CAPÍTULO 1: ANÁLISIS DE LAS FUERZAS DESARROLLADAS EN EL FRENADO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 1: ANÁLISIS DE LAS FUERZAS DESARROLLADAS EN EL FRENADO."

Transcripción

1 CAPÍTULO 1: ANÁLISIS DE LAS FUERZAS DESARROLLADAS EN EL FRENADO. 1.INTRODUCCIÓN. Uno de los sistemas fundamentales de todo vehículo automóvil es el que le confiere la capacidad a reducir su velocidad incluso llegando a detenerlo sí así lo decide el conductor. Dicho sistema es el sistema de freno. El principio de funcionamiento de un sistema de frenado es la reducción de la energía cinética y/o potencial para transformarla en energía calorífica. Con esta transformación de energía se consigue la reducción de la velocidad del vehículo. En el presente capítulo se ana lizaran los conceptos fundamentales relacionados con el frenado de los vehículos y especialmente los relacionados con el reparto óptimo de frenada y con el proceso de deceleración. Consideramos los vehículos como cuerpos rígidos, no dotados, por tanto, de suspensiones. Así mismo, se considerará que el movimiento se produce en línea recta y sin acciones laterales, por lo que el análisis de los esfuerzos y movimientos asociados al proceso los estudiaremos a lo largo de este capítulo. El reparto de cargas sobre el eje en un vehículo moderno en parado, es aproximadamente de un solo 55% del peso total en el eje delantero, y del 45% sobre el eje trasero. Evidentemente, este reparto estático de cargas se modifican en condiciones dinámicas según las aceleraciones o deceleraciones a que se ve sometido el vehículo. Las principales fuerzas en juego en el proceso de frenado del vehículo son las que se representan en el esquema siguiente: Esquema de las fuerzas en juego en el proceso de frenado Como se puede observar en el diagrama, la inercia del vehículo al frenar genera una fuerza (F i ) que actúa sobre el centro de gravedad del vehículo y que CAPÍTULO 1 1

2 normalmente, al estar este punto situado a mayor altura que el eje de las ruedas, genera un par de cabeceo en el vehículo que modifica el reparto de cargas sobre los ejes. Aunque dicho reparto de cargas dinámicas durante la frenada depende de otros factores tales como el reparto de cargas estáticas, alturas del centro de gravedad y otros, se puede estimar que en un vehículo tipo dicho reparto de masas en una situación dinámica es el 75 % sobre el delantero y un 25 % sobre el eje trasero. Esta situación supone que tanto el dimensionamiento de los frenos delanteros y trasero así, como las características del material de fricción de las pastillas o zapatas, han de tener distintas dimensiones y/o coeficientes para evitar el bloqueo de las ruedas traseras. De producirse el blocaje del eje trasero, la estabilidad direccional del vehículo quedaría enormemente comprometida y en dicha situación el coche tendería a girar sobre su eje, como se verá más adelante con mayor detalle. 2. FUERZAS Y MOMENTOS QUE ACTÚAN EN EL PROCESO DE FRENADO. Veremos a continuación los diferentes esfuerzos que intervienen durante el proceso de frenado, algunos de ellos nos podrían parecer irrelevantes, pero veremos que son de vital importancia dependiendo del tipo de conducción que realicemos. FUERZA DE FRENADO. Las principales fuerzas retardadoras del vehículo en el proceso de frenado son las que se desarrollan en la superficie de las ruedas como consecuencia de su contacto con la calzada, al serles aplicados pares que se oponen a su movimiento, es decir, las fuerzas de frenado. La fuerza de frenado máxima así como la fuerza de tracción máxima tienen dos límites. En ambos casos el impuesto por el neumático - suelo. En lo relativo a las fuerzas de frenado, existe el otro límite impuesto es el que tiene el sistema de freno y en lo referente a las fuerzas de tracción máxima el que impone la potencia del motor. El límite crítico es el impuesto por la adherencia existente entre el neumático y el suelo. Cuando se rebasa este límite, en el caso del sistema de freno, se produce el bloqueo de las ruedas que deslizan sobre el pavimento, produciéndose efectos nefastos que más adelante comentaremos. CAPÍTULO 1 2

3 RESISTENCIA A LA RODADURA. La resistencia a la rodadura así como la resistencia aerodinámica del vehículo intervienen como fuerzas retardadoras en el proceso de frenado. Aunque su influencia es pequeña frente a la fuerza de frenado, pero aún así ayudan durante el proceso de deceleración. La resistencia a la rodadura, fundamentalmente está compuesta por la fricción neumático suelo y perdidas mecánicas en el sistema de transmisiones. Su valor es generalmente pequeño en comparación con las otras fuerzas en juego. El valor de la resistencia a la rodadura crece casi proporcionalmente a la velocidad. ACCIONES AERODINÁMICAS. Las fuerzas aerodinámicas al avance solo tienen interés como fuerzas retardadoras a altas velocidades. A velocidades moderadas o bajas pueden despreciarse frente al valor de la fuerza de frenado. Las fuerzas aerodinámicas son importantes a altas velocidades ya que su valor aumenta con el cuadrado de la velocidad que el vehículo lleve. Es decir que cuando doblamos la velocidad de un vehículo, por ejemplo de 80 km/h a 160 km/h la resistencia aerodinámica al avance, por ejemplo 40 Kg. se multiplica por cuatro siendo necesario un empuje de 160 Kg. En la siguiente tabla vemos como crecen las fuerzas aerodinámicas y de rodadura así como la potencia necesaria que debe tener el vehículo para superarlas. Velocidad (Km/h) Resistencia Aerodinámica (Kg) Resistencia a la Rodadura (Kg) Resistencia Total (Kg) 40 5,3 10,0 15,3 2, ,6 14,0 35,6 10, ,6 19,0 67,6 30, ,4 26, , ,0 32,0 167,0 126,2 Esta tabla ha sido confeccionada con las dimensiones de un vehículo de tamaño medio. RESISTENCIA DEL MOTOR Y TRANSMISIÓN. Potencia necesaria (CV) La resistencia que ofrece el motor constituye, en muchos casos, un factor importante en el proceso de frenado. La potencia, como el par resistente, que ofrece el motor en procesos de frenado en los que permanece conectado a las ruedas a través de la transmisión, es importante cuando gira a un gran número de revoluciones y disminuye con la velocidad, hasta hacerse pequeño en el último intervalo de un proceso de frenado. En bajadas prolongadas, especialmente si se trata de vehículos pesados, la retención efectuada por el motor es de suma importancia para preservar los CAPÍTULO 1 3

4 elementos de fricción de los frenos del calentamiento y consiguientes desgastes elevados. Si la deceleración con la que deseamos frenar es lo suficientemente fuerte, y el motor se encuentra embragado, las exigencias requeridas por el sistema de freno son mucho mayores que si desembragásemos el motor para realizar la frenada. Evidentemente, este efecto de frenado es mayor en los motores diesel con relaciones de compresión del orden de 20:1 que en motores de gasolina en los cuales está establecido en valores de compresión de 9:1. 3. CONDICIONES IMPUESTAS POR LA ADHERENCIA. El bloqueo de las ruedas de un eje produce efectos negativos, ya que en una situación de bloqueo, el coeficiente de fricción entre el neumático y la calzada adquiere un valor inferior al de máxima adherencia (µ=0,75), lo cual produce el deslizamiento del neumático sobre la calzada. En consecuencia, cuando las ruedas se bloquean, disminuye el valor de la fuerza de frenado respecto a la máxima fuerza potencial que puede obtenerse en condiciones de rodadura previas al bloqueo de las ruedas, ya que el coeficiente de fricción rueda / suelo cae a valores muy bajos del orden de µ=0,2 o inferior en pavimentos mojados. El efecto anterior, con ser de gran interés, no es el más importante. El bloqueo de las ruedas supone la superación de la adherencia neumático suelo en la dirección longitudinal, razón por la cual, la interacción entre ambos elementos será incapaz de ofrecer una resistencia que equilibre una posible fuerza lateral, por muy pequeña que sea. Como, por otra parte, resulta en la práctica imposible que se produzca una situación exenta de todo esfuerzo lateral el vehículo podrá experimentar un desplazamiento lateral (viento, reparto de carga, etc.) cuyo efecto es diferente según sea el eje cuyas ruedas se bloquean. Si el eje que se bloquea es el trasero la adherencia de las ruedas de dicho eje con el suelo disminuye fuertemente como se ha visto antes, por lo que cualquier inestabilidad puede provocar el giro del vehículo sobre su eje haciendo perder totalmente la estabilidad direccional. Es decir, si en una situación de conducción normal nosotros tiramos con violencia del freno de mano, hasta llegar a bloquear los neumáticos, el vehículo tenderá a derrapar de la parte trasera hasta situarse a contradirección. Si las ruedas que se bloquean son las del eje delantero, las fuerzas de inercia aplicadas al centro de gravedad y las de rozamiento o adherencia en las ruedas, proporcionan un momento de guiñada que disminuye con el valor de la perturbación lateral. Esto provoca que el sistema sea estable, es decir, las fuerzas tienden a hacer que el vehículo recupere su posición longitudinal. En esta situación se origina una cierta pérdida de control direccional, menos grave, en CAPÍTULO 1 4

5 términos generales, que la inestabilidad provocada por el bloqueo del eje trasero y el vehículo, tiende en principio a seguir una trayectoria recta sin obedecer a la dirección del mismo. Diagrama de las fuerzas provocadas por el bloqueo de un eje. De lo anterior se deducen en algunas conclusiones importantes: 1. El bloqueo de las ruedas del eje trasero de un vehículo de dos ejes produce una gran inestabilidad direccional de carácter irreversible. 2. El bloqueo de las ruedas del eje delantero de un vehículo de dos ejes puede producir pérdida de control direccional. 3. De todos lo anterior podemos concluir que tanto en el diseño del sistema de frenos, como en la conducción, debe de actuarse de tal forma que se eviten tanto el bloqueo de las ruedas delanteras como traseras. En frenadas bruscas, especialmente en condiciones de baja adherencia, puede llegarse al bloqueo y será probable que las ruedas de ambos ejes no alcancen al mismo tiempo el bloqueo. En este caso, resulta menos desfavorable que el bloqueo se produzca antes en las ruedas delanteras. Por esto se añaden al sistema elementos que limiten la frenada en el eje trasero para que no se produzca su bloqueo antes que en el eje delantero. 4. El bloqueo hace disminuir el coeficiente normal de adherencia (µ=0,7), pasando al valor de rozamiento en deslizamiento (µ=0,2), lo cual, en el mejor de los casos, si no se produjese alteración grave de la trayectoria, haría aumentar la distancia de frenado respecto a la condición óptima, es decir si se aprovechase al máximo la adherencia. De esto modo se puede comprender que es fundamental un buen aprovechamiento de la adherencia disponi ble en cada eje ya que constituye un problema crítico en el frenado. Tal aprovechamiento será máximo si el esfuerzo CAPÍTULO 1 5

6 transmitido por el sistema de freno a cada rueda es proporcional a la carga dinámica que soporta. Para optimizar la frenada y evitar el bloqueo de las ruedas se estudia el reparto óptimo de las fuerzas de frenado. Adicionalmente, algunos fabricantes especifican el material de fricción del freno del eje trasero con un coeficiente de fricción (µ) inferior al del eje delantero. Otros, aceptan materiales de fricción de un mismo coeficiente, pero nunca que el freno trasero tenga un coeficiente de fricción superior al eje delantero en cualquier situación de presión en el circuito, velocidad o temperatura. En consecuencia, es muy recomendable sustituir las pastillas de freno en los dos ejes por pastillas de un mismo fabricante ya que el montar materiales de diferentes fabricantes puede dar lugar a problemas como los descritos anteriormente. 4.- REPARTO ÓPTIMO DE LAS FUERZAS DE FRENADO. Cuando el vehículo se encuentra estático, la masa del vehículo se reparte entre el eje delantero y el eje trasero, con valores que el diseño del vehículo ha provisto. Casi todos los vehículos comerciales de nuestros días, son ligeramente más pesados en la zona delantera que en la trasera. Ya que, no solo, el motor está ubicado en la parte delantera, sino que además al traccionar en ese mismo eje, caja de cambio, diferencial, las transmisiones, etc. se encuentran en el eje delantero. El menor peso en el eje trasero implica que el diseño del reparto de fuerzas sea fundamental para no alcanzar el bloqueo de las ruedas traseras. Además como ya se ha comentado anteriormente, cuando nosotros frenamos aparece un momento de cabeceo alrededor del centro de gravedad, que genera una transferencia de carga del eje trasero al eje delantero. Esto significa, que no solo el eje trasero es menos pesado que el delantero, sino que además por dinámica vehicular en el eje trasero y siempre que se accione el freno, se va a descargar transfiriendo parte de esa carga al eje delantero. El valor de la transferencia de carga que se produce al frenar del eje trasero al delantero, depende de la altura del centro de gravedad del vehículo y de la batalla del vehículo, es decir, de su distancia entre ejes. Debido a todas estas variables, la fuerza frenante que se aplicará al eje delantero no es igual a la del eje trasero. Lo mismo debe decirse para las fuerzas que se aplican durante la aceleración. Si hiciésemos los cálculos para saber que porcentaje de la frenada debe de producirse en el eje delantero y cual en el eje trasero, considerando un coeficiente de fricción neumático suelo de valor µ =0,8. El reparto sería de un 0,75 % de la frenada en las ruedas delanteras; y 0,25 % en las ruedas traseras (Punto O). CAPÍTULO 1 6

7 1 TRASERO 0,9 DELANTERO 0,8 Deceleración relativa (g) 0,7 0,6 A O B 0,5 0,4 0, Reparto de frenada (%) Gráfica que representa el reparto óptimo de frenada entre ambos ejes. Para un valor de adherencia entre el neumático y el suelo de valor µ =0,80. El punto O, de intersección de ambas curvas, corresponde al frenado óptimo y, por tanto, a un reparto de esfuerzos de frenado como se ha descrito anteriormente. Si en el vehículo se estableciese un reparto de frenada con un 86% de frenada en el eje delantero y un 14% en el eje trasero (Punto B), se alcanzaría antes el bloqueo en las ruedas delanteras, consiguiéndose una deceleración máxima 0,62, muy por debajo del valor óptimo. Si por el contrario, el coeficiente de reparto de frenada se establece en un 40% en las ruedas delanteras y un 60% en las traseras,(punto A). Bloquearían antes las ruedas traseras y el límite de la deceleración quedaría establecido, también en un valor de 0,62 muy por debajo del valor óptimo y además con los perjuicios que provoca el bloqueo del eje trasero, visto anteriormente. Como vemos la mejor solución es la representada en el punto O con un reparto de frenada de un 75% en el eje delantero y un 25% en el trasero. Para que estos valores de reparto de frenada se mantengan dentro de la máxima adherencia consiguiendo así la mayor deceleración, los vehículos van equipados con reguladores de presión que consiguen la variación de la presión del circuito trasero para evitar el bloqueo de los neumáticos y las consecuencias negativas que ya se han comentado. CAPÍTULO 1 7

8 CAPÍTULO 2 INTRODUCCIÓN A LA TRIBOLOGÍA. 1. QUÉ ES LA TRIBOLOGÍA? La tribología es la ciencia y técnica que estudia la interacción entre superficies en movimiento y los problemas relacionados con ellos: desgaste, fricción, adhesión y lubricación. En la interacción entre dos superficies aparecen diversos fenómenos cuyo conocimiento es de vital importancia. Estos tres fenómenos fundamentales que aparecen son: FRICCIÓN: Efecto que proviene de la existencia de fuerzas tangenciales que aparecen entre dos superficies sólidas en contacto cuando permanecen unidas por la existencia de esfuerzos normales a las mismas. DESGASTE: Consiste en la desaparición de material de la superficie de un cuerpo como consecuencia de la interacción con otro cuerpo. ADHESIÓN: Capacidad para generar fuerzas normales entre dos superficies después de que han sido mantenidas juntas. Es decir, la capacidad de mantener dos cuerpos unidos por la generación anterior de fuerzas de unión entre ambos. El objetivo de la tribología no solo es minorar las desventajas. Dependiendo de la situación el objetivo a alcanzar puede ser distinto. Mínimo desgaste y mínima fricción: rodamientos, engranajes, levas... gracias a la lubricación y las capas de recubrimiento. Mínimo desgaste y máxima fricción: frenos, embragues, neumáticos... con materiales resistentes al desgaste. Máximo desgaste y mínima fricción: lápices, deposición de lubricantes sólidos mediante deslizamiento. Máxima fricción y máximo desgaste: borradores. Para que nos hagamos una idea de lo importante que son las soluciones a problemas tribológicos. Por ejemplo, en los automóviles, en los que existen más de 2000 contactos tribológicos, las mejoras tribológicas pueden suponer un ahorro estimado de energía del 18,6 %. En el campo energético, se estima que en EE.UU. un 11% de la energía total consumida en cuatro grandes sectores: transportes, turbo máquinas, generadores de potencia y procesos industriales, pueden ser ahorrados introduciendo avances tribológicos. Desde el punto de vista económico un informe realizado en Alemania revelaba que las pérdidas como CAPÍTULO 2 8

9 consecuencia de la fricción y el desgaste, equivale a un desperdicio energético anual del orden de 3 billones de pesetas. 2. FRICCIÓN. Fricción es la resistencia al movimiento que existe cuando un objeto sólido se mueve tangencialmente con respecto a la superficie de otro sólido con el que está en movimiento. La fricción se expresa en términos relativos de fuerza, como el coeficiente entre la fuerza de fricción y la carga nominal a la superficies de contacto, suele representarse por µ, que es un coeficiente adimensional, es decir, carece de unidades ya que las dos fuerzas se miden en las mismas unidades. µ = F N ( Kg) ( Kg) (Resistencia) Fr N F arrastre P Hay que distinguir entre dos situaciones: 1. FUERZA DE FRICCIÓN ESTÁTICA: La necesaria para iniciar el movimiento. Si la fuerza tangencial aplicada es menor a este valor, no existe movimiento y la fuerza de fricción es igual o mayor a la tangencial aplicada. 2. FUERZA DE FRICCIÓN CINÉTICA O DINÁMICA: La necesaria para mantener el movimiento. De valor menor a la anterior. Las leyes fundamentales de la fricción son: La fuerza de fricción es proporcional a la fuerza normal. F = µ N La fuerza de fricción es independiente del área aparente de contacto (A a ). Por esta razón objetos grandes y pequeños del mismo par de materiales, presentan el mismo coeficiente de fricción. La fuerza de fricción teóricamente es independiente de la velocidad de deslizamiento (aunque no es así en la práctica debido a la sensibilidad CAPÍTULO 2 9

10 de los materiales de fricción a la presión, a la velocidad y a la temperatura). Los coeficientes de fricción típicos que presenta el acero cuando se desliza sobre otros materiales son los que aparecen en la siguiente tabla. Material 1 Vs. Material 2 µ Acero Acero 0,62 Bronce Acero 0,24 Grafito Acero 0,10 A escala microscópica, las superficies de los sólidos presentan cimas y valles, que podemos evaluar midiendo su rugosidad. Debido a esta rugosidad cuando dos superficies entran en contacto, no lo hacen en todo el área aparente de contacto (Aa), sino que el contacto se verificará solo en algunos puntos de estas rugosidades. A la suma de las áreas de los puntos en los que se verifica el contacto, la denominaremos área real de contacto (A r ). Esta área es independiente del área aparente de contacto. Estos puntos de contactos son los encargados de soportar la carga normal y de generar la fuerza de fricción. Cuando la carga normal aumenta, el número de puntos en contacto aumenta, aumentando el área real de contacto a pesar de mantenerse invariable el área aparente. La fuerza de fricción es debida a varios efectos que suponen aportación de energía: Adhesión: principal componente de la fricción. Deformación. A la interacción entre asperezas. La existencia de capas contaminantes entre el disco de freno y el material de fricción reduce considerablemente las fuerzas de fricción. La existencia de una fuerza de fricción hace aumentar el área real de contacto y aumenta el barrido de la capa intermedia (tercera capa), aumentando la adhesión respecto al simple contacto. Es importante destacar que a altas velocidades de deslizamiento de una superficie contra la otra, se aumenta la temperatura debido a la fuerza de rozamiento entre ambos materiales que se oponen al movimiento con lo cual se CAPÍTULO 2 10

11 produce una conversión de la energía cinética en calor (energía térmica) con el consiguiente aumento de la temperatura de ambas superficies. 3. EL FRENADO. El frenado de un cuerpo en movimiento es uno de los estudios más complejos dentro de la tribología. Al frenar un vehículo lo que estamos consiguiendo por medio de la fricción entre dos materiales, es la transformación de energía cinética y/o potencial (la que lleva el objeto por moverse o por encontrarse a una determinada altura) en energía calorífica. Esta transformación de energía lo que provoca es un aumento de la temperatura global de todo el sistema. La transformación de la energía se produce en el contacto entre una parte fija que va anclada a la mangueta del vehículo (el caliper), y una parte móvil que gira solidaria con la rueda a la misma velocidad angular (el disco). Cuando accionamos el pedal del freno se presuriza el circuito y los émbolos de las pinzas empujan a las pastillas (elemento fijo) contra el disco (elemento móvil). En el contacto entre las pastillas y el disco es donde se produce la transformación de la energía, de ahí que las características de ambos elementos sean muy peculiares, ya que deben de soportar altas temperaturas sin desgastarse en exceso pero con un buen coeficiente de rozamiento para poder conseguir frenar el vehículo. También, el coeficiente de rozamiento del material de fricción ha de ser lo más estable posible a distintas velocidades y a diferentes presiones en el sistema de freno de forma tal que el conductor pueda prever el resultado cuando trata de decelerar su vehículo. CAPÍTULO 2 11

12 CAPÍTULO 3 EL SISTEMA DE FRENADO. El sistema de frenos de un vehículo moderno está compuesto por los siguientes elementos: 1. SERVOFRENO: Diagrama de un sistema de frenos configurado de forma diagonal. El servofreno es el sistema por el cual la fuerza que hay que ejercer sobre el pedal, para presurizar el circuito a una misma presión, se reduce. Es decir, es un elemento que reduce el esfuerzo que necesita el conductor para presurizar el circuito pisando el pedal. Las ventajas del servofreno no son exclusivamente las de poder realizar una presión mayor sobre el circuito hidráulico, y por consiguiente, sobre los pistones de las pinzas con un mayor descanso del píe. Si no que lo que se consigue es una mejor dosificación de la frenada. Los servofrenos actuales más corrientes son aquellos que actúan por vacío. Estos aparatos aprovechan la depresión creada en el colector de admisión cuando se retira el pie del acelerador para aumentar la fuerza que el pie proporciona al pedal del freno. CAPÍTULO 3 12

13 Comparativa CON SERVO / SIN SERVO Presión en el circuito con servo(bar) Presión en el circuito sin servo (bar) 140 Presión en el circuito (bar) Fuerza en el pedal (Kg). Comparativa de la fuerza de pedal a realizar en un vehículo sin servofreno y otro dotado de servofreno Los valores típicos de esfuerzo pedal / servo para el sistema tipo representado anteriormente, son los siguientes: Fuerza sobre el pedal (Kg) Presión en el circuito con servo (bar) Presión en el circuito sin servo (bar) CAPÍTULO 3 13

14 2. BOMBA DE FRENO: La bomba de freno o cilindro principal, es el encargado de presurizar el líquido por todo el circuito hidráulico. Como la legislación actual obliga a los fabricantes de vehículos a que estos vayan provistos de doble circuito de freno, las bombas de freno son de tipo tándem. Bomba de freno con depósito para el líquido de frenos El sistema tandem significa que la bomba dispone de dos pistones, colocados uno a continuación del otro, con los cuales se atiende al suministro del líquido a una presión igual para cada uno de los dos circuitos independientes normalmente distribuciones según una X. Es decir, un circuito actúa sobre la rueda delantera izquierda y también sobre la trasera derecha mientras que el otro actúa sobre la rueda delantera derecha y la trasera izquierda como elemento de seguridad en el caso de problemas de perdida de eficacia en uno de los dos circuitos. 3. CORRECTOR DE FRENADA: Los limitadores de frenada o correctores de presión tienen la función de reducir la presión que llega al tren trasero con el fin de que no se llegue al bloqueo en esas ruedas. Existen diferentes modos de funcionamiento de los correctores: Con punto de corte fijo: cuando la presión alcanza un valor fijo deja de admitir más presión. De gravedad: dependiendo de la carga del vehículo el corrector va dando más presión en el circuito, ya que al bajar la superficie por medio de un accionador de tipo mecánico va abriendo más la válvula. Recordemos que cuanto mayor sea el peso CAPÍTULO 3 14

15 Corrector de frenada por gravedad soportado por el eje mayor es la fuerza necesaria para frenar dicho eje. Dependiendo de la deceleración del vehículo. 4. PINZA DE FRENO: La pinza de freno es el elemento encargado de soportar las pastillas además de empujarlas contra el disco cuando se presuriza el sistema. La pinza es un elemento crítico del sistema de freno y está sometida a esfuerzos importantes durante el frenado tales como vibraciones, excesiva temperatura y otros elementos agresivos. Por lo tanto, la inspección, aunque sea visual, si no se dispone de una cámara ultravioleta para la detección de grietas, es muy importante. Existen diferentes tipos de caliper (pinzas) de freno según el sistema de freno y el fabricante. Sin embargo todas se basan en el hecho de que después de liberar la presión del circuito, permiten que la pastilla de freno, continúe en contacto con el disco de freno, de forma que en la próxima frenada, el efecto de esta sea inmediato sin necesitar un tiempo de aproximación entre la pastilla y el disco de freno. Este contacto queda garantizado por los retenes del pistón del caliper, por el propio sistema hidráulico y lógicamente genera un efecto permanente de frenado (residual torque) cuyo valor es crítico para el buen funcionamiento del sistema. Pares residuales (residual torque) de frenado altos pueden provocar el calentamiento del sistema dando lugar a problemas que se describen más adelante. PINZAS DE PISTON OPUESTO: Diagrama de funcionamiento del cilindro del caliper CAPÍTULO 3 15

16 El freno de disco de pinzas de pistón opuesto se fija en la brida de montaje mediante dos pernos y las pinzas están montadas por encima del disco que gira con el cubo de la rueda. Los cilindros a ambos lados de las pinzas fijas están equipados cada uno con una junta que se mantiene en una ranura angular en alojamiento del cilindro. Los cilindros y pistones están protegidos contra la suciedad y agua con una cubierta antipolvo. Los conjuntos de pastillas están montados entre el pistón y el disco en la ranura de las pinzas y se mantienen en posición con pasadores. Las pinzas para las ruedas traseras pueden llevar incorporados orificios de fijación para unir un freno de mano de tipo pinzas accionado mecánicamente que sirva como freno de estacionamiento. Pinza de doble pistón Su principio de funcionamiento es simple, es decir, cuando se pisa el pedal el cilindro principal presuriza el líquido de frenos que empuja por igual a cada uno de los pistones de la pinza, que a su vez empujan a las pastillas contra el disco. La ventaja de este sistema es que ambas pastillas se empujan con la misma fuerza contra el disco. El esfuerzo de pedal aplicado está siempre directamente relacionado con la fuerza de pistón (según una relación determinada por las dimensiones de los componentes), y por lo tanto con el grado de frenado. Cuando se suelta el pedal, la presión hidráulica que hay en el sistema de frenos disminuye, lo que hace que los pistones vuelvan a su posición original ayudado por la junta que existe entre los pistones y el cuerpo de la pinza (también responsable de la estanqueidad del conjunto). Al desgastarse el material de la pastilla, los pistones se deslizan más a través de la junta al frenar, con lo que compensa automáticamente el desgaste. PINZAS DESLIZANTES: Los frenos de disco de pinzas deslizantes se han diseñado para recuperar el espacio perdido por la instalación de las suspensiones tipo McPherson, que han restringido considerablemente el espacio disponible, ya que modifican el ángulo de caída de las ruedas. Este nuevo tipo de pinza está sustituyendo a la pinza de doble pistón por sus mejores ventajas como pueden ser: que el líquido de frenos se encuentra separado de la zona de disipación de calor, gran área y volumen de pastilla de freno con lo que se consigue mayor superficie de fricción para el frenado y al ser más anchas tienen mayor vida útil, peso menor, fuerza constante en las dos pastillas y par residual reducido debido a la retracción controlada de las pastillas. El cuerpo del freno, que no está expuesto a fuerzas centrífugas, se puede fabricar tanto en versión de aluminio de una sola pieza y en versión de dos CAPÍTULO 3 16

17 piezas con el cuerpo de aluminio y un puente de hierro fundido dúctil. Para disipar mejor el calor la pieza de aluminio puede estar provisto de aletas de disipación, es decir, se aumenta la superficie de contacto entre el medio y la propia pinza. El principio de funcionamiento es sencillo, al pisar el pedal del freno se actúa sobre el cilindro principal (que puede ir dotado de servo o no) aumentando la presión de todo el sistema. Está presión al ser aplicada sobre el pistón empuja la pastilla de freno interior contra el disco. Debido que la presión aplicada y el líquido encerrado actúan unifórmente en todas las direcciones, se ejerce simultáneamente una fuerza reactiva en el cuerpo. Esta fuerza desliza el cuerpo sobre los pernos de guía y tira de la pastilla exterior contra el disco. El esfuerzo de frenado por lo tanto es igual a ambos lados. El ajuste de la separación de la pastilla con el disco después de completar el proceso de frenado se consigue de manera similar al de las pinzas fijas, por medio de la deformación controlada de la junta del pistón. Pinza deslizante En este tipo de caliper, además de las comprobaciones rutinarias del pistón y sus elementos de estanqueidad, es muy importante verificar el buen deslizamiento de las guías del caliper para garantizar el reparto igual de esfuerzos sobre las dos pastillas de freno del caliper. 5. TUBERIAS Y LATIGUILLOS: Las tuberías y los latiguillos son los encargados de conducir el líquido de frenos, soportando la presión interna del líquido, además deben de resistir la agresión medioambiental y otros agentes agresivos del entorno. Las tuberías de freno normalmente son tubos de acero y muchas veces están recubiertas con polímero para resistir la corrosión; usualmente tienen un ánima nominal de 2,5 mm. y un diámetro externo de 4,5 mm. Cada extremo de la tubería está carenado con carena individual o doble para que coincida con el componente en el que se coloca, y tiene montada una tuerca de tuberías macho o hembra según sea necesario. Los tubos flexibles están construidos en capas, de los que el revestimiento, ha de ser resistente al aceite mineral, y el externo a partículas duras y daños producido por piedras, agua, sal y demás contaminantes que puedan existir en la carretera. El producto que se utiliza es un polímero de mezcla de etileno propileno dieno (EPDM). CAPÍTULO 3 17

18 Se emplea tela de rayón de capas múltiples para las dos capas de refuerzo, que resisten la presión del tubo flexible. Los tubos flexibles de frenos están diseñadas para funcionar a una presión de 100 bares, su presión de rotura es unas 5 veces mayor. La membrana interior del tubo flexible ha de ser resistente al líquido de frenos (3). El material empleado es EPDM ya que es muy poco permeable. El material de la capa interior es de rayón por presentar unas muy buenas cualidades de resistencia de presión interna (2). Algunos tubos flexibles tienen fundas de plástico o acero inoxidable enrollados alrededor de los mismos para dar protección adicional contra el doblado del tubo en otros componentes (1). 6. EL LÍQUIDO DE FRENO: Latiguillo de freno El líquido de freno es el elemento que al ser presurizado por la bomba empuja los cilindros de las pinzas contra las pastillas, produciéndose así la acción de frenado. Para los usuarios de los automóviles es el eterno olvidado, es decir, muy pocos conductores dan la importancia que dicho elemento tiene. Como veremos a continuación sus características son las que aseguran una correcta frenada, pero es un elemento que con el uso y el paso del tiempo se degrada y debe de ser sustituido. Las características fundamentales del líquido de freno son las siguientes: - Es incompresible (como todos los fluidos). - Su punto de ebullición mínimo debe ser superior a los 230ºC. Así conseguirá permanecer en estado líquido, sin entrar en ebullición, cuando las solicitaciones de frenada sean muy exigentes. - Debe de tener baja viscosidad para desplazarse rápidamente por el circuito. - Debe de ser lubricante para que los elementos móviles del sistema de freno con los que se encuentra en contacto no se agarroten. CAPÍTULO 3 18

19 - Debe de ser estable químicamente, para no corroer los elementos del sistema de freno con los que se encuentran en contacto. En la actualidad, la mayoría de los líquidos de freno cumplen con todos los requisitos que le son demandados, pero como contrapartida y debido a la composición de elementos que tiene, posee una propiedad que obliga a que su sustitución sea necesaria cada 2 años o km. Esta propiedad es la propiedad higroscópica, es decir, tiene una gran capacidad de absorber agua. En ambientes húmedos, bien pudiera ser necesario el proceder a su cambio antes de los plazos anteriormente indicados. Por qué la capacidad higroscópica del líquido de freno es negativa? Se podría pensar que cuando existe agua en el sistema de frenos no tendría porque modificar las cualidades del líquido, ya que es un fluido. Pero no es así ya que el agua aunque sea en estado líquido, corroe los elementos del sistema de frenos con los que está en contacto. Aunque el problema principal de la existencia de agua en el sistema de freno es que cuando la temperatura del líquido supera los 100ºC el agua se evapora transformándose en vapor de agua, un gas, que si es compresible, con lo cual el pedal ira al fondo, ya que toda la presión que nosotros estemos introduciendo en el sistema servirá para comprimir ese vapor de agua y no para actuar sobre las pastillas de freno. Además la existencia de agua en el sistema como se ve en el gráfico hace disminuir el punto de ebullición del líquido Punto de ebullición ºC 200 DOT 4 DOT ,5 1 1,5 2 2,5 3 3,5 4 4,5 5 % de AGUA CAPÍTULO 3 19

20 Los líquidos de freno dividen en la actualidad en dos grupos dependiendo de las características que presenten. Así en la actualidad se pueden comercializar dos calidades de líquido de freno. Líquido de freno - DOT 4: Cuyo punto de ebullición es de 255ºC. Empleado en sistemas de disco/tambor o disco/disco sin ABS. - DOT 5: Cuyo punto de ebullición es de 270ºC. Debe ser el utilizado para vehículos de altas prestaciones y aquellos que vayan dotados de sistemas ABS. Ambas calidades de líquido son miscibles entre sí, pero no se recomienda el mezclado de ambos. Aunque exista la posibilidad de mezclarlos, es conveniente leer el libro de mantenimiento del vehículo para saber, si necesitamos rellenar, que tipo de líquido emplea nuestro vehículo. Cuando procedamos a sustituir el líquido de freno es conveniente limpiar el circuito con alcohol metílico para conseguir que el líquido nuevo, conserve todas sus propiedades. Además en cualquier Comparativa de lo que afecta el agua en los diferentes tipos de líquido de freno manipulación que se haga debe de purgarse después el sistema de freno. Conviene recordar que los vehículos que disponen de suspensión neumática emplean ese mismo fluido como líquido de freno. Este tipo de líquido se denomina LHM y es muy importante tener en cuenta que no debe ser empleado líquido de freno de tipo DOT mezclado con LHM, ya que estropearía todo el sistema. CAPÍTULO 3 20

21 CAPÍTULO 4 PASTILLAS DE FRENO 1. BREVE RESEÑA HISTORICA SOBRE LA FRICCIÓN. Con la aparición de los vehículos autopropulsados a finales del siglo XIX, surgió la necesidad de dotarles de un sistema que consiguiese detenerlos cuando el conductor decidiera. Las primeras soluciones aportadas fue la adaptación de los frenos de los coches de caballos en estos primeros automóviles. Esto era posible a que las velocidades que los vehículos de tracción mecánica desarrollaban eran relativamente bajas. Estos sistemas consistían en un accionamiento manual de una palanca que movía una zapata, la cual rozaba contra la banda de rodadura de las ruedas produciendo así la fricción necesaria para decelerar o frenar el vehículo de forma efectiva. En el año 1987 Herbert Frood, implemento el primer forro de fricción basado en la utilización de fibras de algodón, trenzadas en forma de correa. Esto estaba todo ligado mediante soluciones bituminosas y hilos de latón. Este material no solo fue usado en los frenos de los coches de caballos, sino que además fue empleado en algunos de los automóviles de la época consiguiendo unos resultados aceptables. Lógicamente tenía unas limitaciones ya que el uso de una fibra natural como es el algodón significaba que por encima de 150ºC perdía las propiedades de fricción y se rompían. Esta desventaja se hizo palpable enseguida, y tan solo diez años después se introdujo en la formulación las fibras de amianto. Sentando las bases de los materiales de fricción durante las décadas siguientes. Se eligió la fibra de amianto crisótilo para la mayoría de las aplicaciones. Las fibras de amianto eran fáciles de tejer de la misma forma que el algodón con lo cual fue fácil sustituir las fibras de algodón. Su mayor resistencia mecánica, la resistencia a la temperatura, la flexibilidad, sus excelentes propiedades de fricción y la compatibilidad con las resinas y demás sustancias ligantes, hacían de la fibra de amianto el mejor de los componentes para aplicaciones de fricción. La inclusión de latón y otros alambres en el tejido añadieron resistencia física y modificaron las características fricciónales de comportamiento del material. Durante sesenta años los materiales de fricción de este tipo han contribuido enormemente en la seguridad de los automóviles, camiones y toda clase de vehículos que circulaban por todo el mundo. A principios de la década de los años 20, los químicos comenzaron el estudio de sustituir los trenzados de los forros de freno por piezas moldeadas. Comenzaron usando fibras cortas de crisotila, las cuales eran muy abundantes y de coste reducido. Uno de los primeros creadores de forros de freno no trenzados fue Mr. Blume, en 1926, su formula presenta unas similitudes muy interesantes con la primera formula de amianto desarrollada. La fórmula original se basaba en CAPÍTULO 4 21

22 alambres de latón y en un refuerzo de tejido de amianto, unidos por un compuesto de aceite o goma de asfalto. La nueva formula moldeada utilizaba el mismo amianto, pero las fibras eran más cortas que las que se utilizaban en el tejido de amianto. El alambre de latón se sustituyó por partículas de latón y el asfalto original por aceite de linaza y un carbón bituminoso especial que aportaba un alto grado de volatilidad y un bajo desprendimiento de cenizas. La mayor parte de los avances posteriores fueron únicamente mejoras que se añadieron a este concepto original. Durante la década de los 30, los químicos comenzaron a investigar en resinas flexibles con mayor resistencia al calor. Estos nuevos materiales, junto con el proceso de mezclado en seco, abrió el camino a nuevos y muchos más sofisticados componentes y con ello a un nuevo mundo de materiales de fricción que todos conocemos hoy en día. Al mismo tiempo, otros pioneros en el desarrollo del material de fricción provenían de la industria del caucho. Los trenzados de algodón y posteriormente los trenzados de amianto fueron recubiertos con compuestos de caucho que después iban siendo apilados en capas hasta obtener el espesor requerido, todo ello se conseguía gracias a la ayuda de la maquinaría típica de la industria del caucho. Más tarde se introdujeron compuestos de fibra de amianto y caucho, que podían laminarse y plegarse o extrusionarse, también utilizando la maquinaria convencional del caucho. Durante la década de los 50 se implemento una nueva formulación que contenía nuevas resinas que ligaban virutas metálicas dando paso así, a la aparición de las pastillas en base metálica. Esta formulación procedía del gran éxito que los materiales de fricción metálicos habían conseguido en aplicaciones industriales y aeronáuticas. Estos nuevos materiales metálicos eran una mezcla de resinas con lana de acero y grafito. Este tipo de formulas fueron muy usadas durante la década de los 70 en la fabricación de las pastillas. En los años 60, a medida que se avanzaban en el diseño de los vehículos y era necesario mejorar los sistemas de frenos, muchas empresas de materiales de fricción comenzaron a buscar alternativas al amianto como principal componente de los frenos de disco. El amianto es un material que posee sus propias limitaciones; es un recurso agotable, de calidad variable y su precio subía. Como alternativa, se contempló el uso de fibras de vidrio, fibras de metal y más recientemente, fibras de carbón sintéticas. Al mismo tiempo, comenzó a cuestionarse el efecto sobre la salud del uso del amianto. Muchos fabricantes dejaron de trabajar con este material debido a los problemas que se asociaron con él. Todo esto hizo que los materiales de fricción semi-metálicos llegaran a ser los más utilizados en los años 70 para la fabricación de frenos de disco. CAPÍTULO 4 22

23 Los semi-metálicos distan de ser materiales ideales para cualquier aplicación. Los materiales de fricción con alto contenido en metales son mejores conductores del calor que los materiales compuestos de amianto, y esto puede ocasionar problemas como por ejemplo, una excesiva transferencia de calor a la pinza y al líquido de frenos que puede entrar en ebullición. El desarrollo de los nuevos materiales de fricción continuó durante los 80. La aparición de la tracción delantera, la reducción de tamaño de las ruedas y el perfeccionamiento del diseño aerodinámico son sólo algunos aspectos del desarrollo de la industria automovilística que implicaron nuevas exigencias en el mundo de los materiales de fricción durante los últimos 20 años. El incremento de calor generado durante el frenado plantea problemas adicionales para la ingeniería de fricción y para quienes se dedican a formular materiales de fricción. Por esto, se está desarrollando una nueva generación de productos con una menor conductividad térmica que los semi-metálicos, que supongan una reducción de la transferencia de calor al líquido de frenos. Durante los años 90 hace su aparición una nueva tendencia en los programas de desarrollo de los principales fabricantes de vehículos y materiales de fricción con el fin de sustituir los contenidos de métales pesados del material de fricción (trisulfuro de antimonio, sulfuro de plomo o galena, disulfuro de molibdeno, fibras de cobre y componentes del cobre lo mismo que fibras de silicio) por compuestos no tóxicos, a fin de evitar el impacto negativo de dichos materiales sobre el medio ambiente y los seres humanos. Se trabaja en un material orgánico que no se desintegre a altas temperaturas de frenado y mantenga sus características de fricción en un ancho rango de temperaturas. Un material que admita el desgaste sin dañar las otras superficies. Estamos ante la aparición de una nueva generación de materiales de fricción de superiores prestaciones y más respetuosos con el medio ambiente, así como con las personas que cada día están en contacto con estos materiales. No obstante, todavía quedan en el mercado productos de fricción que contienen amianto, y se recomienda, dadas sus propiedades cancerígenas, su manipulación siguiendo las normas estrictas de seguridad que están claramente definidas en todos los países para la manipulación de productos tóxicos y peligrosos. 2. COMPOSICIÓN. La obligatoriedad de eliminar el amianto supuso un cambio importante dentro de las formulaciones. El amianto era una fibra que constituía la base de cualquier formulación ya que era capaz de aportar las cualidades requeridas a cualquier material de fricción. No obstante, aunque los primeros materiales sin amianto que aparecieron en el mercado eran de prestaciones y duración inferiores a los de con amianto, CAPÍTULO 4 23

24 hoy en día los productos sin amianto han superados a aquellos en todos los requisitos exigibles a un material de fricción. En la actualidad la mayoría de los fabricantes de fricción emplea en mayor o menor medida la base que a continuación se ofrece. LAS FIBRAS: Las fibras son los elementos encargados de aglutinar y ligar el resto de los elementos. Es decir, las fibras son el armazón de las pastillas de freno, a través de sus múltiples ramificaciones van uniendo el resto de los elementos. Existen dos tipos principales de fibras las sintéticas y las minerales. Las más usuales en el campo de la fricción son: fibras de vidrio, fibras de aramida, lana de roca... LAS CARGAS MINERALES: Las cargas minerales son las encargadas de dar consistencia mecánica al conjunto, es decir, le aportan resistencia a la abrasión, resistencia a cortadura... Están encargadas también, de aportar resistencia a las altas temperaturas. Las más usuales son: barita, magnesita, talco, mica, carbonato, feldespato y otros. COMPONENTES METÁLICOS: Se añaden en forma de polvo o viruta para conseguir homogeneizar el coeficiente de fricción así como la transferencia de calor de la pastilla al caliper. Los más usuales son, latón, cobre, bronce entre otros. No obstante una gran parte de los componentes metálicos usados en los materiales de fricción, tienen efectos nocivos sobre la salud por lo que se recomienda seguir estrictamente la legislación referente a los productos que contengan tales metales pesados. LOS LUBRICANTES O MODIFICADORES DE COEFICIENTE: Son los encargados de hacer variar el coeficiente de fricción normalmente a la baja, dependiendo del rango de temperatura de funcionamiento. Son empleados en forma de polvo suelen ser grafitos, cokes, sulfuros, antracitas, etc. LOS MATERIALES ORGÁNICOS: Son los encargados de aglomerar el resto de los materiales. Cuando alcanzan una determinada temperatura fluyen y ligan el resto de componentes, hasta que se polimerizan. Las más importantes son las resinas fenólicas termoendurecibles, aunque también son empleados diferentes tipos de cauchos, ceras, aceites... LOS ABRASIVOS: Cumplen principalmente la misión de incrementar el coeficiente de fricción y también renuevan y limpian la superficie del disco permitiendo la formación de la capa intermedia o también conocida como tercera capa. CAPÍTULO 4 24

25 Lubricantes 20% Abrasivos 8% Cargas minerales 27% Metales 15% Ligantes orgánicos 20% Fibras 10% Composición del material de fricción 3. FABRICACIÓN. La fabricación de material de fricción es un proceso bastante estandarizado. Las variables del proceso son las que cada fabricante define en función del tipo de materiales que emplea, es decir, de la composición que defina. A grandes rasgos los pasos fundamentales que se deben de seguir a la hora de fabricar son: EL PROCESO DE MEZCLADO: Es uno de los principales pasos dentro del proceso de fabricación, ya que su misión es la de mezclar todos los componentes de forma homogénea. Para conseguir una buena homogeneización de la mezcla, el mezclador está provisto de un eje central que hace girar los componentes en forma de ochos y en otro eje dos cuchillas batidoras que son las que van homogeneizando la mezcla. En este proceso, uno de los factores críticos es el tiempo que los diferentes materiales pasen en el mezclador, ya que este periodo debe estar definido dependiendo del tipo de fibras que se vayan a mezclar. Cada fibra tiene un tiempo de apertura, es decir, un periodo en el cual su longitud es la mayor posible, a partir de ahí lo que sucede es que las fibras se van acortando con lo cual no realizaran la función anteriormente descrita. PRENSADO EN CALIENTE: La misión del prensado en caliente es la de aglutinar los diferentes componentes. Por una parte, con la presión que CAPÍTULO 4 25

26 se realiza se consiguen una reducción del volumen, pero a su vez con la temperatura lo que se hace es fundir las resinas para que estas fluyan por todo el material ligando los diferentes elementos. Este proceso lleva asociado unos ciclos de prensado, es decir, que la prensa actuará sobre las pastillas durante un determinado tiempo, para a continuación permitir la salida de los gases. En está etapa es en la que los soportes son pegados al material de fricción. Esto se produce por dos motivos principales, uno de ellos es que el soporte lleva impregnado una resina que consigue la adhesión del material y por otro lado, existen unos huecos pasantes en los soportes cuya función es la de alojar el material de fricción que fluye para conseguir una completa fijación del material de fricción al soporte. El tiempo típico de prensado varía de 10 a 12 minutos según la formula empleada para permitir el curado en prensa de las resinas. CURADO: El proceso de curado se realiza en hornos, su misión principal es la completa polimerización de las resinas, para conseguir una perfecta compactación del material además de ir perdiendo el contenido todavía existente de volátiles. Este proceso también es función del tiempo y de la temperatura que se va alcanzando en las diferentes etapas. Esto significa que las pastillas van sufriendo un ciclo de diferentes temperaturas, en las cuales van pasando durante un periodo determinado. SCORCHADO: En esta última fase, el material de fricción se sube a temperaturas de 500ºC o superiores bajo la acción de una placa caliente o bajo el efecto de una llama. En este último proceso se elimina una gran parte de materiales orgánicos aún existentes, el polímero (resina) se grafitiza y la pastilla de freno adquiere sus características definitivas. Este es un proceso caro y delicado por lo que muy pocos fabricantes lo incorporan a sus procesos de fabricación. OPERACIONES DE MECANIZADO: En esta etapa las pastillas sufren diferentes proceso de mecanización para adaptarlas a las características dimensionales requeridas por cada aplicación. Es decir, por un lado se rectifican para conseguir el espesor de material de fricción necesario. Otro de los procesos que pueden sufrir es la realización de catas o ranuras, al igual que los chaflanes. PUESTA DE ACCESORIOS: Durante esta etapa se le añaden a las pastillas todos los elementos complementarios tales como los muelles, resortes, avisadores... MARCADO Y ESTUCHADO: Las pastillas están finalizadas solo queda marcarlas y estucharlas para poderlas servir a los diferentes clientes. CAPÍTULO 4 26

Componentes. Puede usar uno o mas pistones hidráulicos. Contiene sellos para retener el fluido y evitar que se contamine. Posee tornillos de purga

Componentes. Puede usar uno o mas pistones hidráulicos. Contiene sellos para retener el fluido y evitar que se contamine. Posee tornillos de purga Componentes Caliper: Esta montado sobre el eje de la rueda, pero no gira con el conjunto de la rueda y aloja las pastillas de freno para detener el disco. Puede usar uno o mas pistones hidráulicos. Contiene

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

EL FRENO DE DISCO Una historia basada en hechos reales

EL FRENO DE DISCO Una historia basada en hechos reales Descubre a los protagonistas de presenta EL FRENO DE DISCO Una historia basada en hechos reales CUANDO CADA CENTÍMETRO CUENTA Los frenos son el sistema de seguridad activa más importante de un automóvil

Más detalles

LÍQUIDOS DE FRENOS. favorezca corrosiones en partes metálicas y congelaciones a bajas temperaturas. Una cantidad de humedad

LÍQUIDOS DE FRENOS. favorezca corrosiones en partes metálicas y congelaciones a bajas temperaturas. Una cantidad de humedad LÍQUIDOS DE FRENOS El líquido de freno es un líquido hidráulico que gracias al principio de Pascal permite la transmisión de fuerza entre el pedal de freno y los dispositivos de freno. Se trata de un aceite

Más detalles

[ NOTA TÉCNICA ] multiplexado) los cálculos teóricos de dichas presiones realizadas por el módulo del ESP (Control de estabilidad lateral).

[ NOTA TÉCNICA ] multiplexado) los cálculos teóricos de dichas presiones realizadas por el módulo del ESP (Control de estabilidad lateral). [ 41 [ NOTA TÉCNICA ] 38 ] Los sistemas de seguridad se han ido desarrollando a lo largo de los años para brindar a los ocupantes del vehículo el resguardo necesario. La tecnología fue evolucionando, y

Más detalles

ANEXO Autoevaluación de conducción eficiente

ANEXO Autoevaluación de conducción eficiente ANEXO Autoevaluación de conducción eficiente A.1 A SPECTOS BÁSICOS DE L A C O N D U C C I Ó N E F I C I E N T E 1. En España, en el sector del transporte se quema más del % de todo el petróleo consumido

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

Distribuidores de NTN Y SNR

Distribuidores de NTN Y SNR Distribuidores de NTN Y SNR RODAMIENTOS 1 / 14 Distribuidor de NTN y SNR Disponemos de rodamientos de: - Rigidos de bolas - Contacto angular - Axiales de bolas, rodillos y agujas - Conicos de bolas y rodillos

Más detalles

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad:

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: Alumno:.. DNI:.. Fecha:... Por el profesor de la práctica.-rafael Sánchez Sánchez NOTA: Este cuadernillo debrá

Más detalles

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor 1El fuego y el calor S u m a r i o 1.1. El tetraedro del fuego 1.2. Reacciones químicas 1.3. Transmisión del calor INVESTIGACIÓN DE INCENDIOS EN VEHÍCULOS 5 Capítulo 1 Desde el punto de vista de la investigación

Más detalles

En los 460 y 461, la tracción es solo a las ruedas traseras siendo conectable el eje delantero.

En los 460 y 461, la tracción es solo a las ruedas traseras siendo conectable el eje delantero. UNAS LINEAS SOBRE TRANSMISIONES Y BLOQUEOS Como todos sabéis ya, existen hoy día dos tipos de trasmisiones en los G según se trate de caja 460 o 461 y 463, la primera se fabricó hasta el año 89/90 y las

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

Hernán Verdugo Fabiani Profesor de Matemática y Física

Hernán Verdugo Fabiani Profesor de Matemática y Física Fuerza de roce Las fuerzas de roce son fuerzas, entre cuerpos en contacto, que por su naturaleza se oponen a cualquier tipo de movimiento de uno respecto al otro. Si alguien quiere desplazar algo que está

Más detalles

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas.

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Son equipos que proveen de energía eléctrica en forma autónoma ante interrupciones prolongadas y

Más detalles

LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR

LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR LUBRICANTES RECAMBIO GENUINO VOLVO Qué nos hace diferente del resto de lubricantes del mercado? La exclusividad y la dedicación a los equipos

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

1. Prueba de impacto delantero

1. Prueba de impacto delantero Fichas Técnicas de Reparación de Vehículos Carrocería No.3 MAYO 2009 DEFORMACIONES PROGRAMADAS INTRODUCCIÓN La carrocería de los automóviles ha evolucionado con el paso de los años, en sus inicios eran

Más detalles

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior.

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior. J. A. Rodrigo Catalizadores En general, los fabricantes de automóviles y de catalizadores suelen aconsejar o recomendar a los usuarios a través del Manual de Instrucciones del vehículo, advertencias como:

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

Cambio del filtro y aceite de la transmision

Cambio del filtro y aceite de la transmision Cambio del filtro y aceite de la transmision Objetivo: Cambiar el fluido de la transmisión automática y eje de transmisión. Esta hoja de actividades contiene: Instrucciones paso por paso para completar

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

LA GUÍA NEUMÁTICOS CONSEJOS CITROËN PARA UN BUEN MANTENIMIENTO

LA GUÍA NEUMÁTICOS CONSEJOS CITROËN PARA UN BUEN MANTENIMIENTO LA GUÍA NEUMÁTICOS CONSEJOS CITROËN PARA UN BUEN MANTENIMIENTO CONSEJOS CITROËN PARA UN BUEN MANTENIMIENTO LOS NEUMÁTICOS SON ELEMENTOS ESENCIALES DE SEGURIDAD Y DE PLACER EN LA CONDUCCIÓN Los neumáticos

Más detalles

Las lunas parabrisas del automóvil

Las lunas parabrisas del automóvil Concepción Pérez Las lunas parabrisas del automóvil El parabrisas como elemento de seguridad activa y pasiva del vehículo Gracias al sistema de unión por adhesivo del parabrisas a la carrocería, y a los

Más detalles

Montalbán y Rodríguez, S.A. Prefabricados de hormigón.

Montalbán y Rodríguez, S.A. Prefabricados de hormigón. El objeto de este documento es proporcionar una serie de recomendaciones y criterios prácticos para la correcta colocación de adoquines según se describe en la normativa UNE-EN 1338. 1. CARACTERÍSTICAS

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Embrague. Indice. Nota: El elemento que presiona sobre el plato de presión cuando no se pisa el pedal del embrague puede ser:

Embrague. Indice. Nota: El elemento que presiona sobre el plato de presión cuando no se pisa el pedal del embrague puede ser: Embrague Indice El embrague es un elemento que se coloca entre el volante de inercia del motor y la caja de cambios. Se acciona por medio de un pedal que gobierna el conductor con su pie izquierdo. Posición

Más detalles

PROCESO DE FABRICACIÓN DE BIODIESEL

PROCESO DE FABRICACIÓN DE BIODIESEL MEMORIA BIONORTE S.A. es una industria química que transforma el aceite vegetal usado, residuo sin utilidad y con gran potencial contaminante, en un combustible ecológico para motores diesel. Este combustible,

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

A continuación se presenta los resultados obtenidos en las pruebas realizadas en

A continuación se presenta los resultados obtenidos en las pruebas realizadas en 6.0 RESULTADOS, COMPARACIÓN Y ANALISIS. 6.1 PERMEABILIDAD. A continuación se presenta los resultados obtenidos en las pruebas realizadas en el laboratorio para la determinación del coeficiente de permeabilidad

Más detalles

SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS. Soluciones para:

SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS. Soluciones para: SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS para una mayor productividad Soluciones para: Máquinas transportadoras Máquinas para el llenado de vidrio Máquinas para

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

Posee un limitador de velocidad en el pedal del gas, reportando toda una garantía de seguridad durante el periodo de iniciación.

Posee un limitador de velocidad en el pedal del gas, reportando toda una garantía de seguridad durante el periodo de iniciación. ROADCROSSKART MANUAL DE INSTRUCCIONES FL-30 WEB: http://www.tamcocars.com EMAIL: info@tamcocars.com El FL-30 es un vehículo concebido y desarrollado para los más jóvenes, a partir de 14 años, que quieran

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

SISTEMAS DE PRODUCCIÓN

SISTEMAS DE PRODUCCIÓN SISTEMAS DE PRODUCCIÓN La producción es el proceso mediante el cual la empresa transforma un conjunto de factores de producción en un producto cuyo valor debe ser mayor que la suma de los valores de los

Más detalles

Edmundo Gerardo Gallegos Sánchez

Edmundo Gerardo Gallegos Sánchez Edmundo Gerardo Gallegos Sánchez Balanceo de llanta Llantas de Carga. Ing. Juan Pablo Quiroga Venegas. 2 Qué es el Balanceo? El balanceo de la llanta es la compensación de sobrepesos que existen en la

Más detalles

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006 BATERIA AUTOMOTRIZ HECTOR CISTERNA MARTINEZ Profesor Técnico 1 Introducción La batería es un acumulador de energía que cuando se le alimenta de corriente continua, transforma energía eléctrica en energía

Más detalles

Dto de AUTOMOTORES Sexto Automotores. UNIDAD Nº 2: El Embrague

Dto de AUTOMOTORES Sexto Automotores. UNIDAD Nº 2: El Embrague Configuración UNIDAD Nº 2: El Embrague El mecanismo de embrague consiste en la unidad del embrague propiamente, la cual transmite la potencia del motor y desengancha éste desde la trasmisión. La unidad

Más detalles

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV)

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) POTENCIA Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. Potencia teórica o térmica W F e P = = = F v t t 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) Se denomina

Más detalles

OPERADORES MECANICOS

OPERADORES MECANICOS OPERADORES MECANICOS 0.- INTRODUCCION 1.- OPERADORES QUE ACUMULAN ENERGIA MECANICA 1.1.- Gomas 1.2.- Muelles 1.3.- Resortes 2.- OPERADORES QUE TRANSFORMAN Y TRANSMITEN LA ENERGIA MECANICA 2.1- Soportes

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL En esta breve nota se intentan analizar las relaciones existentes en el sector español entre tipo de cambio, tasa de inflación y tipos de interés,

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

ELECTRODOS ESPECIALES Y PLACAS. Electrodo de Grafito Rígido ELECTRODOS DE GRAFITO RIGIDO

ELECTRODOS ESPECIALES Y PLACAS. Electrodo de Grafito Rígido ELECTRODOS DE GRAFITO RIGIDO ELECTRODOS ESPECIALES Y PLACAS Electrodo de Grafito Rígido ELECTRODOS DE GRAFITO RIGIDO Nuestro Proveedor, ha diseñado nuevos electrodos fabricados a partir de grafito para ser utilizados en sistemas de

Más detalles

CURSO OPERADOR DE VEHICULO

CURSO OPERADOR DE VEHICULO CURSO OPERADOR DE VEHICULO EQUIPADO MODULO 4 - INSPECCIONES 2010 Ing. Federico Lluberas Inspecciones 2 Las inspecciones son fundamentales tanto para la seguridad de quienes conducen como para prolongar

Más detalles

CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN AUTOMÓVIL 8. RESUMEN

CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN AUTOMÓVIL 8. RESUMEN eman ta zabal zazu ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO Grado en Ingeniería Mecánica TRABAJO FIN DE GRADO 2013 / 2014 CÁLCULO Y DISEÑO DE LA TRANSMISIÓN DE UN AUTOMÓVIL 8. DATOS

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE

3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE 3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE El aceite vegetal ha sido considerado como un posible combustible para las maquinarias desde 1912, cuando Rudolf Diesel (inventor del motor diesel) lo mencionó en

Más detalles

MANUAL TÉCNICO FILTRO DE POTENCIALES

MANUAL TÉCNICO FILTRO DE POTENCIALES MANUAL TÉCNICO FILTRO DE POTENCIALES 1 Introducción a la Protección Catódica p. 2 2 Perjucios de la electrolisis p. 2 3 Filtro de Potenciales p. 4 4 Conexión del Filtro de Potenciales p. 5-1 - 1 Introducción

Más detalles

Actividad: Qué es capilaridad?

Actividad: Qué es capilaridad? Qué es capilaridad? Nivel: 3º medio Subsector: Ciencias físicas Unidad temática: Ver video Capilaridad Actividad: Qué es capilaridad? Los fluidos son un conjunto de moléculas distribuidas al azar que se

Más detalles

SISTEMA DE SUSPENSIÓN

SISTEMA DE SUSPENSIÓN SISTEMA DE SUSPENSIÓN 1. MISIÓN DE LA SUSPENSIÓN El sistema de suspensión de un automóvil se encarga de hacer más cómoda la marcha a los pasajeros, evitando que las oscilaciones del terreno se transmitan

Más detalles

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE El combustible es el elemento necesario para producir la potencia necesaria que mueve a un vehículo. En la actualidad

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ).

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). 3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). Para evaluar la potencia de un motor termico o de un vehiculo, la forma mas habitual que emplean los fabricantes, es utilizar un

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

Cintas Transportadoras REGLAS BÁSICAS PARA LA SELECCIÓN DE UNA CINTA TRANSPORTADORA

Cintas Transportadoras REGLAS BÁSICAS PARA LA SELECCIÓN DE UNA CINTA TRANSPORTADORA Cintas Transportadoras REGLAS BÁSICAS PARA LA SELECCIÓN DE UNA CINTA TRANSPORTADORA Definición Una cinta transportadora es parte de un sistema de transporte continuo formado por distintos materiales vulcanizados

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

PREGUNTAS FRECUENTES

PREGUNTAS FRECUENTES PREGUNTAS FRECUENTES ÍNDICE Qué son los Repartidores de costes de calefacción? Montaje y funcionamiento de los repartidores Base de datos de radiadores existentes. Precio de los Repartidores de Costes

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

4. Tipos de servomotores. Clasificación según su topología:

4. Tipos de servomotores. Clasificación según su topología: 4. Tipos de servomotores. Clasificación según su topología: Motor Inducido de Tres fases AC Motor Tipo Brush DC Brushless Servo Motor (AC & DC) Motor Paso a Paso SwitchedReluctance Motors Motor Lineal

Más detalles

DISPOSITIVO PARA EL EQUILIBRADO DE RUEDAS DE BICICLETA

DISPOSITIVO PARA EL EQUILIBRADO DE RUEDAS DE BICICLETA 1 DISPOSITIVO PARA EL EQUILIBRADO DE RUEDAS DE BICICLETA OBJETO DE LA INVENCIÓN La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un dispositivo para el equilibrado

Más detalles

Adecuación del. movilidad ciudadana. Luciano Andrés Alegre. Dr. Ingeniero industrial. Madrid, 10 de Mayo de 2.011

Adecuación del. movilidad ciudadana. Luciano Andrés Alegre. Dr. Ingeniero industrial. Madrid, 10 de Mayo de 2.011 Adecuación del vehículo eléctrico a la movilidad ciudadana Luciano Andrés Alegre Dr. Ingeniero industrial Madrid, 10 de Mayo de 2.011 Por qué el vehículo eléctrico en la ciudad? El VE no contamina. La

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

GENERALIDADES... 4 1 VALORES LÍMITE DEL AGUA DE LA CALEFACCIÓN... 4

GENERALIDADES... 4 1 VALORES LÍMITE DEL AGUA DE LA CALEFACCIÓN... 4 ES GB DE FR NL IT GENERALIDADES... 4 1 VALORES LÍMITE DEL AGUA DE LA CALEFACCIÓN... 4 1.1 Puntos de atención generales relativos a la calidad del agua... 5 1.2 Puntos a tener en cuenta respecto a la calidad

Más detalles

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 1 097 480 Número de solicitud: 1331388 1 Int. CI.: A47G 29/00 (06.01) 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación:

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN

CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN 19 CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN 2.1 Sistemas de dirección Los sistemas de dirección son los que permiten controlar el movimiento del vehículo. El mecanismo

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

BUJÍAS y CALENTADORES Una historia basada en hechos reales

BUJÍAS y CALENTADORES Una historia basada en hechos reales Descubre a los protagonistas de presenta BUJÍAS y CALENTADORES Una historia basada en hechos reales BUJÍAS, LA CHISPA DE LA VIDA DE TU VEHÍCULO Los conductores tienen la palabra Usuario muy activo Registrado:

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

ECONOMIZADORES. El Rol de un Economizador

ECONOMIZADORES. El Rol de un Economizador La creciente competencia que existe hoy día obliga a las empresas a buscar alternativas para reducir los costos operacionales de sus procesos productivos. Un costo de significativa importancia en la operación

Más detalles

ES 1 055 325 U. Número de publicación: 1 055 325 PATENTES Y MARCAS. Número de solicitud: U 200301198. Int. Cl. 7 : B60C 29/00

ES 1 055 325 U. Número de publicación: 1 055 325 PATENTES Y MARCAS. Número de solicitud: U 200301198. Int. Cl. 7 : B60C 29/00 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k Número de publicación: 1 0 32 21 k Número de solicitud: U 01198 1 k Int. Cl. 7 : BC 29/00 k 12 SOLICITUD DE MODELO DE UTILIDAD U k 22 Fecha de presentación:

Más detalles

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS Dentro de la caracterización mecánica de los materiales de ingeniería, la resistencia a la tensión y la

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles

Tema Quemadores de gas atmosféricos

Tema Quemadores de gas atmosféricos Tema Quemadores de gas atmosféricos 1. TIPOS DE QUEMADORES ATMOSFERICOS PARA GASES. Los quemadores para combustibles gaseosos suelen ser mas sencillos que los de combustibles líquidos debido fundamentalmente

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

EMPALMES DE FIBRA OPTICA

EMPALMES DE FIBRA OPTICA EMPALMES DE FIBRA OPTICA OBJETIVO Objetivo General Conocer los diferentes tipos de empalmes, su utilización y aplicación, métodos de realización y caracterización de los mismos. 2 CARACTERISTICAS DE LOS

Más detalles

Agentes para la conservación de la energía mecánica

Agentes para la conservación de la energía mecánica Agentes para la conservación de la energía mecánica Para levantar un cuerpo verticalmente a velocidad constante, es necesario que algún agente externo realice trabajo y hemos demostrado que este trabajo

Más detalles

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B MOTOR GAS Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B QUÉ ES? Es un motor alternativo es una máquina de combustión interna capaz de transformar la energía desprendida en una reacción

Más detalles

1.2 SISTEMAS DE PRODUCCIÓN

1.2 SISTEMAS DE PRODUCCIÓN 19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción

Más detalles

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES Este es un producto diseñado e impulsado en Venezuela desde hace mas de 10 años por un grupo de Ingenieros Mecánicos y Arquitectos, que junto con un equipo

Más detalles

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios:

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios: MANUAL DE CAPACITACIÓN EN CONDUCCIÓN EFICIENTE INTRODUCCIÓN Señor Conductor: Este manual esta dedicado a usted CONDUCTOR PROFESIONAL!, en cuyas capaces y hábiles manos descansa la responsabilidad final

Más detalles

TRANSMISIONES DEL TRACTOR

TRANSMISIONES DEL TRACTOR TRANSMISIONES DEL TRACTOR En el tractor encontramos: Embrague. Convertidor de par. Doble embrague. Embrague hidráulico Caja de cambio Alta y Baja constante Mecánica Clásica En toma Sincronizada Automática

Más detalles

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 Este Modo Operativo está basado en la Norma ASTM C 348, el mismo que se ha adaptado al nivel de implementación y a las condiciones

Más detalles

DL CH12 Reactor químico combinado

DL CH12 Reactor químico combinado DL CH12 Reactor químico combinado Introducción La reacción química es la operación unitaria que tiene por objeto distribuir de una forma distinta los átomos de unas moléculas (compuestos reaccionantes

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles