UNIVERSIDAD COMPLUTENSE DE MADRID

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD COMPLUTENSE DE MADRID"

Transcripción

1 TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una opción completa, sin mezclar ejercicios de una y otra. Las soluciones y explicaciones razonadas (justificaciones de las construcciones) deben realizarse en los espacios asignados después de las preguntas impresas. La resolución de los ejercicios se puede delinear a lápiz y se dejarán las líneas de todas las construcciones auxiliares. PUNTUACIÓN: En general, se calificará con 10 puntos cada ejercicio, de los cuales 7 corresponden a la correcta interpretación y solución de la cuestión propuesta y 3 al correcto acabado y a la explicación razonada de la solución dada. La calificación final será la media aritmética. OPCIÓN A A1.- Dibujar un triángulo ABC del que se conoce un lado a, su mediana, m a y su ángulo A. EXPLICACIÓN RAZONADA. A2.- Determinar con exactitud los puntos de intersección de la elipse de ejes AB y CD con la recta r dada, sin dibujar la cónica. EXPLICACIÓN RAZONADA.

2 A3.- Los puntos A y B son vértices de un tetraedro en el que O es el baricentro de la cara BCD. Los vértices C y D pertenecen al plano α. Dibujar las proyecciones diédricas del tetraedro. EXPLICACIÓN RAZONADA. A4.- Determinar la sección producida en el prisma por el plano definido por los puntos A, B y C. EXPLICACIÓN RAZONADA.

3 A5.- Representar en diédrico y acotar la pieza adjunta, dando las vistas, cortes y/o secciones que se consideren necesarias. Todos los agujeros son pasantes. EXPLICACIONES RAZONADAS: OPCIÓN B

4 B1.- Determinar el lugar geométrico de los centros de las circunferencias tangentes a la recta r y a la circunferencia c. EXPLICACIÓN RAZONADA. B2.- Hallar un cuadrado ABCD del que además de su vértice A se sabe que dos de sus vértices están sobre las rectas r y s. EXPLICACIÓN RAZONADA. B3.- Determinar las proyecciones diédricas de un hexágono regular de lado AB situado en el plano definido por los puntos A, B y P. EXPLICACIÓN RAZONADA.

5 B4.- Desarrollar la superficie poliédrica de la figura, dada por sus proyecciones, excluyendo su cara superior. EXPLICACIÓN RAZONADA. B5.- Representar la planta de la pieza en la posición que se considere más apropiada.

6 EXPLICACIONES RAZONADAS:

7 CRITERIOS ESPECÍFICOS DE CORRECCIÓN OPCIÓN A S-A1.- Resolución Situado el lado BC de longitud a, los otros dos datos conducen a sendos lugares geométricos circulares para el punto A. Por un lado A deberá estar en la circunferencia con centro en el punto medio de BC y radio m a, y por otro en el arco capaz de valor  sobre el segmento BC. Hay dos soluciones simétricas igualmente válidas. Comprensión del problema propuesto: 1,0 Trazado de la circunferencia de radio m a : 2,0 Trazado del arco capaz  sobre BC: 2,0 Identifiación de A y trazado de la solución: 2,0 Explicación razonada del fundamento geométrico: 3,0 S-A2.- Resolución Los puntos de la elipse pueden considerarse centros de circunferencias que siendo tangentes a una circunferencia focal pasan por el otro foco. Los puntos buscados estarán, además, en la recta dada, lo que equivale a que las circunferencias referidas pasen también por los simétricos de los focos respecto a la recta. Visto así, el problema es equivalente al denominado "problema fundamental de tangencias", esto es, a determinar los centros de las circunferencias que pasando por F 1 y su simétrico S 1 respecto a la recta son tangentes a la circunferencia focal de centro en F 2. Comprensión del problema propuesto: 1,0 Trazado de los simétricos de los focos: 2,0 Interpretación y trazado de los simétricos de los focos: 3,0 Determinación de los puntos de intersección: 2,0 Explicación razonada del fundamento geométrico: 3,0 S-A3.- Resolución Siendo la arista AB una recta de punta, las caras que la contienen serán proyectantes verticales, y la arista CD, ortogonal a AB, será frontal, situándose en α por exigencia del enunciado. La particular posición de O 2, O vertical, indica que el plano ABO es de perfil y, siendo plano de simetría, lleva consigo que CD sea horizontal (además de frontal) lo que facilita la determinación de C y D. CD = AB = d = 3/2 A 2 O 2, con d = distancia entre aristas

8 Comprensión del problema propuesto: 1,0 Determinación de C 2 D 2 : 2,0 Determinación de A 1, B 1, C 1, D 1 : 2,0 Representacion del tetraedro con su visibilidad: 2,0 Explicación razonada del fundamento geométrico: 3,0 S-A4.- Resolución La sección producida será forzosamente un paralelogramo, por serlo la base del prisma, y su obtención se simplifica aprovechando la circunstancia de que todos los planos implicados son proyectantes sobre uno u otro plano de proyección. Calificación orientativa. Determinacion correcta de la sección : 5,0 Interpretación de la Visibilidad: 2,0 Explicación razonada de las construcciones empleadas: 3,0 S-A5.- Resolución Dos vistas, alzado y planta, son suficientes para la representación completa de la pieza, no siendo necesaria ninguna sección, aunque puede darse un corte parcial que ayude a ver los agujeros. Debe cuidarse en ellos la disposición de los ejes. La acotación no ofrece particularidades significativas. Interpretación y representación adecuadas, incluyendo la correcta disposición de los ejes: 5,0 Acotación con definición dimensional completa (9 cotas) : 5,0

9 OPCIÓN B S-B1.- Resolución Una dilatación de cada circunferencia, de magnitud igual al radio de la circunferencia dada, permite observar que sus centros han de ser equidistantes del centro de la circunferencia dada y de una recta paralela a la dada, a distancia igual a la dilatación. El lugar geométrico es, por consiguiente, una parábola de foco en dicho centro y directriz la recta desplazada. Otra parábola similar corresponde a las dilataciones contrarias, que tienen sentido cuando se trata de tangentes "interiores". Cualquiera de las dos soluciones se considerará correcta. Comprensión del problema propuesto: 2,0 Dilataciones y determinación de algún punto del lugar: 3,0 Mención explícita de sus características fundamentales: 2,0 Explicacion razonada del fundamento geométrico: 3,0 Total: 1O,O S-B2.- Resolución Imaginada la solución en una figura de análisis, puede observarse que un giro de 90 de centro en A haría coincidir el vértice del cuadrado situado en la recta s con el situado en la recta r, ambos en principio desconocidos. Si en su defecto giramos toda la recta s, el punto que tiene esa propiedad quedará de manifiesto como intersección de la recta girarda s' con la r, pudiéndose así trazar el cuadrado. Un giro de 45 seguido de una homotecia de razón proporcionará también nuevas soluciones igualmente válidas. Son, asimismo, factibles consideraciones puramente métricas para la resolución de este ejercicio. Comprensión del problema propuesto: 1,0 Determinación de uno de los movimientos válidos: 4,0 Trazado de las soluciones: 2,0 Explicación razonada del fundamento geométrico: 3,0 S-B3.- Resolución Al proyectar en dirección AB, que es horizontal, el plano ABP pasará a ser proyectante, lo que puede facilitar la localización de la proyección horizontal, para luego hallar la vertical. Conviene empezar calculando la distancia entre los lados opuestos del hexágono a partir de su lado, d = AB. (para el método propuesto) Comprensión del problema propuesto: 1,0 Cálculo de d: 1,0

10 Determinación de la proyección horizontal: 3,0 Determinacion de la proyección vertical: 2,0 Explicación razonada del fundamento geométrico:... 3,0 S-B4.- Resolución Obtener el desarrollo requiere hallar primero las verdaderas magnitudes de todas las caras. Conviene, como paso previo, "completar" las caras cuadrangulares laterales prolongando sus lados hasta convertirlas en triangulares, obteniendo así como referencia una superficie poliédrica de desarrollo mas fácil. En términos generales, para el desarrollo de una cara cuadrangular son precisas cinco dimensiones, ya sean longitudes de sus lados o medidas de sus ángulos. Si se prefieren sólo longitudes, puede recurrirse a calcular las diagonales de las caras, lo que equivale a "triangular" la superficie. Interpretacion correcta del cuerpo representado: 1,0 Determinación correcta de las verdaderas magnitudes de las caras: 3,0 Determinación correcta del desarrollo: 3,0 Explicación razonada del fundamento geométrico: 3,0 S-B5.- Resolución Tratándose de una pieza alargada parece razonable considerar como alzado la vista situada a la izquierda en la representación facilitada, pero puede considerarse igualmente válida la derecha. La valoración atenderá principalmente a la correcta disposición de las líneas vistas y/u ocultas con sus adecuadas dimensiones, así como a la correcta expresión de los ejes que se requieren. Interpretacion y representación adecuadas de líneas vistas y ocultas: 5,0 Corrección dimensional de los distintos detalles: 3,0 Expresión adecuada de ejes longitudinal y transversal: 2,0

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación. ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2012-2013 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 INSTRUCCIONES GENERALES La prueba consiste

Más detalles

MATERIA OPTATIVA: DIBUJO TÉCNICO

MATERIA OPTATIVA: DIBUJO TÉCNICO CONTENIDOS 1. Trazados geométricos: Trazados en el plano: ángulos en la circunferencia, arco capaz. Proporcionalidad y semejanza: escalas normalizadas, triángulo universal de escalas y de escalas transversales.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

- A3, Bl - B2 -B3, Cl - C2.

- A3, Bl - B2 -B3, Cl - C2. UNVERSDADES PUBLCAS DE LA COMUNDAD DE MADRD PRUEBASDEACCESOA ESTUDOSUNVERSTAROS(LOGSE) Curso2007-2008 MATERA: DBUJO TÉCNCO 11 NSTRUCCONES GENERALES La prueba consiste en la realización de cinco ejercicios

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

Castilla y León. Se presentan al alumno dos Opciones y para que elija una de ellas.

Castilla y León. Se presentan al alumno dos Opciones y para que elija una de ellas. Castilla y León Tablón de anuncios Se presentan al alumno dos pciones y para que elija una de ellas. Cada pción, a su vez, consta de las siguientes Partes: Parte I: Parte II: Parte III: Parte IV: Geometría

Más detalles

Tema 8: Intersección de superficies. Aplicaciones al dibujo técnico.

Tema 8: Intersección de superficies. Aplicaciones al dibujo técnico. Tema 8: Intersección de superficies. plicaciones al dibujo técnico. Consideraciones generales. El proceso para obtener la intersección de dos superficies S y S2, se desarrolla como sigue (figura ):. Por

Más detalles

I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós

I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA 1 1.INTRODUCCIÓN Los sistemas de representación en perspectiva, tienen como objetivo

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS Los siguientes ejercicios tienen el propósito de hacer que el estudiante use las construcciones geométricas fundamentales y además adquiera práctica

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2003-2004) MATERIA: DIBUJO TÉCNICO II Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

SELECTIVIDAD VALENCIA SEPTIEMBRE 1982.

SELECTIVIDAD VALENCIA SEPTIEMBRE 1982. SELECTIVIDAD VALENCIA SEPTIEMBRE 1982. Sistema diédrico:(el PUNTO) Observa detenidamente las proyecciones diédricas de lso puntos; A, B, C y D. Indica en que cuadrantes se hayan situados dichos puntos.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN 1 1 UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2011-2012 DIBUJO TÉCNICO II CRITERIOS GENERALES: CRITERIOS ESPECÍFICOS DE CORRECCIÓN En general, para la calificación de las pruebas

Más detalles

CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS

CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS Las últimas versiones de Autocad tienen herramientas que facilitan tanto la obtención de planos de modelos 3D de piezas como su representación, una vez

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MODELO MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

Sistemas de representación: Planos Acotados. Ejercicios.

Sistemas de representación: Planos Acotados. Ejercicios. Sistemas de representación: Planos Acotados. Ejercicios. Las proyecciones de los puntos A'(3) y C'(8) son los extremos de uno de los diámetros de una circunferencia de 60 mm. de φ. La pendiente de

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2004-2005) MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 R3 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

TEMA 5: CIRCUNFERENCIA Y CÍRCULO

TEMA 5: CIRCUNFERENCIA Y CÍRCULO TEMA 5: CIRCUNFERENCIA Y CÍRCULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. LA CIRCUNFERENCIA Y EL CÍRCULO... 1 3. MEDICIÓN DE ÁNGULOS... 3 4. ÁNGULOS EN

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS.

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. Francisco Raposo Tecnología 3ºESO 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2011-2012 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2014 DIBUJO TÉCNICO II. CÓDIGO 144

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2014 DIBUJO TÉCNICO II. CÓDIGO 144 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2014 DIBUJO TÉCNICO II. CÓDIGO 144 CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

UNIVERSIJ)ADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2006-2007 MATERIA: DIBUJO TÉCNICO JJ

UNIVERSIJ)ADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2006-2007 MATERIA: DIBUJO TÉCNICO JJ UNVERSJ)ADES PÚBLCAS DE LA COMUNDAD DE MADRD PRUEBA DE ACCESO A ESTUDOS UNVERSTAROS (LOGSE) Curso 2006-2007 MATERA: DBUJO TÉCNCO JJ NSTRUCCONES GENERALES Y VALORACiÓN La prueba consiste en la realización

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León DIBUJO TÉCNICO Texto para los Alumnos 9 páginas Antes de empezar a trabajar has de tener en cuenta lo siguiente: OPTATIVIDAD: Debes escoger una

Más detalles

REPRESENTACIÓN GRÁFICA. La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes:

REPRESENTACIÓN GRÁFICA. La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes: REPRESENTACIÓN GRÁFICA La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes: NORMA UNE 1032 NORMA UNE 1026 NORMA UNE 1011 NORMA UNE 1041 NORMA UNE 1036

Más detalles

SISTEMA ACOTADO ó DE PLANOS ACOTADOS. (apuntes)

SISTEMA ACOTADO ó DE PLANOS ACOTADOS. (apuntes) SISTEMA ACOTADO ó DE PLANOS ACOTADOS (apuntes) INDICE. pag. 1. Generalidades. ------------------------------------------------ 3 2. Representación del punto. ------------------------------------ 4 3. Representación

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2004-2005) MATERIA: DIBUJO TÉCNICO II Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2007-2008 MODELO MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste

Más detalles

\ I OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO.

\ I OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. Dadas las proyecciones horizontal y vertical de un sólido, asf como las trazas de un plano P, se pide: 1.- Determinar las proyecciones de la sección producida por el

Más detalles

Profesor: Manuel Martín

Profesor: Manuel Martín Profesor: Manuel Martín Definición La acotación es el proceso de anotar, mediante líneas, cifras, y símbolos, las medidas reales de un objeto, sobre un dibujo previo del mismo. Con carácter general se

Más detalles

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones.

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones. Qcad Es un programa de diseña asistido por ordenador en 2 dimensiones. 1. La ventana del Qcad Barra de títulos Barra de menús Barra de herramientas Área de dibujo Barra de herramientas de dibujo Barra

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Ingeniería Gráfica Aplicada

Ingeniería Gráfica Aplicada Acotación Ingeniería Gráfica Aplicada Curso 2010-11 Manuel I. Bahamonde García Índice Acotación 1. Principios generales de acotación 2. Método de acotación 3. Acotación de círculos, radios, arcos, cuadrados

Más detalles

DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN

DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN A1.- Basta trazar por P una recta paralela a una de las rectas dadas, por ejemplo, la s y obtener las bisectrices de los ángulos que forma esta recta

Más detalles

HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA

HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA La Homología es una transformación geométrica de una figura plana en otra. Se utiliza con mucha frecuencia en geometría descriptiva y por lo tanto en dibujo industrial.

Más detalles

Azterketa honek bi aukera ditu. Azterketariak aukeretako bat (A edo B) hartu eta oso-osoan ebatzi behar du.

Azterketa honek bi aukera ditu. Azterketariak aukeretako bat (A edo B) hartu eta oso-osoan ebatzi behar du. UNIBERTSITATERA SARTZEKO PROBAK 2011ko EKAINA MARRAZKETA TEKNIKOA II PRUEBAS DE ACCESO A LA UNIVERSIDAD II Irakasgaia / Asignatura Ariketa Kodea / Código ejercicio Data / Fecha Kalifikazioa / Calificación..

Más detalles

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e. Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:

Más detalles

DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN A1.- El triángulo auxiliar MCD, donde M es el punto medio del lado BC, puede construirse; pues, se conocen sus lados MD = AB = 30, CD

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2011-2012 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2008 DIBUJO TÉCNICO. CÓDIGO 65

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2008 DIBUJO TÉCNICO. CÓDIGO 65 UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN Y CULTURA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2008 DIBUJO TÉCNICO.

Más detalles

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16 Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

Al.- Construir un cuadrilátero ABCD inscriptible en una circunferencia de modo que AB = 20, BD = 60 y AD = 50 mm, siendo BC = CD.

Al.- Construir un cuadrilátero ABCD inscriptible en una circunferencia de modo que AB = 20, BD = 60 y AD = 50 mm, siendo BC = CD. . UNIVERSIDADES t: PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2007-2008 MATERIA: DIBUJO TÉCNICO 11 INSTRUCCIONES GENERALES La prueba consiste en la realización

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

TEMA 2. HERRAMIENTAS DE GeoGebra

TEMA 2. HERRAMIENTAS DE GeoGebra TEMA 2. HERRAMIENTAS DE GeoGebra INTRODUCCIÓN Herramientas como Punto, Circunferencia, Segmento, Tangente, entre otras, se han utilizado en las actividades propuestas en el capítulo anterior, para realizar

Más detalles

Modelo Valoración de los ejercicios: 3, 2, 2 y 3 puntos. TIEMPO: 90 minutos.

Modelo Valoración de los ejercicios: 3, 2, 2 y 3 puntos. TIEMPO: 90 minutos. EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2016-2017 Modelo Valoración de los ejercicios: 3, 2, 2 y 3 puntos. TIEMPO: 90 minutos. DIBUJO TÉCNICO II CRITERIOS

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2009-2010 INSTRUCCIONES GENERALES Y VALORACIÓN La prueba

Más detalles

Al.- Construir un cuadrilátero ABCD inscriptible en una circunferencia de modo que AB = 20, BD = 60 y AD = 50 mm, siendo BC = CD.

Al.- Construir un cuadrilátero ABCD inscriptible en una circunferencia de modo que AB = 20, BD = 60 y AD = 50 mm, siendo BC = CD. --- UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2007-2008 MATERIA: DIBUJO TÉCNICO 11 INSTRUCCIONES GENERALES La prueba consiste en la realización

Más detalles

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Dibujo técnico. Proves d accés a la universitat. Serie 3. Indique las opciones escogidas: Convocatòria Ubicació del tribunal...

Dibujo técnico. Proves d accés a la universitat. Serie 3. Indique las opciones escogidas: Convocatòria Ubicació del tribunal... Proves d accés a la universitat Convocatòria 2016 Dibujo técnico Serie 3 Indique las opciones escogidas: Ejercicio 1: Opción A Ejercicio 2: Opción A Ejercicio 3: Opción A Opción B Opción B Opción B Qualificació

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

APUNTES DE DIBUJO TÉCNICO: PRIMERO Y SEGUNDO DE BACHILLERATO. AUTOR: RAMON DEL AGUILA CORBALÁN AÑO 2010 G

APUNTES DE DIBUJO TÉCNICO: PRIMERO Y SEGUNDO DE BACHILLERATO. AUTOR: RAMON DEL AGUILA CORBALÁN AÑO 2010 G Página 1 de 59 2010 www.ramondelaguila.com α APUNTES DE DIBUJO TÉCNICO: PRIMERO Y SEGUNDO DE BACHILLERATO. AUTOR: RAMON DEL AGUILA CORBALÁN AÑO 2010 G Los apuntes que presento solo pretenden ser un complemento

Más detalles

INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO

INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO 1. ORGANIZACIÓN DEL CURSO Primera Evaluación: Sistemas de representación I. Sistema diédrico.

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm.

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. Los puntos A y B, vértices de un cubo, son los extremos de una de las diagonales de la base. Dicha diagonal es además línea de máxima pendiente del plano donde se apoya

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

BARRA DE HERRAMIENTAS DE BOCETO:

BARRA DE HERRAMIENTAS DE BOCETO: INTRODUCCIÓN: Autodesk Inventor es un sistema de modelado sólido basado en operaciones geométrica, que proporciona todas las herramientas necesarias para ejecutar proyectos de diseño, desde el primer boceto

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

DIBUJO TÉCNICO BACHILLERATO LÁMINAS. TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO LÁMINAS. TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO LÁMINAS TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo 1.- Construir un TETRAEDRO. Los puntos A y B son dos vértices del mismo y

Más detalles

Convocatòria Dibujo técnico. Proves d accés a la universitat. Serie 1. Indique las opciones escogidas: Ubicació del tribunal...

Convocatòria Dibujo técnico. Proves d accés a la universitat. Serie 1. Indique las opciones escogidas: Ubicació del tribunal... Proves d accés a la universitat Dibujo técnico Serie 1 Indique las opciones escogidas: Ejercicio 1: Opción A Ejercicio 2: Opción A Ejercicio 3: Opción A Opción B Opción B Opción B Qualificació 1 Exercicis

Más detalles

A RG. Pirámide recta de base cuadrada y altura 50 mm. Pirámide oblicua de base triangular. Pirámide oblicua de base triángulo equilátero

A RG. Pirámide recta de base cuadrada y altura 50 mm. Pirámide oblicua de base triangular. Pirámide oblicua de base triángulo equilátero de base de base Para dibujar las pirámides, hay que tener en cuenta que todas sus aristas laterales concurren en un punto denominado vértice de la pirámide. dicho esto veamos el dibujo de los distintos

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

Tema 3: Cambio de plano de proyección. Giro. Abatimiento. Concepto del artificio de los cambios de plano y su justificación en el Sistema Diédrico.

Tema 3: Cambio de plano de proyección. Giro. Abatimiento. Concepto del artificio de los cambios de plano y su justificación en el Sistema Diédrico. Tema 3: Cambio de plano de proyección. Giro. batimiento. Concepto del artificio de los cambios de plano y su justificación en el Sistema Diédrico. Se ha visto en los temas precedentes cual es el fundamento

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: DIBUJO TÉCNICO INSTRUCCIONES GENERALES OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: DIBUJO TÉCNICO INSTRUCCIONES GENERALES OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 Junio Septiembre R1 R2 MATERIA: DIBUJO TÉCNICO INSTRUCCIONES GENERALES La prueba consiste

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm.

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2010-2011 2 INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: DIBUJO TÉCNICO II Examen para coincidencias INSTRUCCIONES Y

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

Normalización y Acotación

Normalización y Acotación Normalización y Acotación Ingeniería Gráfica Curso 2010-2011 Normalización y Acotación Normativa de Referencia - UNE 1-039-94: Norma Española. Dibujos Técnicos. Acotación (Basada en la Norma ISO 129-1985.

Más detalles

Dibujo técnico. Proves d accés a la universitat. Serie 2. Indique las opciones escogidas: Convocatòria Ubicació del tribunal...

Dibujo técnico. Proves d accés a la universitat. Serie 2. Indique las opciones escogidas: Convocatòria Ubicació del tribunal... Proves d accés a la universitat Convocatòria 2015 Dibujo técnico Serie 2 Indique las opciones escogidas: Ejercicio 1: Opción A Ejercicio 2: Opción A Ejercicio 3: Opción A Opción B Opción B Opción B Qualificació

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles