Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3: Variables aleatorias y vectores aleatorios bidimensionales"

Transcripción

1 Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos aleatorios, que en muchos casos son cualitativos, y que siguen patrones muy similares aunque la naturaleza del experimento no lo sea. Por ejemplo, un experimento consistente en observar el resultado de tirar una moneda, si ésta está trucada y la probabilidad de cara es 0.9 y la de cruz es 0.1, es similar al experimento observar una pieza fabricada en un proceso que produce un 90% de piezas buenas y un 10% de piezas con defecto, pues en ambos casos, los posibles resultados del experimento son dos y la asignación de probabilidades a los resultados es igual. Sin embargo, ambos experimentos son de naturaleza totalmente diferente. 3.1 Variable aleatoria y ley de probabilidad asociada a la variable. Definición 1 Dado un espacio muestral Ω asociado a un experimento aleatorio, llamaremos variable aleatoria (v.a.) definida sobre Ω a una aplicación X de Ω en IR. Por ejemplo, en los dos experimentos de la introducción, podría definirse la aplicación X que asigna al resultado cara el valor 1 y al resultado cruz el valor 0. Igualmente, en el caso de la pieza, podría definirse una variable asignando al resultado buena el valor 1 y al resultado defectuosa el valor 0. Definición 2 Dada una variable aleatoria X definida sobre el conjunto de sucesos de un experimento aleatorio, llamaremos soporte de X, que se denota por S X, al conjunto de posibles valores (números reales) de la variable aleatoria. Observación 1 El soporte de una variable aleatoria puede ser discreto o consistir en un intervalo de IR. En los dos ejemplos anteriores, S X = {0, 1}. El soporte de la variable aleatoria se puede considerar como un nuevo espacio muestral, sobre el que se puede definir una probabilidad relacionada con la probabilidad definida sobre el espacio muestral original Ω, de la siguiente forma: dado A IR, p(a) = p({ω Ω/X(ω) A}) De esta forma se define una aplicación con llegada en el intervalo [0,1], sobre los subconjuntos del soporte que son imagen de un suceso de Ω y se puede demostrar que esta aplicación es una probabilidad. Esta probabilidad se denomina probabilidad asociada a la v.a. X, ley de probabilidad de la v. a. X o distribución de la v.a. X. En el ejemplo: p(1) = p(cara) = 0.9, p(0) = p(cruz) = 0.1 e igualmente: p(1) = p(buena) = 0.9, p(0) = p(defectuosa) = 0.1

2 Estadística 39 Es decir, las probabilidades definidas sobre S X = {0, 1} son iguales, aún cuando los experimentos sean diferentes. Una vez que se conoce el soporte de una variable aleatoria y su distribución, se puede olvidar el experimento original. Cada variable aleatoria distinta (es decir, con soporte o distribución distinta) constituye un modelo probabilístico. En el resto del tema y en los siguientes nos centraremos en el estudio de estos modelos. 3.2 Variables aleatorias discretas. Una variable aleatoria es discreta si su soporte es discreto, es decir, si consiste en un número finito o numerable de resultados: S X = {x 1, x 2,... x n,...}. Definición 3 La ley de probabilidad o distribución de una variable aleatoria discreta X queda determinada por los valores p(x i ) = p(x = x i ), i = 1, 2,.... Se puede extender la definición de p a cualquier número real, definiéndola como cero para todos los x x i, i = 1, 2,.... A esta función definida en IR se la denomina función de probabilidad o de masa de la variable aleatoria. Ejemplo: El ejemplo más sencillo de variable discreta es la variable discreta uniforme, cuyo soporte es S X = {x 1, x 2,..., x n } con probabilidades: p(x i ) = 1 n. Otra forma de definir la distribución de una v.a. discreta es mediante la función de distribución: Definición 4 Llamaremos función de distribución de la variable aleatoria X a la función: F : IR [0, 1] definida por: F (x) = p(x x). Propiedades 1 Propiedades de la función de distribución. (a) lim F (x) = 1 y lim F (x) = 0. x x La primera igualdad se debe a que {X } es todo el espacio muestral y la segunda a que {X } es su complementario. (b) Si S X = {x 1, x 2,... x n,...} y los valores están ordenados de menor a mayor, F (x) = k p(x i ), si x [x k, x k+1 ). i=1 (c) F es creciente: si x y, F (x) F (y). (d) F es continua a la derecha: lim F (x + h) = F (x). h 0 + (e) p(x i ) = F (x i ) F (x i 1 ). (f) Como consecuencia de todas las propiedades anteriores, la gráfica de F es discontinua con saltos finitos en los puntos de probabilidad no nula, y creciente. 3.3 Variables aleatorias continuas. De forma intuitiva, una variable aleatoria continua es aquella que toma valores en un intervalo de IR. Posteriormente daremos una definición más rigurosa.

3 Estadística 40 Vamos a introducir este concepto y el de distribución de una variable continua de forma intuitiva, partiendo de un ejemplo. Consideremos la medida del diámetro interior de un rodamiento de determinadas características. Esta medida puede considerarse una variable aleatoria pues las medidas de los distintos rodamientos tomarán valores aleatorios dentro de un intervalo de IR más o menos amplio. Si tomamos 100 de estos rodamientos, anotamos sus medidas y construimos el histograma correspondiente, después de haber agrupado en clases, cada rectángulo del histograma tendrá área proporcional a la frecuencia relativa de la clase correspondiente, y esta frecuencia se puede escribir como: f i = F i+1 F i, donde f i es la frecuencia relativa de la clase [x i, x i+1 ) y F i+1 es la correspondiente frecuencia relativa acumulada. Vamos a suponer que la razón de proporcionalidad es 1 y por tanto, que: (x i+1 x i )h i = F i+1 F i dónde h i es la altura del rectángulo. Podemos observar en ese histograma que el área total es 1 y que la probabilidad de que una de las 100 piezas escogida al azar tenga su medida en el intervalo [x i, x i+1 ) es el área del histograma correspondiente a este intervalo Si ahora medimos 1000 piezas y agrupamos en clases (igualmente espaciadas), obtendremos un nuevo histograma; si tomamos piezas y agrupamos en clases,..., los sucesivos histogramas van a ir aproximándose a una curva (Ley de Regularidad Estadística). Cuál va a ser la altura f(x) correspondiente a cada x del soporte de esta variable, en esa curva?. En el histograma inicial, la altura de un punto x que estuviese en el intervalo [x i, x i+1 ) era: h i = F i+1 F i x i+1 x i e igualmente en los sucesivos histogramas, de forma que f(x) será el límite de estas alturas cuando el número de piezas observadas y el número de clases tiendan a infinito (y por tanto la amplitud de las clases tienda a cero). A esta curva límite la vamos a llamar función de densidad. Su nombre proviene de la similitud entre el concepto de probabilidad, las frecuencias relativas y la interpretación de éstas como masas. Cuando se consideran variables aleatorias continuas, el soporte de la variable se puede interpretar como una varilla delgada de masa unidad y densidad no constante, dada por la función de densidad de probabilidad f(x). Igual que en el caso de la varilla (en el que cada punto de la misma tiene masa cero) la probabilidad de cada punto es cero, sin embargo, la probabilidad de un intervalo contenido en el soporte (equivalente a la masa de un trozo de varilla) puede ser no nula. Definición 5 Diremos que una variable aleatoria X es continua si existe una función f : IR IR, integrable, tal que: (a) f(x) 0 para todo x IR. (b) f(x)dx = 1. (c) p(x x) = x f(t)dt. A dicha función se la denomina función de densidad de la variable aleatoria X. Observación 2 A partir de lo desarrollado en la introducción de este punto, se deduce que f(x) describe el comportamiento a largo plazo ( es decir, cuando el número de observaciones tiende a infinito) de la variable.

4 Estadística 41 Ejemplo: De nuevo, el ejemplo más sencillo de v. a. continua es la v.a. continua uniforme, que se define como aquella que tiene densidad constante en un intervalo acotado de IR. Así, la v.a. continua uniforme en [a, b] será la que tiene por soporte S X = [a, b] y densidad: f(x) = { 1 b a a x b 0 en otro caso ( Por qué 1 b a?) Igual que ocurre con las v.a. discretas, la distribución de una v.a. continua se puede definir también a partir de la función de distribución de la variable, que se define de igual forma: Definición 6 Llamaremos función de distribución de la variable aleatoria X a la función: F : IR [0, 1] definida por: F (x) = p(x x). Teniendo en cuenta la definición de función de densidad, se cumplen las siguientes propiedades: Propiedades 2 (a) lim F (x) = 1 y lim F (x) = 0. x x (b) F es creciente: si x y, F (x) F (y). (c) F (x) = x f(t)dt. (d) F(x) es continua en IR. (e) F(x) es derivable y F (x) = f(x), para cada x R en el que la función de densidad es continua. (f) La probabilidad de un punto es nula. (g) p([a, b]) = p((a, b]) = p([a, b)) = p((a, b)) = F (b) F (a) = b a f(t)dt. Ejemplo: La función de distribución de la v.a. continua uniforme será: 3.4 Medidas características de una v.a. 0 si x a x a F (x) = b a a x b 1 si x b Las medidas características asociadas a una v.a. reciben el mismo nombre que en el caso de variables estadísticas y se interpretan de idéntica forma. En este caso, para distinguir unas y otras, se representan con letras griegas. Vamos a definir a continuación las principales. Podrá observarse que en el caso discreto, las definiciones son totalmente análogas a las dadas para v. estadísticas, si en éstas se cambia frecuencia relativa por probabilidad. Medida v.a.discretas v.a. continuas Media o Esperanza µ ó E(X) x i p(x i ) xf(x) dx i Varianza σ 2 (x i µ) 2 p(x i ) (x µ)2 f(x) dx i Desviación típica σ (x i µ) 2 p(x i ) (x µ)2 f(x) dx i

5 Estadística 42 Observación 3 La media de una variable aleatoria se interpreta como el valor esperado a largo plazo, de la variable, de ahí su nombre de Esperanza. En cuanto a las restantes medidas, se definen: Mediana: - en el caso discreto se calcula de igual forma que para variables estadísticas. - en el caso continuo, es el valor para el que F (x) = 1 2. Moda: - en el caso discreto, es el valor x i para el cuál p toma el valor más alto. - en el caso continuo, coincide con los máximos absolutos de la función de densidad. Cuartiles: - en el caso discreto se calculan de igual forma que para variables estadísticas. - en el caso continuo son: Q 1 el valor para el que F (x) = 1 4 y Q 3 el valor para el que F (x) = 3 4. Rango intercuartílico: en ambos casos se define como la diferencia entre los cuartiles, Q 3 Q 1. Coeficiente de variación: en ambos casos se define como σ µ. Un resultado importante, que expresa la relación existente entre la media de una variable aleatoria y su desviación típica, es el teorema de Chebychev, cuyo enunciado es similar al visto en Estadística Descriptiva, y cuya demostración, en el caso discreto es análoga y por tanto, no la repetiremos: Teorema 1 Teorema de Chebychev Sea X una v.a. con media µ finita y desviación típica σ finita. Entonces, si k es un número real con k 1: p(µ kσ X µ + kσ) > 1 1 k Vectores aleatorios bidimensionales Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos, interesa estudiar dos o más características y su relación: peso y altura, renta y consumo, producción y gastos de mantenimiento, inversión tecnológica y número de obreros,... Por comodidad vamos a estudiar los vectores aleatorios bidimensionales, aunque el estudio de variables n-dimensionales es análogo. Además, nos centraremos en los vectores discretos, aunque definiremos de forma intuitiva el concepto de vector continuo y veremos algunas propiedades comunes a ambos tipos de vectores. Definición 7 Se denomina vector aleatorio bidimensional a una aplicación del espacio de sucesos de un experimento aleatorio en IR 2, X = (X, Y ) : Ω IR 2. Definición 8 Se dice que se ha definido la distribución conjunta del vector si se conocen: (a) Los resultados posibles del vector (es decir, su soporte, que denotaremos por S X S (X,Y ) ). (b) Las probabilidades de cada resultado posible. o por Definición 9 Diremos que un vector aleatorio bidimensional X = (X, Y ) es discreto si sus dos componentes son variables aleatorias discretas.

6 Estadística 43 Ejemplo 1: Se lanzan dos dados y se consideran las variables aleatorias: X= suma de los resultados Y= valor absoluto de la diferencia En este caso, p(x 4, Y = 2) = p({(1, 3), (3, 1)}) = 1/18 y de igual forma se obtiene la distribución conjunta p(x = x i, Y = y j ). Además, podemos obtener los valores de p(x = 2) ó p(y = 4), utilizando tablas de doble entrada: Y \X /36 0 1/36 0 1/36 0 1/36 0 1/36 0 1/36 6/ /18 0 1/18 0 1/18 0 1/18 0 1/18 0 5/ /18 0 1/18 0 1/18 0 1/ / /18 0 1/18 0 1/ / /18 0 1/ / / /18 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 También podemos considerar la variable X/(Y 2), cuyo soporte es {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} y cuya distribución de probabilidades viene dada por: X/(Y 2) p(x = x i /Y 2) 1/24 2/24 3/24 4/24 5/24 6/24 5/24 4/24 3/24 2/24 1/24 Vector aleatorio continuo Dijimos al principio que comentaríamos el concepto de vector continuo; de forma intuitiva un par de variables aleatorias (X,Y) definen un vectr continuo si existe una función de dos variables f(x, y), positiva, que determina un volumen unidad en IR 2 y de forma que la probabilidad de que el vector tome valores en un subconjunto de IR 2 es el volumen que esa función f(x, y) determina sobre él. Si el vector es continuo, cada una de sus componentes X e Y son variables aleatorias continuas y por tanto tienen funciones de densidad que denotaremos por f X y f Y. 4.6 Independencia de variables aleatorias Definición 10 Las v.a discretas X 1, X 2,... X n se dicen independientes si y sólo si p(x 1 = x 1, X 2 = x 2,... X n = x n ) = p X1 (x 1 )p X2 (x 2 )... p Xn (x n ) para cada (x 1,..., x n ) S (X1,X 2,...,X n). Ejemplo 3: Puede comprobarse que las variables X e Y definidas en el ejemplo 1 no son independientes. Ejemplo 4: En el experimento de tirar dos dados correctos, vamos a definir las variables X 1 y X 2 de la siguiente forma: X 1 = 2 si al menos uno de los resultados es par y X 1 = 1 si los dos resultados son impares X 2 = 3 si al menos un resultado es múltiplo de 3 y X 2 = 0 si ninguno de los dos resultados es múltiplo de 3. Puede comprobarse que la tabla de doble entrada del vector (X 1, X 2 ) es :

7 Estadística 44 X 1 \X /36 5/36 9/ /36 15/36 27/36 16/36 20/36 Las variables X 1 y X 2 son independientes, puesto que 9 20 = = = = 12 Definición 11 El vector aleatorio continuo (X 1,..., X n ) tiene componentes que son independientes si y sólo si f(x 1, x 2,..., x n ) = f X1 (x 1 )... f Xn (x n ). 4.7 Funciones de vectores aleatorios En ocasiones, los sucesos a estudiar se expresan como una relación funcional de variables aleatorias (por ejemplo, el suceso X + Y 1, ó XY 62.5). Por ello, vamos a introducir brevemente las funciones de vectores aleatorios. Proposición 1 Si (X,Y) es un vector aleatorio y h : IR 2 IR es una función continua, entonces h(x,y) es una variable aleatoria que, si el vector es continuo, será continua. Algunas de las relaciones que más comúnmente aparecen al trabajar con variables aleatoria es la suma y el producto; las medidas de las nuevas variables, cumplen estas propiedades: Propiedades 3 Si (X,Y) es un vector aleatorio bidimensional y a,b son números reales: (a) E(aX + by ) = ae(x) + be(y ). (b) Si X e Y son independientes: V ar(ax + by ) = a 2 V ar(x) + b 2 V ar(y ). (c) Si X e Y son independientes: E(aXY ) = ae(x)e(y ).

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

TEORIA DE LA PROBABILIDAD

TEORIA DE LA PROBABILIDAD TEORIA DE LA PROBABILIDAD 2.1. Un poco de historia de la teoría de la probabilidad. Parece evidente que la idea de probabilidad debe ser tan antigua como el hombre. La idea es muy probable que llueva mañana

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4 .- Sea la función de probabilidad de una variable aleatoria: i 4 5 Probabilidad k P X. Se pide. A) La función de distribución. B) Primer cuartil. C) k si,. Si la función de densidad de una v. a. continua

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 12 Distribución de una variable aleatoria Elaborado por la Profesora

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

1.- Primitiva de una función (28.01.2015)

1.- Primitiva de una función (28.01.2015) 1.- Primitiva de una función (28.01.2015) 1.1. Definición. Sea f : I R. Se dice que F : I R es una primitiva de f si F es derivable y F = f en I. En ese caso escribimos F (x) = f(x)dx Si F es una primitiva

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente

Más detalles

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES 9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES Objetivo Introducir la idea de la distribución conjunta de dos variables discretas. Generalizar las ideas del tema 2. Introducir la distribución normal

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN. BINOMIAL Y NORMAL I.- Variable aleatoria. Concepto. Antes de definir el concepto de varibale aleatoria, veamos algunos ejemplos (ya estás empezando a comprobar

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Tema 14: Cálculo diferencial de funciones de varias variables II

Tema 14: Cálculo diferencial de funciones de varias variables II Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Tema 2: Estadística Descriptiva Multivariante

Tema 2: Estadística Descriptiva Multivariante Tema 2: Estadística Descriptiva Multivariante Datos multivariantes: estructura y notación Se llama población a un conjunto de elementos bien definidos. Por ejemplo, la población de las empresas de un país,

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Índice general. I Estadística 3

Índice general. I Estadística 3 Índice general I Estadística 3 1 Estadística Descriptiva 5 1.1 Variables estadísticas.................................... 5 1.2 Tipos, muestras....................................... 5 1.3 Una variable.........................................

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08)

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08) Variable Compleja I (3 o de Matemáticas) Apuntes sobre algunos teoremas fundamentales de análisis complejo, con ejemplos resueltos (7-8) En estos apuntes, consideraremos las funciones anaĺıticas (holomorfas)

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

Imagen de Rosaura Ochoa con licencia Creative Commons

Imagen de Rosaura Ochoa con licencia Creative Commons Imagen de Rosaura Ochoa con licencia Creative Commons Durante el primer tema hemos aprendido a elaborar una encuesta. Una vez elaborada la encuesta necesitamos escoger a los individuos a los que se la

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

HUMANIDADES Y CIENCIAS SOCIALES BLOQUE III ESTADÍSTICA Y PROBABILIDAD

HUMANIDADES Y CIENCIAS SOCIALES BLOQUE III ESTADÍSTICA Y PROBABILIDAD HUMANIDADES Y CIENCIAS SOCIALES BLOQUE III ESTADÍSTICA Y PROBABILIDAD π π PROYECTO EDITORIAL Equipo de Educación Secundaria de Ediciones SM AUTORES José Ramón Vizmanos Joaquín Hernández Fernando Alcaide

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias 1. Impulsos continuos y discretos a) Enuncie la propiedad de extracción de la delta de Dirac. b)

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles