comprenda el uso de metodologías para proyectos de explotación de información. - Que el alumno experimente el uso de herramientas para explotación de información en casos de inteligencia de negocios. 3 - Contenidos: UNIDAD 1: INTRODUCCIÓN EXPLOTACIÓN DE INFORMACIÓN Introducción Explotación de Información. Conceptos de Explotación de Información. Descubrimiento de conocimientos. Tareas realizadas por un sistema de Explotación de Información. UNIDAD 2: PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN Desarrollo de Proyectos de explotación de información. Definición del contexto del proyecto. Identificación del problema inteligencia de negocio. Educción de requisitos. Conversión del problema de inteligencia de negocio a un problema de explotación de información. Conversión del problema de explotación de información en procesos de explotación de información. Desarrollo del proceso de explotación de información. UNIDAD 3: HERRAMIENTAS PARA PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN Herramientas de Explotación de Información de Uso Libre. Introducción a las herramientas de acceso libre. WEKA, ELVIRA, TANAGRA. Resolución de Ejercicios Prácticos en la Herramienta TANAGRA. UNIDAD 4: ESTUDIO DE CASOS Identificación de patrones de fraude en telefonía celular utilizando SOM. Identificación de fenómenos meteorológicos usando inducción y SOM. Selección del Protocolo pedagógico usando inducción y SOM. Problemas de aprendizaje en programación usando inducción y redes bayesianas. Comportamiento de votación del congreso. Descubrimiento de acuerdos y desacuerdos intrapartidarios e interpartidarios y entre minorías - 3 -

4 intrapartidarias. Identificación de las leyes con mayor acuerdo dentro de los partidos.identificación de linfomas (linfografía). Descubrimiento de reglas de comportamiento (diagnostico) de cada tipo de linfoma. Descubrimiento de las características determinantes de cada tipo de linfoma. Descubrimiento de características comunes a diferentes tipos de patologías. Comportamiento de usuarios de servicio de Internet. Descubrimiento de causales de alta o baja de un servicio dial-up de Internet. Identificación de causales con mayor incidencia en los comportamientos de alta o baja 4 - Metodología de Trabajo: Clases teórico-prácticas: Exposición teórica de conceptos fundamentales, con resolución metódica de problemas tipo y ensayos sobre objetivos. Clases prácticas: Clases de consulta: Resolución por parte de los alumnos y controlada por el equipo docente de problemas correspondientes a las unidades temáticas del programa, ya sea por escrito o por máquina (entrenamiento en el uso de aplicaciones). En general se tratará de problemas abiertos, que generen dudas y motiven la consulta a los docentes y la profundización del conocimiento a través de la bibliografía. Durante el curso se plantearán trabajos prácticos con problemas complejos a resolver, que los alumnos deberán desarrollar en grupo Se dispondrá de un foro de discusion mediado por tecnología web y de un sistema de atencion de consultas via conferencia web. 5 - Evaluación y Acreditación: - La evaluación será [a] por seguimiento de la construcción de la solución que cada alumno haga para los trabajos prácticos planteados para el curso y [b] la resolución de un ejercicio integrados individual. 6 - Bibliografía: Britos, P. Abasolo, M., García-Martínez, R. y Perales, F. (2005). Identification of MPEG-4 Patterns in Human Faces Using Data Mining Techniques. Proceedings 13 th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2005. Pág

5 Britos, P., Cataldi, Z., Sierra, E., García-Martínez, R. (2008). Pedagogical Protocols Selection Automatic Assistance. Lecture Notes on Artificial Intelligence, 5027: Britos, P., Dieste, O., García-Martínez, R. (2008). Requirements Elicitation in Data Mining for Business Intelligence Projects. En Advances in Information Systems Research, Education and Practice. David Avison, George M. Kasper, Barbara Pernici, Isabel Ramos, Dewald Roode Eds. (Boston: Springer), IFIP Series, 274: Britos, P., Felgaer, P., Garcia-Martinez, R Bayesian Networks Optimization Based on Induction Learning Techniques. En Artificial Intelligence and Practice II, Max Bramer Ed. (Boston: Springer), IFIP Series, 276: Britos, P., Fernández, E., García-Martínez, R. (2006). Propuesta Matriz de Actividades para un Ciclo de Vida de Explotación de Datos. Reportes Técnicos en Ingeniería del Software, 8(2): ISSN Britos, P., Grosser, H., Rodríguez, D., Garcia-Martinez, R. (2008). Detecting Unusual Changes of Users Consumption. En Artificial Intelligence and Practice II, Max Bramer Ed. (Boston: Springer), IFIP Series, 276: Britos, P., Hossian, A., García-Martinez, R. y Sierra, E. (2005). Minería de Datos Basada en Sistemas Inteligentes. Editorial Nueva Librería. ISBN Britos, P., Hossian, A., García-Martinez, R. y Sierra, E Minería de Datos Basada en Sistemas Inteligentes. Editorial Nueva Librería. ISBN Britos, P., Jiménez Rey, E., García-Martínez, E. (2008). Work in Progress: Programming Misunderstandings Discovering Process Based On Intelligent Data Mining Tools Proceedings 38th ASEE/IEEE Frontiers in Education Conference (en prensa). Britos, P., Merlino, H., Fernández, E., Ochoa, M., Diez, E. y García Martínez, R. (2006). Tool Selection Methodology in Data Mining. Proceedings V Ibero- American Symposium on Software Engineering. Pág Cersósimo, D., Ravazoli, C., García-Martínez, R. (2005). Inversión Sísmica de un Modelo Teórico Calculado Sobre un Horizonte Sísmico Utilizando Redes Neuronales. Boletín de Informaciones Petroleras 1(1): Cersosimo, S., Ravazzoli, C., García-Martínez, R. (2006). Identification of Velocity Variations in a Seismic Cube Using Neural Networks. En Professional Practice in Artificial Intelligence, eds. J. Debenham, (Boston: Springer), IFIP Series, 218:

6 Cogliati, M., Britos, P., García-Martínez, R Patterns in Temporal Series of Meteorological Variables Using SOM & TDIDT. En Artificial Intelligence and Practice II, Max Bramer Ed. (Boston: Springer), IFIP Series, 217: Ferrero, G., Britos, P., García-Martínez, R Detection of Breast Lesions in Medical Digital Imaging Using Neural Networks. En Professional Practice in Artificial Intelligence, John Debenham Ed. (Boston: Springer), IFIP Series, 218: Giudici, P., Figini, S Applied Data Mining for Business and Industry. Wiley & Sons Kantardzic, M Data Mining: Concepts, Models, Methods, and Algorithms. Wiley & Sons. Linoff, G., Berry. M Data Mining Techniques: For Marketing, Sales, and CustomerRelationship Management. Wiley & Sons Liu, B Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-Centric Systems and Applications), Springer-Verlag Ochoa, A. (2005). Propuesta de Técnicas de Protofase Metodológica para la Compresión del Negocio. Reportes Técnicos de Ingeniería del Software, 7(1): Rancán, C., Pesado, P. y García-Martínez, R. (2007). Toward Integration of Knowledge Based Systems and Knowledge Discovery Systems. Journal of Computer Science & Technology, 7(1): ISSN Russell, M Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites. O Reilly Media - 6 -

Propuesta de Procesos de Explotación de Información

Propuesta de Procesos de Explotación de Información Propuesta de Procesos de Explotación de Información Paola Britos y Ramón García-Martínez Area Informática. Sede Andina (El Bolsón). Universidad Nacional de Río Negro Área Ingeniería del Software. Licenciatura

Más detalles

UNIVERSIDAD NACIONAL DE LANUS

UNIVERSIDAD NACIONAL DE LANUS UNIVERSIDAD NACIONAL DE LANUS LICENCIATURA EN SISTEMAS Ingeniería de Software III Prof. Tit.: Dr. Ramón García-Martínez Prof.Aso.: M.Ing. Eduardo Diez JTP: Lic. Darío Rodríguez GUIA DE PREGUNTAS Material:

Más detalles

LINEAS DE INVESTIGACION DEL LABORATORIO DE SISTEMAS INTELIGENTES. García-Martínez, R., Britos, P., Ierache, J., Merlino, H., Ochoa, M. Fernández, E.

LINEAS DE INVESTIGACION DEL LABORATORIO DE SISTEMAS INTELIGENTES. García-Martínez, R., Britos, P., Ierache, J., Merlino, H., Ochoa, M. Fernández, E. LINEAS DE INVESTIGACION DEL LABORATORIO DE SISTEMAS INTELIGENTES García-Martínez, R., Britos, P., Ierache, J., Merlino, H., Ochoa, M. Fernández, E. Laboratorio de Sistemas Inteligentes Facultad de Ingeniería.

Más detalles

Un Protocolo de Caracterización Empírica de Dominios para Uso en Explotación de Información

Un Protocolo de Caracterización Empírica de Dominios para Uso en Explotación de Información Un Protocolo de aracterización Empírica de Dominios para Uso en Explotación de Información Lopez-Nocera, M., Pollo-attaneo, F., Britos, P., García-Martínez, R. Grupo Investigación en Sistemas de Información.

Más detalles

ALGUNOS RESULTADOS EXPERIMENTALES DE LA INTEGRACIÓN DE AGRUPAMIENTO E INDUCCIÓN COMO MÉTODO DE DESCUBRIMIENTO DE CONOCIMIENTO

ALGUNOS RESULTADOS EXPERIMENTALES DE LA INTEGRACIÓN DE AGRUPAMIENTO E INDUCCIÓN COMO MÉTODO DE DESCUBRIMIENTO DE CONOCIMIENTO ALGUNOS RESULTADOS EXPERIMENTALES DE LA INTEGRACIÓN DE AGRUPAMIENTO E INDUCCIÓN COMO MÉTODO DE DESCUBRIMIENTO DE CONOCIMIENTO Kogan, A. 1, Rancan, C. 2,3, Britos, P. 3,1, Pesado, P. 2,4, García-Martínez,

Más detalles

Líneas de I+D+I del Laboratorio de Investigación y Desarrollo en Ingeniería de Explotación de Información (LIDIEI GISI UNLa)

Líneas de I+D+I del Laboratorio de Investigación y Desarrollo en Ingeniería de Explotación de Información (LIDIEI GISI UNLa) Líneas de I+D+I del Laboratorio de Investigación y Desarrollo en Ingeniería de Explotación de Información (LIDIEI GISI UNLa) R. García-Martínez, D. Rodríguez, E. Baldizzoni, S. Martins Grupo Investigación

Más detalles

Modelo de Procesos para la Gestión de Requerimientos en Proyectos de Explotación de Información

Modelo de Procesos para la Gestión de Requerimientos en Proyectos de Explotación de Información Modelo de Procesos para la Gestión de Requerimientos en Proyectos de Explotación de Información Pollo-Cattaneo, M. F. 1,2, Mansilla, D 2,Vegega, C 2, Pesado, P. 3, García-Martínez, R. 4, P. Britos, P.

Más detalles

Proceso de Identificación de Errores de Apropiación de Conceptos Basado en Explotación de Información

Proceso de Identificación de Errores de Apropiación de Conceptos Basado en Explotación de Información Proceso de Identificación de Errores de Apropiación de Conceptos Basado en Explotación de Información Saavedra-Martínez, P., Pollo-Cattaneo, F., Rodríguez, D., Britos, P., García-Martínez, R. Grupo de

Más detalles

Elementos para la Gestión de Requerimientos en Proyectos de Explotación de Información

Elementos para la Gestión de Requerimientos en Proyectos de Explotación de Información Elementos para la Gestión de Requerimientos en Proyectos de Explotación de Información Pollo-Cattaneo, María Florencia 11, Pytel, Pablo 1,21, Vegega, Cinthia 11, Mansilla, Diego 1, Pesado, Patricia 3,

Más detalles

Elementos para una ingeniería de explotación de información

Elementos para una ingeniería de explotación de información Proyecciones, Vol.10 No. 1, Abril de 2012 Elementos para una ingeniería de explotación de información María Florencia Pollo-Cattaneo 1, Ramón García-Martínez 2, Paola Britos 3, Patricia Pesado 4, Rodolfo

Más detalles

Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información

Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información Impacto de la Complejidad del Dominio en las Variaciones del Comportamiento de Procesos de Explotación de Información Marcelo López Nocera Programa de Maestría en Ingeniería de Sistemas de Información.

Más detalles

Carrera: Licenciatura en Sistemas. Materia: INGENIERIA DE SOFTWARE III

Carrera: Licenciatura en Sistemas. Materia: INGENIERIA DE SOFTWARE III Carrera: Licenciatura en Sistemas Materia: INGENIERIA DE SOFTWARE III Profesor Titular: Dr. Ramón García-Martínez Instructor JTP: Lic. Dario Rodriguez Año: 2011 Cuatrimestre: Primer - 1 - Fundamentación

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente Impartido por: Juan Alfonso Lara Torralbo 1. Datos del docente NOMBRE Juan Alfonso Lara Torralbo FORMACIÓN

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

Métodos Exploratorios en Minería de Datos

Métodos Exploratorios en Minería de Datos Métodos Exploratorios en Minería de Datos Tutor: El curso será impartido por Dr. Oldemar Rodríguez graduado de la Universidad de París IX y con un postdoctorado de la Universidad de Stanford. Duración:

Más detalles

XV Workshop de Investigadores en Ciencias de la Computación 2013

XV Workshop de Investigadores en Ciencias de la Computación 2013 XV Workshop de Investigadores en Ciencias de la Computación 2013 ISBN: 9789872817961 Facultad de Ciencia y Tecnologí a Universidad Auto noma de Entre Rí os (UADER) WICC 2013 El Workshop de Investigadores

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación TÉCNICAS DE APRENDIZAJE AUTOMÁTICO COMPUTACIÓN TECNOLOGÍAS ESPECÍFICAS GRADO EN INGENIERÍA INFORMÁTICA Plan 545 Código 46932 Periodo de

Más detalles

INGENIERÍA DE PROYECTOS DE EXPLOTACION DE INFORMACION PARA PYMES

INGENIERÍA DE PROYECTOS DE EXPLOTACION DE INFORMACION PARA PYMES INGENIERÍA DE PROYECTOS DE EXPLOTACION DE INFORMACION PARA PYMES García-Martínez, R., Lelli, R., Merlino, H., Cornachia, L., Rodriguez, D., Pytel, P., Arboleya, H. Grupo Investigación en Sistemas de Información

Más detalles

7ª Jornada sobre la Biblioteca Digital Universitaria JBDU2009 "La biblioteca universitaria en la web"

7ª Jornada sobre la Biblioteca Digital Universitaria JBDU2009 La biblioteca universitaria en la web 7ª Jornada sobre la Biblioteca Digital Universitaria JBDU2009 "La biblioteca universitaria en la web" "Procedimientos de la explotación de información aplicados al ámbito bibliotecológico" Kuna, Horacio;

Más detalles

GUÍA DOCENTE. Curso Académico 2015/16. Técnicas de Análisis Estadístico basado en Inteligencia

GUÍA DOCENTE. Curso Académico 2015/16. Técnicas de Análisis Estadístico basado en Inteligencia GUÍA DOCENTE Curso Académico 2015/16 1. Técnicas de Análisis Estadístico basado en Inteligencia Artificial 1.1. Datos de la asignatura Tipo de estudios Titulación Nombre de la asignatura Carácter de la

Más detalles

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad comercial de las empresas

Más detalles

Diplomado en Analítica de Negocios (Business Analytics)

Diplomado en Analítica de Negocios (Business Analytics) Diplomado en Analítica de Negocios (Business Analytics) Piura,2015 II En las diferentes actividades económicas y empresariales es muy frecuente la necesidad de analizar gran cantidad de datos con la finalidad

Más detalles

Programa en Analítica de Negocios (Business Analytics)

Programa en Analítica de Negocios (Business Analytics) Programa en Analítica de Negocios (Business Analytics) En las diferentes actividades económicas y empresariales es muy frecuente la necesidad de analizar gran cantidad de datos con la finalidad de dar

Más detalles

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación ESTUDIO DE TECNICAS DE DATA MINING APLICADAS AL ANALISIS DE DATOS GENERADOS CON LA METODOLOGIA BLENDED LEARNING Marcelo Omar Sosa, Sosa Bruchmann Eugenia Cecilia Departamento Computación/Facultad de Ciencias

Más detalles

JOSÉ OCTAVIO GUTIÉRREZ GARCÍA

JOSÉ OCTAVIO GUTIÉRREZ GARCÍA JOSÉ OCTAVIO GUTIÉRREZ GARCÍA Profesor de Tiempo Completo del Departamento Académico de Computación DOMICILIO Río Hondo No. 1 Progreso Tizapán México 01080, D.F. Tel: +52 (55) 5628-4000 Ext. 3645 Fax:

Más detalles

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos

CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos CARTOGRAFIADO DE TEXTOS Métodos Iconográficos de Observación, Exploración y Comunicación Aplicados a la Minería de Textos Anteproyecto de Tesis de Magíster en Ingeniería del Software Tesista: Lic. Matilde

Más detalles

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios.

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios. ENFIN748 Business Intelligence y Data Mining Financiero Profesor: PhD. David Díaz E-mail Profesor: ddiaz@unegocios.cl E-mail Tareas: BI-DM@unegocios.cl PRESENTACIÓN DEL CURSO El objetivo de éste curso

Más detalles

de Lanús. Buenos Aires, Argentina. rgarcia@unla.edu.ar.

de Lanús. Buenos Aires, Argentina. rgarcia@unla.edu.ar. Behavioral Variability of Clustering and Induction Based on Domain Features Variabilidad del Comportamiento de Agrupamiento e Inducción Basado en las Características del Dominio Marcelo López N. 1, Ramón

Más detalles

ANALES DEL XVIII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN CACIC. 8 al 12 de octubre de 2012. Bahía Blanca, Buenos Aires, Argentina

ANALES DEL XVIII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN CACIC. 8 al 12 de octubre de 2012. Bahía Blanca, Buenos Aires, Argentina ANALES DEL XVIII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN XVIII CACIC 2012 8 al 12 de octubre de 2012 Bahía Blanca, Buenos Aires, Argentina XIII Workshop Agentes y Sistemas Inteligentes (WASI)

Más detalles

ASIGNATURA: INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL.

ASIGNATURA: INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL. ASIGNATURA: INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Introducción a la Inteligencia Artificial Línea de trabajo: Desarrollo y aplicación de tecnologías

Más detalles

Minería de datos para la determinación del grado de exclusión social

Minería de datos para la determinación del grado de exclusión social Minería de datos para la determinación del grado de exclusión social Data mining to determine the degree of social exclusion * Jorge Enrique Rodríguez Rodríguez Fecha de recepción: 23 de agosto de 2008

Más detalles

Formalización de Dominios de Negocio para Proyectos de Explotación de Información basada en Técnicas de Ingeniería del Conocimiento

Formalización de Dominios de Negocio para Proyectos de Explotación de Información basada en Técnicas de Ingeniería del Conocimiento Formalización de Dominios de Negocio para Proyectos de Explotación de Información basada en Técnicas de Ingeniería del Conocimiento Vegega, C., Pytel, P., Ramón, H., Rodríguez, D., Pollo-Cattaneo, F.,

Más detalles

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012.

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012 programa Plan 2008 Área Complementaria Carga horaria semanal Anual/ cuatrimestral Coordinador de Cátedra Objetivos

Más detalles

Reflexiones sobre Ingeniería de Requisitos y Pruebas de Software. ISBN: 978-958-58070-3-7 Primera edición, diciembre de 2013.

Reflexiones sobre Ingeniería de Requisitos y Pruebas de Software. ISBN: 978-958-58070-3-7 Primera edición, diciembre de 2013. 1 Echeverri, Jaime Reflexiones sobre Ingeniería de Requisitos y Pruebas de Software/ Echeverri, Jaime; Aristizábal, Miguel; González, Liliana; Urrego, Germán, Polo, Ricardo [et al]. Medellín: Corporación

Más detalles

Propuesta de Proceso de Ingeniería de Explotación de Información Centrado en Control y Gestión del Proyecto

Propuesta de Proceso de Ingeniería de Explotación de Información Centrado en Control y Gestión del Proyecto Propuesta de Proceso de Ingeniería de Explotación de Información Centrado en Control y Gestión del Proyecto Sebastian Martins 1,2, Patricia Pesado 1,3, Ramón García-Martínez 2 1. Programa de Doctorado

Más detalles

Redes Bayesianas para predecir riesgo de plomo en sangre de puérperas y neonatos

Redes Bayesianas para predecir riesgo de plomo en sangre de puérperas y neonatos Redes Bayesianas para predecir riesgo de plomo en sangre de puérperas y neonatos Autores A.M. Sancho 1,2 ; V. Messina 3 ; M. Cuevas 4 ; I. Sattolo 2 ; R.Dante 1 ; A. Ricca 1, y L. De Oto 2 RESUMEN Las

Más detalles

"Big Data Analysis" (Métodos especiales para bases de datos gigantes)

Big Data Analysis (Métodos especiales para bases de datos gigantes) "Big Data Analysis" (Métodos especiales para bases de datos gigantes) Tutor: El curso será impartido por Dr. Oldemar Rodríguez graduado de la Universidad de París IX y con un postdoctorado de la Universidad

Más detalles

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS Por qué es importante la Minería de Datos? 2 La Minería de Datos es un proceso que permite obtener conocimiento a partir de los datos

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Modelado de relaciones existentes en un equipo de proyecto de software Modeling relationships in a software project team

Modelado de relaciones existentes en un equipo de proyecto de software Modeling relationships in a software project team Modelado de relaciones existentes en un equipo de proyecto de software Modeling relationships in a software project team Rafael Rodríguez-Puente 1, Eliana B. Ril-Valentin 2 1 Departamento de Técnicas de

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS.

MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS. MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS. PRESENTA MTIE. Erik Guerrero Bravo. Tula de Allende Hidalgo Septiembre

Más detalles

PROCESOS DE EXPLOTACION DE INFORMACION BASADOS EN SISTEMAS INTELIGENTES

PROCESOS DE EXPLOTACION DE INFORMACION BASADOS EN SISTEMAS INTELIGENTES UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INFORMÁTICA PROCESOS DE EXPLOTACION DE INFORMACION BASADOS EN SISTEMAS INTELIGENTES TESIS PRESENTADA PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS INFORMÁTICAS

Más detalles

Curso Data Mining y Aplicaciones en Riesgo de Crédito

Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Transferencia Internacional de Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad

Más detalles

Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software

Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software Extracción Automática de Conocimiento en Bases de Datos e Ingeniería del Software Mª. José Ramírez Quintana José Hernández Orallo Programa: Programación Declarativa e Ingeniería de la Programación Objetivos

Más detalles

INVESTIGACION COMERCIAL

INVESTIGACION COMERCIAL ASIGNATURA: INVESTIGACION COMERCIAL Curso 2014/2015 (Código:01425020) 1.OBJETIVOS En la medida en que el Marketing es un cuerpo científico de conocimientos aplica el método científico al proceso de investigación

Más detalles

GUÍA DOCENTE TITULACIONES DE GRADO

GUÍA DOCENTE TITULACIONES DE GRADO GUÍA DOCENTE TITULACIONES DE GRADO TITULACIÓN: GRADO EN INGENIERIA INFORMATICA DE SISTEMAS DE INFORMACIÓN CURSO 2015/2016 ASIGNATURA: MINERÏA DE DATOS Nombre del Módulo o Materia al que pertenece la asignatura.

Más detalles

Departamento/Divisi ón R/ I. Espacios Curriculares Correlativos Subsiguientes

Departamento/Divisi ón R/ I. Espacios Curriculares Correlativos Subsiguientes Ciclo Académico: 2009 Año de la Carrera: Horas de Clases Semanales Régimen de Cursado 3ro. Teoría Práctica Otros i (1) Anual 1er.Cuatr. 2do.Cuatr. Otros (2) 4 4 X (1) Observaciones: (2) Observaciones:

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: INFORMÁTICA APLICADA A LA MERCADOTECNIA FECHA DE ELABORACIÓN: MAYO 2005 ÁREA DEL PLAN DE ESTUDIOS:

Más detalles

Investigación Operativa

Investigación Operativa Programa de la Asignatura: Investigación Operativa Código: 104 Carrera: Ingeniería en Computación Plan: 2008 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Segundo Año Segundo cuatrimestre

Más detalles

APLICACIÓN DE MÉTRICAS DE MADUREZ EN CONCEPTUALIZACIÓN DE SISTEMAS EXPERTOS. Cátedra de Inteligencia Artificial. Facultad Regional Buenos Aires.

APLICACIÓN DE MÉTRICAS DE MADUREZ EN CONCEPTUALIZACIÓN DE SISTEMAS EXPERTOS. Cátedra de Inteligencia Artificial. Facultad Regional Buenos Aires. APLICACIÓN DE MÉTRICAS DE MADUREZ EN CONCEPTUALIZACIÓN DE SISTEMAS EXPERTOS Pollo-Cattaneo, F. 1,2, Britos, P. 3,2, García-Martínez, R. 3,2 1 Cátedra de Inteligencia Artificial. Facultad Regional Buenos

Más detalles

Tradicionalmente, los proyectos de desarrollo de software comienzan por obtener un entendimiento del

Tradicionalmente, los proyectos de desarrollo de software comienzan por obtener un entendimiento del A process model for requirements elicitation in information mining projects Modelo de proceso para elicitación de requerimientos en proyectos de explotación de información Diego Mansilla 1, Florencia Pollo-Cattaneo

Más detalles

Modelado 3D como herramienta educacional para el desarrollo de competencias de los nuevos grados de Bellas Artes

Modelado 3D como herramienta educacional para el desarrollo de competencias de los nuevos grados de Bellas Artes Modelado 3D como herramienta educacional para el desarrollo de competencias de los nuevos grados de Bellas Artes 3D Modeling as an educational tool for the development of skills of the new degrees in Arts

Más detalles

MODELOS DE PROCESO PARA INGENIERÍA DE EXPLOTACIÓN DE INFORMACIÓN PARA PYMES: ABORDAJE ÁGIL Y ABORDAJE ROBUSTO

MODELOS DE PROCESO PARA INGENIERÍA DE EXPLOTACIÓN DE INFORMACIÓN PARA PYMES: ABORDAJE ÁGIL Y ABORDAJE ROBUSTO MODELOS DE PROCESO PARA INGENIERÍA DE EXPLOTACIÓN DE INFORMACIÓN PARA PYMES: ABORDAJE ÁGIL Y ABORDAJE ROBUSTO Ramón García-Martínez, Eduardo Diez, Roberto García, Sebastian Martins, Ezequiel Baldizzoni

Más detalles

Aprendizaje Computacional. Eduardo Morales y Jesús González

Aprendizaje Computacional. Eduardo Morales y Jesús González Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

330331 - EDEM - Economía y Dirección de la Empresa Minera

330331 - EDEM - Economía y Dirección de la Empresa Minera Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 732 - OE - Departamento de Organización de Empresas Curso: Titulación: 2015 MÁSTER UNIVERSITARIO

Más detalles

Líneas de trabajo: Optimización y Simulación de Procesos Industriales. Horas teoría-horas prácticas-horas trabajo adicional-horas totales-créditos:

Líneas de trabajo: Optimización y Simulación de Procesos Industriales. Horas teoría-horas prácticas-horas trabajo adicional-horas totales-créditos: Nombre de la asignatura: SIMULACIÓN Líneas de trabajo: Optimización y Simulación de Procesos Industriales Horas teoría-horas prácticas-horas trabajo adicional-horas totales-créditos: 48 20 100 168 6 1.

Más detalles

ASEGURAMIENTO DE LA CALIDAD PARA PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN

ASEGURAMIENTO DE LA CALIDAD PARA PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN WICC 2012 212 ASEGURAMIENTO DE LA CALIDAD PARA PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN Diez, E., Pytel, P., Rodríguez, D., García, R., Lacabanne, M., Leonardis, L., Martins, S., Cartanilica, A., García-Martínez,

Más detalles

Instituto Tecnológico de Cd. Victoria

Instituto Tecnológico de Cd. Victoria Instituto Tecnológico de Cd. Victoria Maestría en Sistemas Computacionales Nombre de la asignatura: INGENIERÍA DE SOFTWARE ORIENTADA A PROCESOS. Línea de Trabajo: Ingeniería de Software Tiempo de dedicación

Más detalles

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE Datamining y Automático 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad: Grado en

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

(53000235) Dirección Estratégica de la Innovación Innovation Management Ingeniería de Organización, Administración de

(53000235) Dirección Estratégica de la Innovación Innovation Management Ingeniería de Organización, Administración de (53000235) Dirección Estratégica de la Innovación Innovation Management Ingeniería de Organización, Administración de Departamento Teléfono +34 91336 32 07 Empresas y Estadística Unidad Docente Economía

Más detalles

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA CÓDIGO ASIGNATURA 1131-3 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: DATA MINING y DATA WAREHOUSE Plan 2009 Ingeniería en Informática Año: 5 (Electiva - Ingeniería de Software)

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación SISTEMAS INTELIGENTES EN LA EMPRESA MÉTODOS AVANZADOS EN ORGANIZACIÓN INDUSTRIAL OPTATIVAS GRADO EN INGENIERÍA EN ORGANIZACIÓN INDUSTRIAL

Más detalles

APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS

APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS Héctor F Gómez A *, Susana A Arias T **, Yuliana C Jiménez *** Universidad Técnica Particular de

Más detalles

XV Workshop de Investigadores en Ciencias de la Computación 2013

XV Workshop de Investigadores en Ciencias de la Computación 2013 XV Workshop de Investigadores en Ciencias de la Computación 2013 ISBN: 9789872817961 Facultad de Ciencia y Tecnologí a Universidad Auto noma de Entre Rí os (UADER) WICC 2013 El Workshop de Investigadores

Más detalles

Línea de trabajo: Control de los Procesos de Manufactura Optimización de los Procesos de Manufactura 48 20 100 168-6

Línea de trabajo: Control de los Procesos de Manufactura Optimización de los Procesos de Manufactura 48 20 100 168-6 Nombre de la asignatura: ESTADISTICA MULTIVARIADA Línea de trabajo: Control de los Procesos de Manufactura Optimización de los Procesos de Manufactura 48 20 100 168-6 DOC: Docencia; TIS: Trabajo Independiente

Más detalles

Especificación de sistemas concurrentes usando conceptos de teoría económica: Sintaxis, semántica, aplicaciones y extensiones del lenguaje formal PAMR

Especificación de sistemas concurrentes usando conceptos de teoría económica: Sintaxis, semántica, aplicaciones y extensiones del lenguaje formal PAMR CURRICULUM VITAE DE MIEMBROS DE COMISIONES PARA CONCURSOS DE ACCESO A LOS CUERPOS DOCENTES UNIVERSITARIOS 1. DATOS PERSONALES Apellidos y Nombre: Rodríguez Laguna, Ismael Cuerpo docente al que pertenece:

Más detalles

Minería de Datos Aplicada a la Gestión de la Información Urbanística

Minería de Datos Aplicada a la Gestión de la Información Urbanística 6th International Conference on Industrial Engineering and Industrial Management. XVI Congreso de Ingeniería de Organización. Vigo, July 18-20, 2012 Minería de Datos Aplicada a la Gestión de la Información

Más detalles

Tecnologías de la web semántica

Tecnologías de la web semántica Tecnologías de la web semántica MSC-0301 Nombre de la asignatura: Tecnologías de la Web Semántica Línea de trabajo: Tecnologías Web Tiempo de dedicación del estudiante a las actividades de: DOC TIS TPS

Más detalles

El taller de Inteligencia de Negocio no tiene requisitos en cuanto a conocimientos, debido a su naturaleza introductoria.

El taller de Inteligencia de Negocio no tiene requisitos en cuanto a conocimientos, debido a su naturaleza introductoria. DESCRIPTOR DE PROGRAMAS PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Versión: 03 UNIDAD ACADÉMICA: Escuela de Ingeniería Departamento de Ciencia de la Computación- CETIUC NOMBRE DE LA ACTIVIDAD Taller: Inteligencia

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador DATOS INFORMATIVOS: MATERIA O MÓDULO: APLICACIONES DIFUSAS CÓDIGO: IS -10344 CARRERA: NIVEL: INGENIERIA DE SISTEMAS OCTAVO No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 2 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Ciencia de Servicios como herramienta de innovación y creación de valor en tiempos de crisis

Ciencia de Servicios como herramienta de innovación y creación de valor en tiempos de crisis 3 rd International Conference on Industrial Engineering and Industrial Management XIII Congreso de Ingeniería de Organización Barcelona-Terrassa, September 2nd-4th 2009 Ciencia de Servicios como herramienta

Más detalles

ANÁLISIS, MONITORIZACIÓN Y DIAGNÓSTICO DE PROCESOS MULTIVARIANTES. Mejora de Procesos. Obligatoria / Semestre B / 3 créditos ECTS

ANÁLISIS, MONITORIZACIÓN Y DIAGNÓSTICO DE PROCESOS MULTIVARIANTES. Mejora de Procesos. Obligatoria / Semestre B / 3 créditos ECTS Asignatura ANÁLISIS, MONITORIZACIÓN Y DIAGNÓSTICO DE PROCESOS MULTIVARIANTES Materia Mejora de Procesos Tipo / Semestre / Crétidos ECTS Obligatoria / Semestre B / 3 créditos ECTS Profesor ALBERTO J. FERRER

Más detalles

ESTIMACIÓN EN GESTIÓN DE PROYECTOS DE SOFTWARE BASADA EN EXPLOTACIÓN DE INFORMACIÓN

ESTIMACIÓN EN GESTIÓN DE PROYECTOS DE SOFTWARE BASADA EN EXPLOTACIÓN DE INFORMACIÓN ESTIMACIÓN EN GESTIÓN DE PROYECTOS DE SOFTWARE BASADA EN EXPLOTACIÓN DE INFORMACIÓN Bogado, Verónica 1, Dapozo, Gladys 1 ; García Martínez, Ramón 2 1. Departamento de Informática. Facultad de Ciencias

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

3 3 X (1) Observaciones: (2) Observaciones: Docente/s. Espacios Curriculares Correlativos Precedentes Aprobada/s Cod. Asig. Cursada/s Cod. Asig.

3 3 X (1) Observaciones: (2) Observaciones: Docente/s. Espacios Curriculares Correlativos Precedentes Aprobada/s Cod. Asig. Cursada/s Cod. Asig. Ciclo Académico: 2009 Año de la Carrera: Horas de Clases Semanales Régimen de Cursado 1 Teoría Práctica Otros (1) Anual 1er.Cuatr. 2do.Cuatr. Otros (2) 3 3 X (1) Observaciones: (2) Observaciones: Docente/s

Más detalles

METODOLOGIA PARA LA ESPECIFICACION DE REQUISITOS EN PROYECTOS DE EXPLOTACION DE INFORMACION PROPUESTA TÉCNICA DE INSCRIPCIÓN AL DOCTORADO

METODOLOGIA PARA LA ESPECIFICACION DE REQUISITOS EN PROYECTOS DE EXPLOTACION DE INFORMACION PROPUESTA TÉCNICA DE INSCRIPCIÓN AL DOCTORADO UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INFORMÁTICA Secretaría de Postgrado METODOLOGIA PARA LA ESPECIFICACION DE REQUISITOS EN PROYECTOS DE EXPLOTACION DE INFORMACION PROPUESTA TÉCNICA DE INSCRIPCIÓN

Más detalles

Bibliografía Anotada

Bibliografía Anotada Maestría en Ingeniería de Sistemas y Computación Universidad Nacional de Colombia Bogotá D.C. June 2, 2006 Contenido Tema Amplio 1 Tema Amplio 2 3 4 5 Tema Tema Amplio Extracción de información y obtención

Más detalles

Bases de datos y bases de conocimiento

Bases de datos y bases de conocimiento Bases de datos y bases de conocimiento MSC-0202 Nombre de la asignatura: Bases de datos y bases de conocimiento Línea de trabajo: Tecnologías Web Tiempo de dedicación del estudiante a las actividades de:

Más detalles

PLANIFICACIÓN Y GESTIÓN DE PROYECTOS INFORMÁTICOS

PLANIFICACIÓN Y GESTIÓN DE PROYECTOS INFORMÁTICOS GUIA DOCENTE DE LA ASIGNATURA PLANIFICACIÓN Y GESTIÓN DE PROYECTOS INFORMÁTICOS MÓDULO MATERIA ASIGNATURA CURSO SEMESTRE CRÉDITOS CARÁCTER 1º 6 Obligatoria PROFESOR(ES) DIRECCIÓN COMPLETA DE CONTACTO PARA

Más detalles

INVESTIGACION COMERCIAL

INVESTIGACION COMERCIAL CENTRO DE ENSEÑANZA SUPERIOR COLEGIO UNIVERSITARIO CARDENAL CISNEROS ADSCRITO A LA UNIVERSIDAD COMPLUTENSE DE MADRID GRADO EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO 3º INVESTIGACION COMERCIAL PROGRAMA

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales I. IDENTIFICACIÓN DEL CURSO PROGRAMA DE ESTUDIO POR COMPETENCIAS Minería de Datos ORGANISMO ACADÉMICO: FACULTAD DE INGENIERÍA Programa Educativo: Ingeniería en Computación Área de docencia: Tratamiento

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 26 de Marzo, 9 y 23 de Abril y 7 de mayo de 2010 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/~pln/

Más detalles

INGENIERÍA INDUSTRIAL

INGENIERÍA INDUSTRIAL PROGRAMA DE ASIGNATURA ACTIVIDAD CURRICULAR: ANÁLISIS NUMÉRICO Y CÁLCULO AVANZADO Código: 032535 Área: Matemática Aplicada Bloque: Ciencias Básicas Nivel: 3º Tipo: Obligatoria Modalidad: Anual Carga Horaria

Más detalles

Carrera: TID-1015 SATCA1 2-2 - 4

Carrera: TID-1015 SATCA1 2-2 - 4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA1 Ingeniería del Conocimiento Ingeniería en Tecnologías de la Información y Comunicaciones TID-1015 2-2 - 4 2.-

Más detalles

Marcosende, 9, 36200 Vigo (Pontevedra), jpardo@uvigo.es. Marcosende, 9, 36200 Vigo (Pontevedra), comesana@uvigo.es.

Marcosende, 9, 36200 Vigo (Pontevedra), jpardo@uvigo.es. Marcosende, 9, 36200 Vigo (Pontevedra), comesana@uvigo.es. II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 Metodología para la Definición de los Requerimientos en la Implantación de un Sistema de Gestión de Producción Asistida por Ordenador

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Guía Docente 2013-14

Guía Docente 2013-14 Guía Docente 2013-14 Visión Artificial Computer Vision Grado en Ingeniería Informática A distancia Rev. 10 Universidad Católica San Antonio de Murcia Tlf: (+34) 902 102 101 info@ucam.edu www.ucam.edu Índice

Más detalles

Escuela Técnica Superior de Ingeniería Informática

Escuela Técnica Superior de Ingeniería Informática Escuela Técnica Superior de Ingeniería Informática Máster en Ingeniería Informática aplicada a la Industria, a la Ingeniería del Software y a los Sistemas y Tecnologías de la Información GUÍA DOCENTE DE

Más detalles

PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN

PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN Paola Britos 1,2, Enrique Fernandez 1,2, Ramón García-Martinez 1,2 Centro de Ingeniería del Software e Ingeniería

Más detalles

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico : 2014-I 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre

Más detalles

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación 5.5.1. Denominación: Introducción a la Minería de Datos 5.5.2. Breve Descripción del Contenido: Introducción a la minería de datos. Aprendizaje supervisado, modelos no paramétricos y modelos generalizados

Más detalles

Curso del Data Mining al Big Data

Curso del Data Mining al Big Data Curso del Data Mining al Big Data Instructor: Dr. Luis Carlos Molina Félix Presentación. Las bases de datos y los sistemas de administración de datos han jugado un papel primordial en el crecimiento y

Más detalles