Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l"

Transcripción

1 El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward. Exs ua formula básca para valorar l forward, solo s aplca pquñas varacos las cuals s dscrb a couacó: La formula básca pa d la rfrca d los forwards dl mrcado Forx sdo ua parja d modas y 2 co sus rspcvas asas d rés S θ s l spo, s la cosa d Eulr y rprsa l mpo. ( VP F S S VP θ θ 2 ( r r 2 U forward sobr commods como l oro sufr ua pquña varacó ya qu s cluy la asa d rés dl oro (las ra co la varabl l ( F S θ ( r l Los forwards sobr acvos qu paga rss o dvddos s calcula co la msma fórmula qu s ulza para las dvsas ( F S θ ( r r 2 U srumo d ra fja o s más qu ua coxó d flujos d fcvo C (, C 2 ( 2 C ( y omado l spo como S mos qu: S C S s dsa su valor forward F (τ a ua fcha τ basa co dvdr por l facor dl valor prs r τ τ obdo:

2 rττ F ( τ C També xs forwards sobr asas d rés os quda d la sgu mara cosdrado qu las asa d cupó cro a plazo so r, y las asas a plazo T (T> so R. La asa forward r (, T r y T dura u plazo T- v dado por: ( 0, ( 0, VP VP T Así qu RT ( ( VP 0, VP, T (, VP T (, r T RT RT T Así s calcula la asa corrca para u corao FRA, mas apa alguos procsos socáscos als como l lma d Io. Los fuuros U corao d fuuros s u acurdo, gocado ua bolsa o mrcado orgazado, qu oblga a las pas coraas a comprar o vdr u úmro d bs o valors (acvo subyac ua fcha fuura y drmada, y co u prco sablcdo d amao. La valoracó d los fuuros s práccam smlar a la d los forwards dbdo a qu so srumos muy parcdos por jmplo la valoracó d u fuuro sobr boos y omado cua las smluds quda: Forward C

3 E s caso C so los flujos dl boo a rgar y sabdo l prco dl forward y l facor d covrsó (FC l prco dl fuuro a rgar s: Fuuro Forward FC E l caso d los fuuros sobr ídcs bursáls la cuacó s muy sclla: Fu ( ( S r d Y l caso d los dvddos dbdo a qu o s da d mara coua d cosdra l prodo qu ocurr r hoy y l mpo : Fu ( S FV S mbargo al corporar u poco d procsos socáscos s s complca l hacr l ajus d forwards a fuuros, por llo y para hacrlo más dbl dscrbo los sgfcados: ( α (* k s r Fu Fwd σ σ σ s Volaldad dl subyac σ r Volaldad d las asas Palzo k Cosa α Proporcoal a La formula prov dl valor sprado dl coso/bfco d facamo d la poscó fuuros (la cual s ob mda la gral sobr ua dsrbucó log

4 ormal co dos varabls y corrlacó comparada co la poscó forward, prco forward y l prco d fuuros. Ahora s ya sabmos so cov dfr ambé lo sgu: # d prodos (duracó d la vrsó δ Tasa d rés lbr d rsgo ( ( Fu Prco d los fuuros hasa l prodo "" l prodo Fwd Prco d los forward hasa l prodo "" l prodo Ahora para dmosrar la gualdad cosdrmos como jmplo ua sraga smpl, vr Fwd (0 boos s rsgo y comprar Fwd ua cadad gual a δ al cabo d prodos s rcb xacam Fwd ( porqu s Fwd (0 δ dro dl boo y Fwd ( - Fwd (0 δ dl forward; al hacr la progrsó y comparado los prodos os quda al pasar dl prodo - al prodo : ( Fu Fu δ Y calculado l valor fuuro l prodo s ob: δ ( δ Fu Fu Fu Fu ( ( Y la suma d los rsulados d la poscó s vdm δ ( Fu Fu + ( Fu Fu ( Fu Fu ( Fu Fu δ δ Ahora comparado l rsulado co l d la vrsó forwards y boos os quda: ( Fwd Fwd δ 0 Dado qu l prco d los fuuros al vcmo Fu ( y l prco dl forward al vcmo Fwd ( (al gual qu l prco spo l prodo so guals, obmos l rsulado fal y co lo cual quda cocluda la dmosracó:

5 δ ( Fwd Fwd ( Fu Fu Fwd Fu δ Dfrcas r l forward y l fuuro La dfrca r ambos srumos pa su oaldad dl hcho d qu l fuuro s u corao sadarzado y gocabl mras qu u forward s u acurdo blaral dvdual r dos pas. Tamaño: l amaño d u fuuro sá dfdo d amao, odos los fuuros por jmplo d prólo d WTI NYMEX so d,000 barrls, por jmplo, mras qu u corao forward pud r cualqur amaño qu ds las dos pas dl msmo. Vcmo: U mrcado d fuuros sólo prm cas fchas d vcmo muy spcífcas, mras qu u forward s pud acordar cualqur fcha qu covga a ambas pas. Espcfcacó dl Subyac: para cosgur sadarzacó y lqudz u mrcado d fuuros, s csaro lmar las varacos prmsbls d clardad dl subyac rgabl cora las poscos fuuros. Méodo d lqudacó: Los fuuros smpr ua cámara d compsacó qu rspalda l mrcado y qu csa dpósos d garaía para o r qu omar rsgos d crédo, los coraos forward o porqu spcfcar gú po d dpóso garaía y l rsgo d crédo s algo a gocar r ambas pas. Compsacó dara: Ua coscuca dl mcasmo d lqudacó por cámara d compsacó s qu odas las poscos fuuros abas al mrcado s valora cada día, d mara qu las poscos uca gaacas o pérddas las s ralzar. E l caso d los coraos forward o s l, caso por lo qu s csa prsar más acó la rsgo d crédo. Mcasmo d gocacó: Los fuuros s goca smpr mrcados orgazados, co los cosgus mcasmos d suprvsó, mras qu los forwards o s goca mrcados orgazados.

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

APLICACI ONES DE LA FUNCI ÓN

APLICACI ONES DE LA FUNCI ÓN APLICACI ONES DE LA FUNCI ÓN GENERADORA DE MOMENTOS Adrés Camlo Ramírz Gaa adrs.camlo.ramrz@gmal.com Trabajo d Grado para Opar por l Tulo d Mamáco Drcor: Bgo Lozao Rojas Esadísco Uvrsdad Nacoal d Colomba

Más detalles

Procesamiento Digital de Señales de Voz

Procesamiento Digital de Señales de Voz Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.

Más detalles

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad CONDCONES PARA UNA NMUNZACÓN POR DURACONES PARA SEGUROS A PRMA PERÓDCA J. ñak d a Pña Profsor Tular d Unvrsdad RESUMEN a nmunzacón s una sraga nvrsora ncamnada a rspaldar un compromso d pago. El raamno

Más detalles

Multicupón no garantizado 07/09 1

Multicupón no garantizado 07/09 1 ANEXO AL CONTRATO FINANCIERO DENOMINADO MULTICUPÓN NO GARANTIZADO OBRE UPUETO DE AJUTE O UPUETO EPECIALE DE AJUTE. UPUETO DE AJUTE: E caso d qu s produzca cualqura d las stuacos qu a cotuacó s dca l Baco

Más detalles

9 Momentos y funciones generatrices de Momentos

9 Momentos y funciones generatrices de Momentos 9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

3. Cálculo y dimensionado

3. Cálculo y dimensionado Documto Básco HE Ahorro d Ergía. Codsacos 1 Las codsacos suprfcals los crramtos y partcos trors qu compo la volvt térmca dl dfco, s lmtará d forma qu s vt la formacó d mohos su suprfc tror. Para llo, aqullas

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares.

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Fscouímca II-Módulo d Estructura y Propdads Molculars. Bollla 4. Coctado las dscrpcos mcro/macroscópcas: Trmodámca Estadístca 4. La coxó tr la dscrpcó cuátca y las propdads trmodámcas. Hmos vsto como dscrbr

Más detalles

S o b r e e l u s o y e l a b u s o d e l P e y o t e

S o b r e e l u s o y e l a b u s o d e l P e y o t e S o b r e e l u s o y e l a b u s o d e l P e y o t e ( L o p h o p h o r a w i l l i a m s i i ( L e m. e x S a l m - D y c k ) J. M. C o u l t.) I n v e s t i g a c i ó n r e a l i z a d a p o r : P

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

La Patata. La Patata Frita

La Patata. La Patata Frita La Patata La c omú n y c or r i e n t e pat at a (S ol an u m t u b e r osu m) t i e n e u n pasado e xót i c o. Las pat at as pr ovi e n e n de S u damé r i c a, don de l os n at i vos de l ár e a ah

Más detalles

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO Aál Facro Nº 93 Frado Gómz-Bzar, Joé A. Madaraga y 6 PRMER CUATRMESTRE 004 CUARTA EPOCA. P.V.P. 9,9 Javr Sabáñz PERFORMANCE AJUSTADA A RESGO 8 Jú Joé Agla Jméz y Aracl Rodríguz Mrayo E NVE DE A NFORMACÓN

Más detalles

TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO

TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO Facultad d Ccas Ecoómcas y Admstratvas TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO Rafal Sarmto Lotro RESUMEN La Toría d Cotratos també coocda como Ecoomía d la Iformacó, studa las coscucas d la xstca

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Tema IV: Ruidos e Interferencias: Técnicas de reducción.

Tema IV: Ruidos e Interferencias: Técnicas de reducción. SCUA TÉCNICA SUPIO D INGNIOS INDUSTIAS Y D TCOMUNICACIÓN UNIVSIDAD D CANTABIA INSTUMNTACIÓN CTÓNICA D COMUNICACIONS (5º Curso Igría d Tlcomucacó) Tma IV: udos Itrrcas: Téccas d rduccó. José María Drak

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico Bao Cral d Vzula Coló Eoomía y Fazas Sr Doumos d rabajo Comparaó d la flaó las prpals udads d Vzula mda u modlo d faor dámo Alí Aoo Aosa Hrádz Dal Barráz Guzmá [Nº 7] ayo Bao Cral d Vzula Caraas Gra d

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

Producto de convolución de las derivadas de orden k por las derivadas de orden de la delta de Dirac soportadas en x 1, x a, y x n

Producto de convolución de las derivadas de orden k por las derivadas de orden de la delta de Dirac soportadas en x 1, x a, y x n Vol. 5, No., pp. 59-69/Dcmr ISSN-L 88-674 Coprgh Uvrsdd Ncol d Igrí Imprso Ncrgu. Todos los drchos rsrvdos hp://www.lmol.fo/d.php/nexo Produco d covolucó d ls drvds d ord por ls drvds d ord d l dl d Drc

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales.

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales. 7. Transformaors Cállo ransformaors S s onsrano n oro qvaln. Calqr ransformaor p sñars hano so rs aons nrals. Prmra aón. Dfnón nsa fljo manéo (nón ampo manéo). B A Sna aón. y Ampèr. l I 7. Transformaors

Más detalles

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.:

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.: RIESGO MORA Comportamto accos dl A o obsrvabl para l o, smplmt, o vrfcabl.. j.: s A pd jrcr dsttos vls d sfrzo, co RM l o sab cál d llos llva a cabo. acr sfrzo spo dstldad para l A Úca varabl cotratabl:

Más detalles

CURSO DE ELECTRÓNICA BÁSICA

CURSO DE ELECTRÓNICA BÁSICA CURSO DE ELECTRÓNICA BÁSICA O b j e t i v o P r o v e e r l o s c o n o c i m i e n t o s t e ó r i c o s y p r á c t i c o s d e E l e c t r ó n i c a B á s i c a p a r a q u e l a s p e r s o n a s q

Más detalles

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico Comparaó d la flaó las prpals udads d Vzula mda u modlo d faor dámo Al Aoo Aosa Hrádz Dal Barráz Guzmá Rsum s rabajo s ompara los prosos flaoaros las prpals udads d Vzula mda u modlo d faor dámo d Sok

Más detalles

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu ba be bi bo bu bra bre bri bro bru bla ble bli blo blu ca ce ci co cu cra cre cri cro cru qui cla cle bli clo clu que da dra dla fa fra fla de dre dle fe fre fle di dri dli fi fri fli do dro dlo fo fro

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

División 2. Mecánica de Tornillos Tornillos de transmisión Tornillo de ajuste y sujeción

División 2. Mecánica de Tornillos Tornillos de transmisión Tornillo de ajuste y sujeción Vrsó 014 CAITULO 4 OYECTO DE ELEMENTOS DE SUJECIÓN, ANCLAJE Y CIEE Dvsó Mcáca d Torllos Torllos d trasmsó Torllo d ajust y sujcó UTN-BB Cátdra: Elmtos d Máquas. rofsor: Dr. Ig. Marclo Tulo ova Vrsó 014

Más detalles

III Game Campori Online

III Game Campori Online 2015 14-16 d ag vã www.gam.ampl.m puguê III Gam Camp Ol Gua dl Ev A Equp Rad Wb Avdad y glam Cdad Publdad Tadu Rla x Rd Sal Epaldad dl Ev Pdu y vd Múa Dg Tx 2 Thag Sf Hla quad! C ga algía l v a hé d aha

Más detalles

Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Estimar el tiempo que necesitas para resolverlo.

Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Estimar el tiempo que necesitas para resolverlo. Examen muestra Ob je ti vo Responder preguntas parecidas a las del examen de selección. Im por tan cia Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Saber cuántas

Más detalles

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda Tit ulo docume nto Cómo va lora r t u empre sa Nombre docum ent o Documento de Preguntas y respuestas Autor Luis Ignacio Sánchez Rueda 1 COMO VALORAR LA EMPRESA 1. Una misma empresa puede valer diferente

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

CURSOS DE FORMACIÓN 2016

CURSOS DE FORMACIÓN 2016 CURSOS D FORMACIÓ 2016 Opción horizontal positivo // secundaria DIRIGIDO POR SPCIAL PARTR PROGRAMA D DSARROLLO DIRCTIVO (PDD) LUGAR D RALIZACIÓ BARCLOA ste programa de desarrollo directivo está compuesto

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Paco Cecilio GUADALAJARA. Mundo Infantil Esther Calma. Foster s Hollywood. Revista digital nº1. Ho g a r. Sa l u d. Oc i o. Cu l t u r a...

Paco Cecilio GUADALAJARA. Mundo Infantil Esther Calma. Foster s Hollywood. Revista digital nº1. Ho g a r. Sa l u d. Oc i o. Cu l t u r a... GUADALAJARA La estrategia es la diferencia Mundo Infantil Comer bien es divertido Esther Calma y su m u n d o d e zapatos Foster s Hollywood Cocina americana Mo d a. Co m p l e m e n t o s. Ni ñ o s. Ho

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li Sopas Silábicas animales po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li po no ce pe li ri be ca ri ce ve sa

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

La tasa de interés y sus principales determinantes

La tasa de interés y sus principales determinantes La tasa d ntrés y sus prncpals dtrmnants 1. INTRODUCCIÓN Rchard Roca * Uno d los tmas qu domna l dbat académco d los últmos años s sobr las tasas d ntrés. Los mprsaros sñalan qu todavía sta muy alta y

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Incentive Schemes and Innovative Portfolios

Incentive Schemes and Innovative Portfolios Esqumas Estudos d d Ecoomía. ctvos Vol. y cartras 7 - Nº, / Juo Go Loyola, 2. Págs. Yolada 4-66 Portlla 4 Esqumas d Ictvos y Cartras d Ivrsó Iovadoras Ictv Schms ad Iovatv Portfolos Go Loyola Yolada Portlla

Más detalles

producción, a los cuales dota de una nueva estética y equipamiento que los hace

producción, a los cuales dota de una nueva estética y equipamiento que los hace PB BWA 17-q7:Maquacó 1 Pága 1 prbam BWA Spr 17 La uva Spr 17 u d l mdl má 5,10 m 2,19 m Smrrígda cmpv dl caálg d BWA, a pr u capacdad cm pr u ajuad c, qu l cvr ua bua pcó para adrar l mud d la mrrígda.

Más detalles

UNA PRUEBA DE LA TEORÍA DE LA PARIDAD DE LAS TASAS DE INTERÉS PARA EL CASO DE ARGENTINA

UNA PRUEBA DE LA TEORÍA DE LA PARIDAD DE LAS TASAS DE INTERÉS PARA EL CASO DE ARGENTINA UNA PUEBA DE LA TEOÍA DE LA PAIDAD DE LAS TASAS DE INTEÉS PAA EL CASO DE AGENTINA Jorg Luis Mauro * Dicimbr d 2005 * Tsis d Licnciaura n Economía, Univrsidad Caólica Argnina (UCA). Dircor: Adrián Broz.

Más detalles

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO Ana María Islas Cors Insuo Polécnco Naconal, ESIT amslas@pn.mx Gabrl Gullén Bunda Insuo Polécnco Naconal, ESIME-Azcapozalco ggulln@pn.mx Yolanda Monoya

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

& fun. viajeglamour Por silvia lópez

& fun. viajeglamour Por silvia lópez viajglamour Por silvia lópz A ts d sumrgirs l rodaj d Holms. Madrid Suit. 1890, la visió dl dtctiv lodis d José Luis Garci ( itrprto a Alcátara, u priodista lgat y romático, amigo d Watso ), l actor Migul

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii CAPÍTULO I Nociones generales 1. Re s e ñ a hi s t ó r i c a... 1 2. De n o m i n a c i ó n... 3 3.

Más detalles

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

Tema 5. Contraste de hipótesis (II)

Tema 5. Contraste de hipótesis (II) Tma 5. Cotrast d hpótss (II CA UNED d Hulva, "Profsor Dr. José Carlos Vílchz Martí" Itroduccó Bvda Objtvos pdagógcos: Aprdr a obtr la fucó d potca d u cotrast y la rprstar la curva d potca d u cotrast.

Más detalles

DIRECCIÓN FINANCIERA I TEMA 1

DIRECCIÓN FINANCIERA I TEMA 1 IRECCIÓ FIACIERA I TEMA 1 rccón Fnancra I (Grup F) Tma 1 1 EMPRESA ESARRLLA UA ACTIVIA: PRUCIR Y VEER SERVICIS ESTR. ECMICA csns d nvrsón Prsupust d captal IFRAESTRUCTURA: ACTIV FIJ ACTIV CIRCULATE ECISIÓ

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Para facilitar la comprensión del problema lo desarrollaremos por partes:

Para facilitar la comprensión del problema lo desarrollaremos por partes: DCCIÓ D SÑLS DIGILS Hmos asgao ormas oa a los vrsos símolos orcos or l Cocaor u. s caso vamos a molar l caal corar rcors acuaos ara or r, caa s, cual símolo u rasmo. Molarmos l caal como u lro asaao o

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

LA VARIABLE LATENTE CALIDAD MEDIDA A TRAVÉS DEL MODELO DE RASCH

LA VARIABLE LATENTE CALIDAD MEDIDA A TRAVÉS DEL MODELO DE RASCH A VARIABE ATENTE CAIDAD MEDIDA A TRAVÉS DE MODEO DE RASCH Álvarz Martíz, Pdro Blaco Sadía, Mª d los Ágls Gurrro Mazao, Mª dl Mar a obtcó d acts d olva d caldad rqur uos cudados spcals todas y cada ua d

Más detalles

Navidad en familia SÍMBOLOS Y NO VE NA DE NA VI DAD

Navidad en familia SÍMBOLOS Y NO VE NA DE NA VI DAD Navidad en familia SÍMBOLOS Y NO VE NA DE NA VI DAD Na vi dad Hoy bri lla rá una luz pa ra no so tros, por que nos ha na ci do el Se ñor (Lc 2, 14) Na vi dad es tiem po de fies ta y ale gría. Es tiem po

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Desarrollo de un Modelo de Gestión de Riesgos Operativos para una Empresa de Energía Eléctrica basado en las Directrices del Comité de Basilea

Desarrollo de un Modelo de Gestión de Riesgos Operativos para una Empresa de Energía Eléctrica basado en las Directrices del Comité de Basilea 3 rd Iraoal Corc o Idural Egrg ad Idural Maagm III Cogro d Igría d Orgazacó Barcloa-Trraa, Spmbr d-4h 009 Darrollo d u Modlo d Gó d Rgo Opravo para ua Empra d Ergía Elécrca baado la Drcrc dl Comé d Bala

Más detalles

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES Maemácas Faceras Prof. Mª Mercees Rojas e Graca TEMA 3: EQUIVALENIA FINANIERA DE APITALE ÍNDIE. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE....

Más detalles

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD)

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD) Méodos Numécos paa la esolucó de cuacoes feecales año 00 Méodo de las feecas Fas e el omo del Tempo FT. Resume l méodo de las feecas Fas e el omo del Tempo Fe ffeece Tme oma FT se ula paa esolve poblemas

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples Sismas Sñals Crso 4/5 Igiría Iformáia PRÁCTICA : Aálisis l omiio l impo sismas oios simpls I.- Prosamio sñal Malab Tal omo s vio l rso arior Malab rabaa o úio ipo lmos: las maris. Los ipos aos básios o

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO

INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PÚBLICO DE LAS FUERZAS ARMADAS ITINERARIO FORMATIVO RÚ d fa d lía paa la fa ó al d duaó y a u d duaó Sup Tlóg úbl d la uza Aada STTUT UAÓ SURR TLÓ ÚBL LAS URZAS ARAAS ala pfal STRU aó d la aa pfal: STRUÓ L ad SURR uaó: 240 HRAS TRAR RAT A: ALTA fdad la

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

ANÁLISIS DE SISTEMAS ELECTRÓNICOS REALIMENTADOS

ANÁLISIS DE SISTEMAS ELECTRÓNICOS REALIMENTADOS ANÁLISIS DE SISTEMAS ELECTÓNICOS EALIMENTADOS DESANECIMIENTO J.M. Mlá d la oca P. EDITOIAL MIL 6 CAACAS Esta obra s ncuntra rvsón; cualqur obsrvacón qu UD tnga s l agradc comuncarla al autor. jmmladroca@hotmal.com

Más detalles

EVENT REPORT and event media clippings. Prepared by Manuel Hernandez-Gonzalez Lic. # R440 June 27,2013 San Juan, PR

EVENT REPORT and event media clippings. Prepared by Manuel Hernandez-Gonzalez Lic. # R440 June 27,2013 San Juan, PR VT RORT ad mdia clippigs rpard by Maul Hradz-ozalz ic. # R440 Ju 27,2013 a Jua, R 2 ricl was publishd i boh h uday pri diio ad h ir diio 3 4 5 ios d urorriquños a a la 84 oció acioal U las Vgas, ada 24

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

c i I a a C " a l 2 C C N I M amico t e s a r b o S c i e d d 7

c i I a a C  a l 2 C C N I M amico t e s a r b o S c i e d d 7 www.. ó P M L " 5 1 0 2 M O A H N A M B y u S.. www j b P 2015 b p S 7 PREMO DEL OM MANHAOM 2015 P. Obj. v P Só ó L M MANHAÓM 2015 Sgu. Su, pz y ug pó. 1. L u pá gú qu ju Ax y qu á pb wb www.. E é uy pb

Más detalles

Sistema binario. Disoluciones de dos componentes.

Sistema binario. Disoluciones de dos componentes. . Itroduccó ermodámca. ema Dsolucoes Ideales Ua dsolucó es ua mezcla homogéea, o sea u sstema costtudo por ua sola fase que cotee más de u compoete. La fase puede ser: sólda (aleacoes,..), líquda (agua

Más detalles