Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l"

Transcripción

1 El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward. Exs ua formula básca para valorar l forward, solo s aplca pquñas varacos las cuals s dscrb a couacó: La formula básca pa d la rfrca d los forwards dl mrcado Forx sdo ua parja d modas y 2 co sus rspcvas asas d rés S θ s l spo, s la cosa d Eulr y rprsa l mpo. ( VP F S S VP θ θ 2 ( r r 2 U forward sobr commods como l oro sufr ua pquña varacó ya qu s cluy la asa d rés dl oro (las ra co la varabl l ( F S θ ( r l Los forwards sobr acvos qu paga rss o dvddos s calcula co la msma fórmula qu s ulza para las dvsas ( F S θ ( r r 2 U srumo d ra fja o s más qu ua coxó d flujos d fcvo C (, C 2 ( 2 C ( y omado l spo como S mos qu: S C S s dsa su valor forward F (τ a ua fcha τ basa co dvdr por l facor dl valor prs r τ τ obdo:

2 rττ F ( τ C També xs forwards sobr asas d rés os quda d la sgu mara cosdrado qu las asa d cupó cro a plazo so r, y las asas a plazo T (T> so R. La asa forward r (, T r y T dura u plazo T- v dado por: ( 0, ( 0, VP VP T Así qu RT ( ( VP 0, VP, T (, VP T (, r T RT RT T Así s calcula la asa corrca para u corao FRA, mas apa alguos procsos socáscos als como l lma d Io. Los fuuros U corao d fuuros s u acurdo, gocado ua bolsa o mrcado orgazado, qu oblga a las pas coraas a comprar o vdr u úmro d bs o valors (acvo subyac ua fcha fuura y drmada, y co u prco sablcdo d amao. La valoracó d los fuuros s práccam smlar a la d los forwards dbdo a qu so srumos muy parcdos por jmplo la valoracó d u fuuro sobr boos y omado cua las smluds quda: Forward C

3 E s caso C so los flujos dl boo a rgar y sabdo l prco dl forward y l facor d covrsó (FC l prco dl fuuro a rgar s: Fuuro Forward FC E l caso d los fuuros sobr ídcs bursáls la cuacó s muy sclla: Fu ( ( S r d Y l caso d los dvddos dbdo a qu o s da d mara coua d cosdra l prodo qu ocurr r hoy y l mpo : Fu ( S FV S mbargo al corporar u poco d procsos socáscos s s complca l hacr l ajus d forwards a fuuros, por llo y para hacrlo más dbl dscrbo los sgfcados: ( α (* k s r Fu Fwd σ σ σ s Volaldad dl subyac σ r Volaldad d las asas Palzo k Cosa α Proporcoal a La formula prov dl valor sprado dl coso/bfco d facamo d la poscó fuuros (la cual s ob mda la gral sobr ua dsrbucó log

4 ormal co dos varabls y corrlacó comparada co la poscó forward, prco forward y l prco d fuuros. Ahora s ya sabmos so cov dfr ambé lo sgu: # d prodos (duracó d la vrsó δ Tasa d rés lbr d rsgo ( ( Fu Prco d los fuuros hasa l prodo "" l prodo Fwd Prco d los forward hasa l prodo "" l prodo Ahora para dmosrar la gualdad cosdrmos como jmplo ua sraga smpl, vr Fwd (0 boos s rsgo y comprar Fwd ua cadad gual a δ al cabo d prodos s rcb xacam Fwd ( porqu s Fwd (0 δ dro dl boo y Fwd ( - Fwd (0 δ dl forward; al hacr la progrsó y comparado los prodos os quda al pasar dl prodo - al prodo : ( Fu Fu δ Y calculado l valor fuuro l prodo s ob: δ ( δ Fu Fu Fu Fu ( ( Y la suma d los rsulados d la poscó s vdm δ ( Fu Fu + ( Fu Fu ( Fu Fu ( Fu Fu δ δ Ahora comparado l rsulado co l d la vrsó forwards y boos os quda: ( Fwd Fwd δ 0 Dado qu l prco d los fuuros al vcmo Fu ( y l prco dl forward al vcmo Fwd ( (al gual qu l prco spo l prodo so guals, obmos l rsulado fal y co lo cual quda cocluda la dmosracó:

5 δ ( Fwd Fwd ( Fu Fu Fwd Fu δ Dfrcas r l forward y l fuuro La dfrca r ambos srumos pa su oaldad dl hcho d qu l fuuro s u corao sadarzado y gocabl mras qu u forward s u acurdo blaral dvdual r dos pas. Tamaño: l amaño d u fuuro sá dfdo d amao, odos los fuuros por jmplo d prólo d WTI NYMEX so d,000 barrls, por jmplo, mras qu u corao forward pud r cualqur amaño qu ds las dos pas dl msmo. Vcmo: U mrcado d fuuros sólo prm cas fchas d vcmo muy spcífcas, mras qu u forward s pud acordar cualqur fcha qu covga a ambas pas. Espcfcacó dl Subyac: para cosgur sadarzacó y lqudz u mrcado d fuuros, s csaro lmar las varacos prmsbls d clardad dl subyac rgabl cora las poscos fuuros. Méodo d lqudacó: Los fuuros smpr ua cámara d compsacó qu rspalda l mrcado y qu csa dpósos d garaía para o r qu omar rsgos d crédo, los coraos forward o porqu spcfcar gú po d dpóso garaía y l rsgo d crédo s algo a gocar r ambas pas. Compsacó dara: Ua coscuca dl mcasmo d lqudacó por cámara d compsacó s qu odas las poscos fuuros abas al mrcado s valora cada día, d mara qu las poscos uca gaacas o pérddas las s ralzar. E l caso d los coraos forward o s l, caso por lo qu s csa prsar más acó la rsgo d crédo. Mcasmo d gocacó: Los fuuros s goca smpr mrcados orgazados, co los cosgus mcasmos d suprvsó, mras qu los forwards o s goca mrcados orgazados.

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

APLICACI ONES DE LA FUNCI ÓN

APLICACI ONES DE LA FUNCI ÓN APLICACI ONES DE LA FUNCI ÓN GENERADORA DE MOMENTOS Adrés Camlo Ramírz Gaa adrs.camlo.ramrz@gmal.com Trabajo d Grado para Opar por l Tulo d Mamáco Drcor: Bgo Lozao Rojas Esadísco Uvrsdad Nacoal d Colomba

Más detalles

9 Momentos y funciones generatrices de Momentos

9 Momentos y funciones generatrices de Momentos 9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s

Más detalles

Multicupón no garantizado 07/09 1

Multicupón no garantizado 07/09 1 ANEXO AL CONTRATO FINANCIERO DENOMINADO MULTICUPÓN NO GARANTIZADO OBRE UPUETO DE AJUTE O UPUETO EPECIALE DE AJUTE. UPUETO DE AJUTE: E caso d qu s produzca cualqura d las stuacos qu a cotuacó s dca l Baco

Más detalles

Procesamiento Digital de Señales de Voz

Procesamiento Digital de Señales de Voz Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad

CONDICIONES PARA UNA INMUNIZACIÓN POR DURACIONES PARA SEGUROS A PRIMA PERIÓDICA. J. Iñaki de La Peña (1) Profesor Titular de Universidad CONDCONES PARA UNA NMUNZACÓN POR DURACONES PARA SEGUROS A PRMA PERÓDCA J. ñak d a Pña Profsor Tular d Unvrsdad RESUMEN a nmunzacón s una sraga nvrsora ncamnada a rspaldar un compromso d pago. El raamno

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

Capítulo 12. Introducción a la Termodinámica Estadística.

Capítulo 12. Introducción a la Termodinámica Estadística. Capítulo. Itroduccó a la Trmodámca Estadístca. ) Itroduccó Mcáca Estadístca: dscpla ctífca qu prtd prdcr las propdads macroscópcas d u sstma a partr d las propdads molculars. Trmodámca stadístca: part

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

3. Cálculo y dimensionado

3. Cálculo y dimensionado Documto Básco HE Ahorro d Ergía. Codsacos 1 Las codsacos suprfcals los crramtos y partcos trors qu compo la volvt térmca dl dfco, s lmtará d forma qu s vt la formacó d mohos su suprfc tror. Para llo, aqullas

Más detalles

FÓRMULAS DE MATEMÁTICAS FINANCIERAS

FÓRMULAS DE MATEMÁTICAS FINANCIERAS FÓRMULAS DE MATEMÁTIAS FINANIERAS TEMAS Y 2: ONEPTOS BÁSIOS... 2 Ly facra. Suma facra. Potulado d quvalca facra. Saldo facro. TEMA 3: MAGNITUDES DERIVADAS... 3 Factor, rédto, rédto acumulado, tato (d captalzacó

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

S o b r e e l u s o y e l a b u s o d e l P e y o t e

S o b r e e l u s o y e l a b u s o d e l P e y o t e S o b r e e l u s o y e l a b u s o d e l P e y o t e ( L o p h o p h o r a w i l l i a m s i i ( L e m. e x S a l m - D y c k ) J. M. C o u l t.) I n v e s t i g a c i ó n r e a l i z a d a p o r : P

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES

Más detalles

APÉNDICE B HIDRÁULICA DEL REACTOR DE MEZCLA COMPLETA

APÉNDICE B HIDRÁULICA DEL REACTOR DE MEZCLA COMPLETA APÉNDIE B HIDRÁULIA DEL REATOR DE MEZLA OMPLETA B.1 REATOR DE MEZLA OMPLETA (fluj idal) El mdl d fluj u racr ral s cura algú pu r las cdicis d mzcla d ls racrs idals (racr d mzcla cmpla (RM) y racr d fluj

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

8. Distribuciones continuas

8. Distribuciones continuas 8. Disribucios coiuas Trasformacios d variabls alaorias rso l f 3/ / 3 > + < F / w u u u Y Dsidad Disribució Trasformació o cambio d variabl alaoria Cuál srá la fució d dsidad d probabilidad rasformada

Más detalles

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares.

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Fscouímca II-Módulo d Estructura y Propdads Molculars. Bollla 4. Coctado las dscrpcos mcro/macroscópcas: Trmodámca Estadístca 4. La coxó tr la dscrpcó cuátca y las propdads trmodámcas. Hmos vsto como dscrbr

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

(tema 13 del libro) 1. PARÁMETROS DE CENTRALIZACIÓN

(tema 13 del libro) 1. PARÁMETROS DE CENTRALIZACIÓN UIDAD.- Dstrbucos udmsoals. Parámtros (tma dl lbro). PARÁETROS DE CETRALIZACIÓ Auqu las tablas stadístcas y las rprstacos grácas cot toda la ormacó rlatva a u problma, muchas vcs trsa smplcar s cojuto

Más detalles

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO

Análisis Financiero 6 PRIMER CUATRIMESTRE 2004. Nº 93 Fernando Gómez-Bezares, José A. Madariaga y. Javier Santibáñez PERFORMANCE AJUSTADA AL RIESGO Aál Facro Nº 93 Frado Gómz-Bzar, Joé A. Madaraga y 6 PRMER CUATRMESTRE 004 CUARTA EPOCA. P.V.P. 9,9 Javr Sabáñz PERFORMANCE AJUSTADA A RESGO 8 Jú Joé Agla Jméz y Aracl Rodríguz Mrayo E NVE DE A NFORMACÓN

Más detalles

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda Tit ulo docume nto Cómo va lora r t u empre sa Nombre docum ent o Documento de Preguntas y respuestas Autor Luis Ignacio Sánchez Rueda 1 COMO VALORAR LA EMPRESA 1. Una misma empresa puede valer diferente

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d coido Págia Opradors difrcials sismas d cuacios Opradors difrcials Oprador aulador 6 fiició 6 Sismas d cuacios difrcials lials 9 Solució d u sisma, méodo d los opradors 9 Rsum 5 Bibliografía rcomdada

Más detalles

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal) PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Capítulo III. Colectivos estadísticos.

Capítulo III. Colectivos estadísticos. Capítulo III. Colctvos stadístcos. Lccó Itroduccó al formalsmo d los colctvos d Gbbs. Lccó Colctvo caóco. Lccó Colctvos macrocaóco y mcrocaóco Lccó 4 Aplcacó dl colctvo caóco: gas dal mooatómco. arabls

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

La Patata. La Patata Frita

La Patata. La Patata Frita La Patata La c omú n y c or r i e n t e pat at a (S ol an u m t u b e r osu m) t i e n e u n pasado e xót i c o. Las pat at as pr ovi e n e n de S u damé r i c a, don de l os n at i vos de l ár e a ah

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple . Muestreo Aleatoro mple. Muestreo aleatoro smple e poblacoes ftas... Meda, varaza proporcó muestrales: Propedades. Error de estmacó. Poblacó Y (, ). E V Muestra aleatora smple Y,..., Y (..d.) E V ( )

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO

TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO Facultad d Ccas Ecoómcas y Admstratvas TEORÍA DE LOS CONTRATOS: UN ENFOQUE ECONÓMICO Rafal Sarmto Lotro RESUMEN La Toría d Cotratos també coocda como Ecoomía d la Iformacó, studa las coscucas d la xstca

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

MECÁNICA ESTADÍSTICA

MECÁNICA ESTADÍSTICA FAyA Lccatura Químca Físca III año 26 MÁIA SADÍSIA IRODUIÓ ROBABILIDAD robabldad s la cuatfcacó d la spraza dl rsultado d u xprmto o vto. S l posbl rsultado d u xprmto s A la probabldad d qu ocurra A s

Más detalles

Índice General. Disposiciones iniciales y definiciones generales

Índice General. Disposiciones iniciales y definiciones generales Índice General Int r o d u c c i ó n... xxvii CAPÍTULO I Disposiciones iniciales y definiciones generales Dis p o s i c i o n e s iniciales y de f i n i c i o n e s ge n e r a l e s... 1 Capítulo II Trato

Más detalles

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales.

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales. 7. Transformaors Cállo ransformaors S s onsrano n oro qvaln. Calqr ransformaor p sñars hano so rs aons nrals. Prmra aón. Dfnón nsa fljo manéo (nón ampo manéo). B A Sna aón. y Ampèr. l I 7. Transformaors

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE

MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril

Más detalles

Producto de convolución de las derivadas de orden k por las derivadas de orden de la delta de Dirac soportadas en x 1, x a, y x n

Producto de convolución de las derivadas de orden k por las derivadas de orden de la delta de Dirac soportadas en x 1, x a, y x n Vol. 5, No., pp. 59-69/Dcmr ISSN-L 88-674 Coprgh Uvrsdd Ncol d Igrí Imprso Ncrgu. Todos los drchos rsrvdos hp://www.lmol.fo/d.php/nexo Produco d covolucó d ls drvds d ord por ls drvds d ord d l dl d Drc

Más detalles

Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Estimar el tiempo que necesitas para resolverlo.

Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Estimar el tiempo que necesitas para resolverlo. Examen muestra Ob je ti vo Responder preguntas parecidas a las del examen de selección. Im por tan cia Resolver el examen muestra te ayudará a: Identificar cómo son las preguntas del examen. Saber cuántas

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.:

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.: RIESGO MORA Comportamto accos dl A o obsrvabl para l o, smplmt, o vrfcabl.. j.: s A pd jrcr dsttos vls d sfrzo, co RM l o sab cál d llos llva a cabo. acr sfrzo spo dstldad para l A Úca varabl cotratabl:

Más detalles

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia 2 8 y 2 9 d e m a yo d e l 2 0 0 9 Pa ís u n ita rio. Niv e le s d e Go b ie rn o : N

Más detalles

ANEXO A. Bipuerto libre de. i 1. i 2 V 2 ruido. Figura A.1 Bipuerto libre de ruido con dos fuentes equivalentes de corriente de ruido, configuración π

ANEXO A. Bipuerto libre de. i 1. i 2 V 2 ruido. Figura A.1 Bipuerto libre de ruido con dos fuentes equivalentes de corriente de ruido, configuración π xo. Bpurtos rudosos NEXO BIPUERTOS RUIDOSOS.. REPRESENTCIÓN DE BIPUERTOS RUIDOSOS U bpurto rudoso, sgú la toría prstada [], s pud rprstar como u bpurto lbr d rudo co dos futs quvalts d rudo, coctadas a

Más detalles

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico Comparaó d la flaó las prpals udads d Vzula mda u modlo d faor dámo Al Aoo Aosa Hrádz Dal Barráz Guzmá Rsum s rabajo s ompara los prosos flaoaros las prpals udads d Vzula mda u modlo d faor dámo d Sok

Más detalles

MODELOS DE ATMÓSFERA (teoría y problemas)

MODELOS DE ATMÓSFERA (teoría y problemas) MODLO D MÓR (or y pro) * PLN IN MÓR * MODLO MÓR NO BORBN * MODLO MÓR ON BORIÓN LIV * BLN D RDIIÓN N L IRR (PROMDIO) * JRIIO * LGUNO PROBLM D XMN RULO * PLN IN MÓR Ddd d po (W - ) Irrd, W ujo d rg d (fu:

Más detalles

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes 3. Modlos Uivariats d Probabilidad Curso - Estadística Modlos Uivariats Procso d Broulli El rsultado d u rimto admit dos catgorías: Actabl y Dfctuoso. S rit l rimto vcs. La robabilidad d dfctuoso s la

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

CURSO DE ELECTRÓNICA BÁSICA

CURSO DE ELECTRÓNICA BÁSICA CURSO DE ELECTRÓNICA BÁSICA O b j e t i v o P r o v e e r l o s c o n o c i m i e n t o s t e ó r i c o s y p r á c t i c o s d e E l e c t r ó n i c a B á s i c a p a r a q u e l a s p e r s o n a s q

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu ba be bi bo bu bra bre bri bro bru bla ble bli blo blu ca ce ci co cu cra cre cri cro cru qui cla cle bli clo clu que da dra dla fa fra fla de dre dle fe fre fle di dri dli fi fri fli do dro dlo fo fro

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

División 2. Mecánica de Tornillos Tornillos de transmisión Tornillo de ajuste y sujeción

División 2. Mecánica de Tornillos Tornillos de transmisión Tornillo de ajuste y sujeción Vrsó 014 CAITULO 4 OYECTO DE ELEMENTOS DE SUJECIÓN, ANCLAJE Y CIEE Dvsó Mcáca d Torllos Torllos d trasmsó Torllo d ajust y sujcó UTN-BB Cátdra: Elmtos d Máquas. rofsor: Dr. Ig. Marclo Tulo ova Vrsó 014

Más detalles

III Game Campori Online

III Game Campori Online 2015 14-16 d ag vã www.gam.ampl.m puguê III Gam Camp Ol Gua dl Ev A Equp Rad Wb Avdad y glam Cdad Publdad Tadu Rla x Rd Sal Epaldad dl Ev Pdu y vd Múa Dg Tx 2 Thag Sf Hla quad! C ga algía l v a hé d aha

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico

Comparación de la inflación en las principales ciudades de Venezuela mediante un modelo de factor dinámico Bao Cral d Vzula Coló Eoomía y Fazas Sr Doumos d rabajo Comparaó d la flaó las prpals udads d Vzula mda u modlo d faor dámo Alí Aoo Aosa Hrádz Dal Barráz Guzmá [Nº 7] ayo Bao Cral d Vzula Caraas Gra d

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

Paco Cecilio GUADALAJARA. Mundo Infantil Esther Calma. Foster s Hollywood. Revista digital nº1. Ho g a r. Sa l u d. Oc i o. Cu l t u r a...

Paco Cecilio GUADALAJARA. Mundo Infantil Esther Calma. Foster s Hollywood. Revista digital nº1. Ho g a r. Sa l u d. Oc i o. Cu l t u r a... GUADALAJARA La estrategia es la diferencia Mundo Infantil Comer bien es divertido Esther Calma y su m u n d o d e zapatos Foster s Hollywood Cocina americana Mo d a. Co m p l e m e n t o s. Ni ñ o s. Ho

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

Un ejercicio relacionado con la función Li(x)

Un ejercicio relacionado con la función Li(x) Uivrsidad Iramricaa d Puro Rico - Rcio d Poc U jrcicio rlacioado co la fució Por: Eriqu Díaz Gozálz Uivrsidad Iramricaa d Puro Rico, Rcio d Poc. U poco d hisoria. E la búsquda para ua l qu idicara la disribució

Más detalles

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu FRA, FRE, FRI, FRO, FRU. fra fre fri fro fru. Nombre:... Curso:...

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu FRA, FRE, FRI, FRO, FRU. fra fre fri fro fru. Nombre:... Curso:... fra fre fri fro fru Nombre:... Curso:... Rodea el sonido que tenga el dibujo: fra tra cra far cer fer fre ser fre bre be pre bri bi fri fir far bre gra fra ber fre gre cre bri fri pri fir gri fri fir firi

Más detalles

& fun. viajeglamour Por silvia lópez

& fun. viajeglamour Por silvia lópez viajglamour Por silvia lópz A ts d sumrgirs l rodaj d Holms. Madrid Suit. 1890, la visió dl dtctiv lodis d José Luis Garci ( itrprto a Alcátara, u priodista lgat y romático, amigo d Watso ), l actor Migul

Más detalles

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales

ÍNDICE GENERAL. Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii. CAPÍTULO I Nociones generales Pró l o g o s Hernán Fabio López Blanco... xvii Fernando Palacios Sánchez... xxi Efrén Ossa G... xxiii CAPÍTULO I Nociones generales 1. Re s e ñ a hi s t ó r i c a... 1 2. De n o m i n a c i ó n... 3 3.

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

Tema IV: Ruidos e Interferencias: Técnicas de reducción.

Tema IV: Ruidos e Interferencias: Técnicas de reducción. SCUA TÉCNICA SUPIO D INGNIOS INDUSTIAS Y D TCOMUNICACIÓN UNIVSIDAD D CANTABIA INSTUMNTACIÓN CTÓNICA D COMUNICACIONS (5º Curso Igría d Tlcomucacó) Tma IV: udos Itrrcas: Téccas d rduccó. José María Drak

Más detalles

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li Sopas Silábicas animales po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li po no ce pe li ri be ca ri ce ve sa

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

ANÁLISIS DE ERROR DE ESTADO ESTABLE

ANÁLISIS DE ERROR DE ESTADO ESTABLE AÁLISIS DE ERROR DE ESTADO ESTABLE El rror stcoro s u dd d l xcttud d u t d cotrol. S lz l rror stcoro dbdo trds scló, rp y prábol. COTROL AALÓGICO COTROL DIGITAL Esqu Error Fucó d trsfrc d ll Es ( Rs

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

al siguiente límite si existe: . Se suele representar por ( x )

al siguiente límite si existe: . Se suele representar por ( x ) UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D

Más detalles