RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1"

Transcripción

1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I

2 RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC o se cooce co certeza ) Descotar FNC co resgo El coste de oportudad del captal (tasa de actualzacó del proyecto) depederá del vel de resgo del proyecto La tasa de actualzacó ha de ser lo que el accosta (versor) espera gaar s vrtese e proyectos de smlar resgo e los mercados faceros - Meddas de redmeto y resgo para u actvo dvdual y para ua cartera - Toma de decsoes de versó a ttulo dvdual - ao qué hpótess, y cuado los mercados está e equlbro, se establece ua compesacó etre retabldad esperada y resgo Fudametos de Dreccó Facera Tema 3- arte I

3 Medda del redmeto y del resgo de actvos dvduales y de carteras RENDIMIENTO Varacó epresada e térmos relatvos de La rqueza de u versor como cosecueca de la adquscó de u determado actvo facero Redmeto de u actvo facero e u perodo determado Gaacas recbdas como dvdedo o tereses y por las deomadas gaacas de captal ~ ~ ~ R D t + t Redmeto varable aleatora, e-post - Retabldad s se cooce co certeza, e-ate es ua varable aleatora de carácter subetvo RÁMETROS DE L FUNCIÓN - (R) varable aleatora - El valor esperado E (R) h R ; E (R) R f (R) dr H - H úmero de estados. - h la probabldad de obteer R - f(r) la fucó de desdad - Fudametos de Dreccó Facera Tema 3- arte I 3

4 La varaza o desvacó típca Observacó: S se descooce la dstrbucó de probabldad del actvo cosderado, o coocemos los parámetros de los que estamos hablado. Habrá, por tato, que estmarlos a partr de datos muestrales (las seres hstórcas de redmetos). ermte coocer la aturaleza de la fucó de dstrbucó (forma dea de la dspersó de los redmetos co respecto a la meda), es ua medda del Resgo) (R) (R) H h [ R E(R) ] [ R E(R) ] f (R) dr U estmador sesgado de la esperaza poblacoal es la meda muestral, y u estmador sesgado de la varaza poblacoal es la cuasvaraza. R ˆ N t N N t R t ( R N t R ) - N úmero de observacoes - R t redmeto observado e el mometo t Covaraza Estadístco que va resultar relevate, mde e qué medda los redmetos de dos actvos está terrelacoados S o se cooce el parámetro poblacoal se deberá estmar, como estmador de la covaraza poblacoal se usará la covaraza muestral Sea y dos actvos cuyas respectvas retabldades (R y R ) so varables aleatoras., Como estmador: Cov(R,R ) E (R [ E(R ))(R E(R ))] Fudametos de Dreccó Facera Tema 3- arte I 4

5 ˆ, N t (R,t R )(R N,t R ) Covaraza Es u úmero que solo da ua dea del setdo de la relacó etre los redmetos de los dos actvos (s es postva es que opera e la msma dreccó, s es egatva e dreccoes dsttas), pero o de la tesdad de la msma Coefcete de correlacó Se mueve etre - y, resuelve el problema ateror ya que proporcoa ua dea del grado de terrelacó ρ ρ +, correlacó perfecta postva. ρ -, correlacó perfecta egatva. ρ 0, varables depedetes. Eemplo: Estado Naturaleza robabldad R R R 3 0, 0,5 0,5 0,0 0,4 0,0 0,5 0,5 3 0,4 0,5 0,0 0,0 4 0, 0,0 0,0 0,5 E(R )0,.0,5+0,4.0,0+0,4.0,5+0,.0,00,75 E(R )0,75 E(R 3 )0,75 (0,5-0,75).0,+(0,0-0,75).0,4+(0,5-0,75).0,4+(0,-0,75).0,0,0065 0,0065 Fudametos de Dreccó Facera Tema 3- arte I 5

6 3 0,0065 Cov(R,R ), 0,5-0,75)(0,5-0,75).0,+(0,-0,75)(0,5-0,75).0,4+(0,5-0,75)(0,- 0,75).0,4+(0,-0,75)(0,-0,75).0,6, Cov(R,R 3 ),3-6,5.0-4 Cov(R,R 3 ),3-6,5.0-4 ρ, 4 6,5 0 (0,0403)(,0403) 4 6,5.0 0, ,0065 ρ,3 - ρ,3-0, Co datos muestrales se tedría: Mometos del tempo R R R 3 t 0,5 0,5 0,0 t 0,0 0,5 0,5 t3 0,5 0,0 0,0 t4 0,0 0,0 0,5 05, + 0, + 05, + 0, R 0, 75 4 R 0, 75 R 3 0, 75 ˆ (0,5 0,75) 0, (0, 0,75) + (0,5 0,75) 4 + (0, 0,75) ˆ ˆ 3 ˆ, 0, , (0,5 0,75)(0,5 0,75) + (0, 0,75)(0,5 0,75) + (0,5 0,75)(0, 0,75) + (0, 0,75)(0, 0,75) 4 0, ˆ, 3 ˆ, 3 0, , Fudametos de Dreccó Facera Tema 3- arte I 6

7 RENDIMIENTO Y RIESGO DE UN CRTER (Combacó de actvos faceros) Cómo se puede determar el redmeto de ua cartera? El redmeto de ua cartera, p, para u perodo, que está compuesta por dos actvos y. S el versor verte la mtad de su rqueza e cada uo de los actvos: Supoemos que la rqueza es de u.m., s al fal del perodo el redmeto del actvo ha sdo R, y el del actvo ha sdo R, el redmeto de la cartera sería: R R p p R R ,5 R + 0,5 R 0,5 es la proporcó vertda e cada uo de los actvos, luego geeralzado y s se llama a la proporcó de la rqueza vertda e el actvo : R R + R S la cartera estuvese compuesta por actvos: R R dode. Redmeto de ua cartera para u perodo Suma poderada de los redmetos de los actvos que la compoe (la poderacó es la proporcó de la rqueza vertda e cada actvo epresada e tato por uo) E el caso de dos actvos: ~ ~ ~ R R + R p plcado el operador esperaza: ER ( ~ ) ER ( ~ ) + ER ( ~ ) p plcado el operador Varaza: + +, p ara actvos: R ~ p R ~ + R ~ + L + R ~ E(R ~ p ) E(R ~ ) + E(R ~ ) + L + E(R ~ ) R ~ Como el redmeto del actvo facero es ua varable aleatora, el redmeto de la cartera també lo será, pues es ua combacó leal de varables aleatoras Fudametos de Dreccó Facera Tema 3- arte I 7

8 Coclusó: Redmeto de ua cartera para u perodo Es la suma poderada de los redmetos esperados de los actvos que la compoe, sedo la poderacó la proporcó vertda de la rqueza cal e cada actvo El resgo total meddo por la varaza (o su raíz cuadrada, la desvacó típca): p L + +,,, +, 3,3 + L + ρ,, Observacoes S se verte e actvos (.) el total de la versó ha de ser el 00% de la rqueza luego: S o se dca ada más de las varables puede ser postvos o egatvos- - S so postvos sgfca que se está tomado poscoes largas e el actvo (se está comprado) - S las so egatvas se está tomado poscoes cortas e el actvo, es decr se está vededo al descuberto Coclusó El resgo de la cartera va a depeder de la covaraza etre los actvos que la compoe Dado que el resgo de la cartera depede de la varaza de los actvos que la compoe que sempre so postvas y de la covaraza etre ellos, la gestó del resgo de la cartera da mportaca a las covarazas etre los actvos, ya que estas puede ser també egatvas Fudametos de Dreccó Facera Tema 3- arte I 8

9 Ua covaraza postva etre los actvos añade resgo a la cartera Dada ua determada varaza de los títulos Ua covaraza egatva reduce la varaza de toda la cartera S la cartera está formada por dos actvos, cuado uo tede a subr el otro tede a baar, los dos actvos se está compesado etre sí. S ambos actvos sube o baa utos o se está compesado y el resgo de la cartera será más alto Coclusó: el efecto e el resgo de ua cartera de u actvo dvdual o solo vee dado por su resgo total (la varaza) so també por la terrelacó de este actvo co el resto Eemplo. Sea tres actvos faceros cuya esperaza y varaza so: ER ( ~ ) 0, 75 0, , 5 0, ER ( ~ ) 0, 75 0, , 6 0 3, ER ( ~ ) 0, 75 0, , , Como los redmetos esperados de los tres actvos so détcos, el redmeto esperado de cualquer cartera formada por cualquer proporcó de los actvos y, y 3, y 3 o, y 3 es el msmo 0,75, por eemplo: ER ( ~, ) 0, 5 0, , 5 0, 75 0, Fudametos de Dreccó Facera Tema 3- arte I 9

10 or cotra s calculamos la varaza de la cartera, el resgo depederá de los dos actvos que ela, ya que auque el resgo dvdual es el msmo també se ve afectado por la covaraza etre los actvos: 0, 5 0, , 5 0, , 5 0, 5 6, 5 0 4, 4 3, 0, 5 0, , 5 0, , 5 0, 5 6, , ,,,,,, (, ) La combacó de actvos que meor resgo proporcoa es la formada por los actvos y 3 que tee covaraza egatva. Qué aporta u actvo dvdual al redmeto y resgo de ua cartera? S observamos la epresó del redmeto esperado: E(R ~ p ) E(R ~ ) + E(R ~ ) + L + E(R ~ ) + L+ E(R ~ El actvo aportará a la retabldad de la cartera ). ero al resgo de la cartera, s hacemos refereca al msmo como desvacó típca, o aporta, ya que el efecto e el resgo de la cartera també depede de la relacó etre el redmeto del actvo y el redmeto del resto de actvos que compoe la cartera: E(R ~ ),, [, +, + L +, ] [ Cov(R ~, R ~ + R ~ + L + R ~ )],como R ~ + R ~ + L+ R ~ R ~ como + L, etoces: R ~ R ~ + + R ~ R ~ Cov(R ~,R ~ ) Coclusó: La varaza de la cartera se puede epresar como suma poderada de las covarazas de los redmetos de los actvos co el redmeto de la cartera, y la cotrbucó al resgo de la cartera de u actvo será:, (depede o del resgo dvdual, so de la relacó del actvo co el resto de actvos que compoe la cartera) Fudametos de Dreccó Facera Tema 3- arte I 0

11 La desvacó estádar de la cartera o vee dada como la meda poderada de las desvacoes típcas de los redmetos de los actvos dvduales que la compoe Cocepto de dversfcacó Resulta teresate comparar esta suma poderada co la desvacó típca de la cartera, co el f de aalzar que ocurre al combar actvos faceros e carteras, s es que ocurre algo La meda poderada de las desvacoes típcas y su cuadrado vee dada por la epresó: La desvacó típca de la cartera y su cuadrado (la varaza) será: + +, + + Sea los actvos y : + + ρ, S el coefcete de correlacó es gual a uo las epresoes so détcas, e el caso cotraro, la últma epresó sempre es más pequeña. Es decr la desvacó típca de ua cartera de dos títulos sempre es más pequeña (o como mucho gual), que la meda de las desvacoes típcas de los actvos dvduales. Esto es debdo al efecto de la dversfcacó (Dsmucó del resgo combado actvos e carteras, es decr gestó del resgo combado de forma adecuada actvos e carteras). Fudametos de Dreccó Facera Tema 3- arte I

12 La teoría de carteras de Markowtz Cuestó a resolver: Dado u couto de actvos faceros, cuáles so las combacoes óptmas de estos actvos y cuál de ellas escoger a la hora de tomar la decsó de vertr? (el modelo de Markowtz () os proporcoa, a partr de determadas hpótess sobre el comportameto del versor y sobre los redmetos de los actvos, ua solucó al problema plateado) portacó de Markowtz Calcularr de forma eplícta el comportameto racoal del versor, cosstete e buscar la composcó de cartera que mamce su redmeto para u determado vel de resgo, o que haga mímo el resgo de aquélla para u redmeto dado roblema plateado Mamzar la fucó de utldad de u dvduo racoal y adverso al resgo, que desee vertr la totaldad de su presupuesto e los actvos arresgados que se cotza e bolsa Fudametos de Dreccó Facera Tema 3- arte I

13 E relacó al comportameto del versor:.-el versor toma sus decsoes e base a dos parámetros de la fucó de dstrbucó de la varable aleatora retabldad, el valor medo y la varaza o desvacó típca (razó por la que deoma també modelo de dos dmesoes y modelo de decsó meda-varaza..-el comportameto del versor, se admte que es racoal (prefere más a meos), y adverso al resgo. or ello, su fucó de utldad, que se defe, úca y eclusvamete, e fucó de la esperaza y desvacó típca de la retabldad (debe recoger que prefere las carteras de mayor retabldad y meor varabldad o resgo), es decr: U U 0; 0 ER ( ~ ) 3.-E cuato a las curvas de soutldad ha de ser crecetes y cócavas: de( R ~ ) de( R ~ ) 0; 0 d d Hpótess Fudametales 4. Todos los versores tee u horzote temporal que cluye u úco perodo. E cuato a los mercados y actvos:.- Los redmetos de u actvo facero o cartera para u perodo de tempo dado es ua varable aleatora, y su fucó de probabldad para el período de refereca es coocda por el versor. demás se asume la hpótess de que se dstrbuye segú ua ormal (fucó de dstrbucó smétrca y estable, aceptado así que la varable aleatora retabldad del título o cartera, está perfectamete defda por los dos prmeros mometos, es decr, la meda y la varaza o desvacó típca) La esperaza matemátca o meda de dcha varable aleatora se acepta como medda del redmeto o retabldad de la versó. La varaza o desvacó típca se cosdera como medda del resgo. De este modo queda ustfcado el que los crteros de decsó se establezca e base al valor medo y a la varaza de los redmetos..- E el mercado este N actvos arresgados. 3.- Los mercados de captales so perfectos : 4.-Que todas las versoes so perfectamete dvsbles Fudametos de Dreccó Facera Tema 3- arte I 3

14 Obetvo del Modelo Determar la composcó de la cartera que mamce la utldad esperada del versor (cartera óptma) I Determacó del couto de posbldades de versó II Determacó de la Frotera Efcete (o couto efcete) Etapas del roceso. III Especfcacó de las preferecas del versor, esto equvale a determar el mapa de curvas de soutldad IV Determacó de la cartera óptma del versor a partr de sus preferecas y del couto efcete Fudametos de Dreccó Facera Tema 3- arte I 4

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Regresión - Correlación

Regresión - Correlación REGRESIÓN Regresó - Correlacó Aálss que requere la cosderacó de o más varables cuattatvas e forma smultáea. Aálss de Regresó: estuda la relacó fucoal de ua o más varables respecto de otra Aálss de Correlacó:

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE. Eva Mª del Pozo García Mª Jesús Segovia Vargas Zuleyka Díaz Martínez

PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE. Eva Mª del Pozo García Mª Jesús Segovia Vargas Zuleyka Díaz Martínez PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE Eva Mª del Pozo García Mª Jesús Segova Vargas Zuleyka Díaz Martíez Departameto de Ecoomía Facera y Cotabldad I Uversdad Complutese

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA Área Matemátcas- Aálss Estadístco Módulo Básco de Igeería (MBI) Resultados de apredzaje Apreder el correcto uso de la calculadora cetífca e modo estadístco, además

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Grado de ADE. Prmer curso Raquel Mª Álvarez Esteba Descrpcó umérca de ua varable Objetvo: Resumr dsttos aspectos de las dstrbucoes de frecuecas Iterés de los resúmees umércos:

Más detalles

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA)

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA) Teoría de carteras de versó para la dversfcacó del resgo: efoque clásco y uso de redes euroales artfcales (RNA) Ivestmet portfolo theory ad rsk dversfcato: classc ad eural etworks methodology D. Cot* y

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Método de semivarianza y varianza para la selección de un portafolio óptimo. Semivariance and variance method for selecting an optimal portfolio

Método de semivarianza y varianza para la selección de un portafolio óptimo. Semivariance and variance method for selecting an optimal portfolio Método de sevaraza y varaza para la seleccó de u portaolo ópto Sevarace ad varace ethod or selectg a optal portolo Lzbeth María de Jesús Urbe, Mguel Ágel Martíez Daá, Gustavo aírez Valverde ESUMEN E los

Más detalles

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra Estmacó putual de parámetros. Parámetro( : Característca de la poblacó. E estadístca la forma fucoal de f ( ; es coocda pero se descooce total o parcalmete. La estmacó del parámetro ( debe ser fucó de

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Parte II. TEORÍA DE LA ELECCIÓN INDIVIDUAL

Parte II. TEORÍA DE LA ELECCIÓN INDIVIDUAL INTODUCCIÓN A LA ECONOMÍA FINANCIEA Parte I. INTODUCCIÓN Tema. Fudametos de Ecoomía Facera Parte II. TEOÍA DE LA ELECCIÓN INDIVIDUAL Tema. Cosumo, versó y mercados de catales Parte III. TEOÍA DE LOS MECADOS

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

Tema 2: El modelo básico de regresión lineal múltiple (I)

Tema 2: El modelo básico de regresión lineal múltiple (I) Tema : l modelo básco de regresó leal múltple I Casaldad la ocó de cetrs parbs e el aálss ecoométrco Repaso del cocepto de regresó smple: Recta de regresó poblacoal p verss recta de regresó estmada Motvacó

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

Esta t d a í d s í titcos o TEMA 3.3

Esta t d a í d s í titcos o TEMA 3.3 TEMA 3.3 Defcó úmero obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco)

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS PUNTES DOCENTES SIGNTUR: MTEMTICS FINNCIERS PROFESORES: MRIN JIMES CRLOS JVIER SRMIENTO LUIS JIME DEPRTMENTO DE CIENCIS BÁSICS VERSION: 2-20 QUÉ ES MTEMÁTICS FINNCIERS? Hace alguos años éste era u tema

Más detalles

Evolución buena 0,7 0,3 Evolución mala 0,2 0,8 Cuál es el valor máximo de esta información?

Evolución buena 0,7 0,3 Evolución mala 0,2 0,8 Cuál es el valor máximo de esta información? APELLIDOS: DNI: EXAMEN DE TÉCNICAS CUANTITATIVAS III. NOMBRE: GRUPO: E todos los casos, cosdere u vel de cofaza del 95% (z=).. U empresaro quere estmar el cosumo mesual de electrcdad e ua comudad de 000

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

Gestión de Carteras I: Selección de Carteras

Gestión de Carteras I: Selección de Carteras Gestó de Carteras I: Seleccó de Carteras Uversdad Complutese de Madrd Jua Mascareñas Uversdad Complutese de Madrd Versó orgal: ee-86; Últma versó: ju-08 - Itroduccó, - La retabldad y el resgo de u actvo

Más detalles

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*)

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) UNIVERSIDAD NACIONAL DE SALTA Facultad de Cecas Ecoómcas, Jurídcas y Socales Isttuto de Ivestgacoes Ecoómcas Reuó de Dscusó Nº 7 Fecha: /06/003 Hs.: 6 UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) Eusebo Cleto

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA Nura Padlla Garrdo Departameto de Ecoomía Geeral y Estadístca Uversdad de Huelva padlla@uhu.es Flor María Guerrero

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores Modelo Matemátco Multobjetvo para la Seleccó de ua Cartera de Iversó e la Bolsa Mexcaa de Valores José Crspí Zavala-Díaz, Marco Atoo Cruz-Chavez, Jorge Ruz Vaoye 3, Martí H. Cruz-Rosales 4 Facultad de

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles