A4 Programación lineal. Problemas de transporte, asignación y emparejamiento

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A4 Programación lineal. Problemas de transporte, asignación y emparejamiento"

Transcripción

1 40 Materials David Puolar Morales A4 Prograació lieal. Probleas de trasporte, asigació y epareaieto Defiició 55. Problea de trasporte. Se deoia problea de trasporte a todo problea lieal cuya expresió foral vega dada por: [ OPT ] åå x å x si" iî{,, } å x ³ d " Î{,, } x ³ 0" iî {,, } " Î{,, } (63) A efectos de copresió, cosidérese u esquea coceptual coo el siguiete: Orígees Destios s O D d s i O i D d s O D d Dode: - si: deota la oferta de u deteriado bie viculada a u cierto orige i-ésio. - d: desiga la deada de u deteriado bie asociada a u cierto destio -ésio. E el cotexto aterior, cosidérese que: - x: sea la catidad que debe eviarse desde el orige i-ésio al destio -ésio. - c: sea el coste uitario de trasporte desde el orige i-ésio al destio -ésio. E tal caso, el problea decisioal adoptará la fora:

2 Fudaetos de prograació lieal y optiizació e redes Materials 4 Mi x åå å x si" iî{,, } å x ³ d " Î{,, } x ³ 0" iî {,, } " Î{,, } Teorea 47. La codició ecesaria y suficiete para que u problea de trasporte posea solució propia viee dada por: åsi = å De satisfacerse dicha codició, deoiada de balaceado o equilibrado, adeás de asegurar la existecia de solució propia, da lugar a que las restriccioes del problea (63) se cupla e fora de igualdad. E el supuesto de que u problea de trasporte o esté equilibrado, resulta fácilete equilibrable itroduciedo, segú correspoda, u orige o destio ficticios. Para ello, si:.- å s i > åd debe crearse u destio ficticio + co d (64) (65) + = å i -å d s d c = " i i Î + 0 {,, }. La iterpretació de las variables ligadas a destios ficticios es iediata. Así, e el eeplo sobre oferta y deada, dichas variables idicaría el ivel de stock de los distitos orígees de oferta. 2.- å s i < åd debe crearse u orige ficticio + co + = å -å i s d s c = " Î + 0 {,, }. Coo e el caso aterior, el sigificado de las variables viculadas a orígees ficticios es secillo. E el eeplo citado, ediría el ivel de deada o satisfecha para los distitos destios. De acuerdo co lo aputado, ótese pues coo u problea de trasporte equilibrado adopta la expresió: [ OPT ] åå x å x = si" iî{,, } å x = d " Î{,, } x ³ 0" iî {,, } " Î{,, } Fialete, adviértase coo situacioes e las que desde algú orige i o pueda servirse a algú destio so fácilete odelizables ya sea e fora de far para tales orígees y destios o viculables x = 0 ya sea, alterativaete, iputádoles u coeficiete c arbitrariaete grade si el problea es de iiizació o arbitrariaete pequeño si el problea es de axiizació. y y (66)

3 42 Materials David Puolar Morales Defiició 56. Problea de trasporte etero. Se deoia problea de trasporte etero a todo problea de trasporte e el que las variables de decisió deba ser eteras y los si y d sea tabié eteros. Foralete, y ua vez equilibrado: [ OPT ] åå x å x = si" iî{,, } (67) å x = d " Î{,, } x ³ 0" iî {,, } " Î{,, } x Î " iî {,, } " Î{,, } Teorea 48. La expresió e fora atricial de u problea de trasporte equilibrado viee dada por: [ OPT ] cx ' x Ax = b (68) x ³ 0 Dode (véase u eeplo al fial de la secció): - c' = ( c, ¼, c, c2, ¼, c2,, c, ¼, c) vector de diesió x. - x' = ( x, ¼, x, x 2, ¼, x 2,, x, ¼, x) vector de diesió x. - b' = ( s, ¼, s, -d, ¼, -d) vector de diesió x(+). é ' 0 ' 0' ù 0 ' ' 0' - A= 0 ' 0 ' ' êë I I I úû Por lo tato, A es ua atriz de diesió (+)x co rago +, dode 0', ' so, respectivaete, u vector de diesió x de ceros y u vector de diesió x de uos, ietras que I es la atriz idetidad de diesió x. Nótese que el sigo egativo de los d así coo el de las atrices idetidad respode al hecho de expresar las restriccioes de la fora å x = d coo - å x =-d. De este odo, cada colua de la atriz A cotiee u y u siedo el resto de eleetos ceros, asegurádose por lo tato que sea uiodular total (recuérdese la defiició (43)) y, por ede, la aplicabilidad del teorea (29) e probleas de trasporte eteros que esté equilibrados. Fialete, que su rago o sea + sio que sea + (cosecuecia de que e u problea de trasporte equilibrado se verifica (65)) perite oitir ua restricció si pérdida iforativa y de odo que la atriz resultate posea u rago copleto por filas. Alterativaete, si se aplía la atriz A co ua colua adicioal, itroduciedo ua variable artificial e ua úica restricció, la atriz A apliada tabié poseerá rago copleto por filas y coservará la propiedad de uiodularidad total. Dicha variable artificial o poseerá igú ipacto sobre la fució obetivo dado que siepre tedrá u valor ulo e cualquier solució posible del problea artificial.

4 Fudaetos de prograació lieal y optiizació e redes Materials 43 Procediietos de resolució. E tato que probleas lieales cotiuos, los probleas de trasporte puede ser resueltos ediate la aplicació del algorito síplex. E tal caso, la obteció de ua base iicial requiere la itroducció de + variables artificiales y, por lo tato, la aplicació del étodo de las dos fases. E cosecuecia, supoiedo que o se haya oitido igua restricció e la atriz la atriz A, la atriz apliada co las variables artifíciales poseerá diesió (+)x(+(+)) y rago copleto por filas (que, por la itroducció de las variables artificiales será ahora igual a +). Por lo que respecta a los probleas de trasporte eteros, al ser la atriz A uiodular total, tabié puede resolverse ediate el algorito síplex (recuérdese el teorea (29)). No obstate, dada la peculiar estructura de la atriz A de restriccioes resulta ás eficiete coputacioalete hallar ua solució factible de base iicial si ecesidad de itroducir + variables artificiales. El procediieto e cuestió costituye el úcleo del llaado algorito del trasporte o síplex para el problea del trasporte (véase BAZARAA et al. (200)) tabié aplicable e probleas de trasporte eteros. Defiició 57. Problea de asigació. Se deoia problea de asigació a todo problea lieal cuya expresió foral vega por: [ OPT ] x å x " iî{,, } åå å x ³ " Î{,, } x Î { 0, }" iî {,, } " Î{,, } Nótese coo u problea de asigació es u caso especial del problea del trasporte, e el que s y las variables so biarias. Coo ilustració cosidérese ua situació e la que los orígees del problea se " iî {,, } ; d " Î{,, } asiila a recursos y los destios a tareas. Supoiedo que igú recurso pueda asigarse siultáeaete a ás de ua tarea y que toda tarea requiera de al eos u recurso para llevarse a cabo; etoces, cuado ua variable de decisió x vale uo sigifica que el recurso i-ésio es asigado a la tarea -ésia, ietras que de valer cero, ello supoe la o asigació de dicho recurso a la tarea e cuestió. (69) Teorea 49. La codició ecesaria y suficiete para que u problea de asigació posea solució propia viee dada por = ; esto es, que el úero de orígees sea igual al de destios. El resultado aterior es cosecuecia directa de (65) habida cueta que si =; d y, por lo tato åsi = ; åd =. * Adviértase coo el total de ceros e cada colua es de +2 y, por ede, el de ceros e la atriz es de (+2)(). E cuato al algorito del trasporte, el puto de partida del iso lo costituye la iclusió de ua úica variable artificial e ua restricció cualquiera, co obeto de asegurar que el rago de la atriz A así apliada (que atiee la propiedad de uiodularidad total) sea +. El coeficiete que se asiga a dicha variable e la fució obetivo es 0, al o teer igua ifluecia sobre ésta, dado que el problea origial (ua vez equilibrado) siepre posee solució propia.

5 44 Materials David Puolar Morales Al igual que e el caso de los probleas de trasporte, de satisfacerse dicha codició, adeás de asegurar la existecia de solució propia, da lugar a que las restriccioes del problea (69) se cupla e fora de igualdad, por lo que u problea de asigació equilibrado vedrá forulado coo: [ OPT ] x å x = " iî{,, } åå å x = " Î{,, } x Î { 0, }" i, Î{,, } (70) De o estar equilibrado u problea de asigació, resulta fácilete equilibrable. Para ello, si:.- > debe crearse destios ficticios co coeficietes c ulos. Coo sucedía e el problea del trasporte, la iterpretació de variables referidas a destios ficticios es siple. Así, e el eeplo de recursos y tareas idica qué recursos queda si asigarse. 2.- < debe crearse orígees ficticios co coeficietes c ulos. Coo ates, las variables asociadas a orígees ficticios tiee fácil lectura. Así, e el eeplo citado, expresa qué tareas o se realiza por falta de recursos. E cuato a las situacioes e las que desde algú orige i o pueda servirse a algú destio su trataieto es aálogo al descrito para los probleas de trasporte. Esto es, ya sea e fora de far para tales orígees y destios o viculables x = 0 ya sea, alterativaete, iputádoles u coeficiete c arbitrariaete grade si el problea es de iiizació o arbitrariaete pequeño si el problea es de axiizació. Defiició 58. Problea de epareaieto. U caso particular de problea de asigació es el deoiado problea de epareaieto, caracterizado por: - El obetivo del problea es el de axiizar el úero de asigacioes factibles. - Los c tiee u carácter cualitativo, recogido ediate la iputació de u valor uitario cuado el orige i-ésio puede asigarse al -ésio y de u valor ulo si tal asigació o es factible. Obsérvese que e el caso de ser todos los c ulos, el problea es ifactible. - Coo cosecuecia de lo aterior, cuado deba itroducirse orígees o destios ficticios a los c viculados a los isos se les debe iputar u valor uitario ietras que las relacioes o factibles etre orígees y destios requiere establecer u valor ulo a sus respectivos c.

6 Fudaetos de prograació lieal y optiizació e redes Materials 45 Teorea 50. La expresió e fora atricial de u problea de asigació equilibrado viee dada por: [ OPT ] cx ' x Ax = b x Î { 0, }" i, Î{,, } (7) Dode: - c' = ( c, ¼, c, c2, ¼, c2,, c, ¼, c) vector de diesió x 2. - x' = ( x, ¼, x, x 2, ¼, x 2,, x, ¼, x) vector de diesió x 2. - b' = ( ' '); ' º ( ) por lo que b' es u vector de diesió x(2).,-,, uos é ' 0 ' 0' ù 0 ' ' 0' - A= 0 ' 0 ' ' êë I I I úû Así pues, A es ua atriz de diesió (2)x 2 co rago 2, dode 0', ' so, respectivaete, u vector de diesió x de ceros y u vector de diesió x de uos, ietras que I es la atriz idetidad de diesió x. Nótese que el sigo egativo del segudo subvector de b' así coo el de las atrices idetidad so cosecuecia de expresar las restriccioes de los destios de la fora å x coo = - å x =-. Al igual que sucedía e el caso del problea del trasporte, A es ua atriz uiodular total, por lo que queda asegurada la aplicabilidad del teorea (29) e probleas de asigació equilibrados y, e cosecuecia, que las restriccioes de biariedad de las variables se pueda reeplazar por las de o egatividad. Esto es, (7) se puede reforular coo : [ OPT ] cx ' x Ax = b (72) x ³ 0 Asiiso, el que su rago o sea 2 sio que sea 2 (cosecuecia de que e u problea de asigació equilibrado se verifica = ) perite oitir ua restricció si pérdida iforativa. Obsérvese coo todo problea de trasporte etero puede cocebirse coo u problea de asigació forulado coo e (72). Para ello basta co que para cada orige se repita la isa restricció si veces (co variables específicas e cada caso), cada ua de ellas co ua oferta uitaria; y que para cada destio se replique la isa restricció d veces (co variables tabié específicas para cada ua de ellas) cada uo de los cuales co ua deada uitaria. A su vez, los c viculados a orígees y deadas repetidos será los isos que los viculados a las relacioes etre los orígees y destios del problea de trasporte etero de partida.

7 46 Materials David Puolar Morales Procediietos de resolució. E tato que casos particulares del problea del trasporte, y teiedo e cueta la uiodularidad total de A, los probleas de asigació adite ser resueltos tato ediate el algorito síplex coo por el algorito del trasporte. No obstate, dada su estructura, dode todos los térios idepedietes vale uo, resulta e térios de cálculo ás eficiete u algorito específico coo es el deoiado algorito húgaro (véase BAZARAA et al. (200) para ua descripció). Extesioes. Sobre el problea de trasporte se puede cosiderar diversas geeralizacioes y variates. Etre estas se ecuetra el problea del trasbordo, co putos iteredios etre orígees y destios, o el llaado problea de trasporte geeralizado (véase BAZARAA et al. (200) para ua apliació).

8 Fudaetos de prograació lieal y optiizació e redes Materials 47 Eeplo otacioal para u problea de trasporte. Cosidérese u problea de trasporte e el que: - = =2. - s = s 2 =0. - d = d 2 =5. - c = c 2 = 5; c 2 = c 22 = 8. - Obetivo: iiizació de la fució. Puesto que s + s 2 =20 < d + d 2 =30 para equilibrar el problea debe crearse u orige ficticio, co s 3 = 0 y c 3 = c 32 = 0. E tal caso, la estructura del problea será: Mi f( x) = 5x x x x ü Mi f( ) = x + x + x + x ìï x x x x x + 2 = 0 x + x = 2 0 x + x = ï ï x2 + x22 = 0 x + x = ï ý º ï í x3 + x32 = 0 x + x + x = x -x2 - x3 =-5 x + x + x = ï ïïï -x2 -x22 - x32 =-5 x ³ 0 " iî{,, 3}, Î{, 2} ï x,, ïïï ³ 0 " iî 3}, Î{, 2 ï þ ïî Para la expresió aterior, defiiedo: - c' = ( ,,,,, ). - x' ( x, x, x, x, x, x ). = { } - b' = ( 0, 0, 0, -5,-5). é ù é ù é ù ' 0 ' 0' ú - úº º 0 ' ' 0' A= ' 0 ' ' ê ú ë -I -I -I û êë úû ê ë úû Obsérvese coo e cada colua de la atriz A hay u, u y el resto de eleetos so cero, por lo que se satisface la codició suficiete de uiodularidad total.

Ejercicios de Combinatoria,

Ejercicios de Combinatoria, Ejercicios de Cobiatoria, 0 0 00 E ua caja hay bolas blacas, todas iguales e taaño, y otras bolas, de igual taaño que las ateriores pero todas de diferete color (o hay dos que tega el iso) De cuátas foras

Más detalles

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO.

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO. IES SANTIAGO RAMÓN Y CAJAL PRIMER TRIMESTRE EJERCICIOS DE REPASO Falta ejercicios del Tea Estos ejercicios so eraete orietativos - Hallar los siguietes líites: a) b) c) - E ua progresió geoétrica sabeos

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Problemas de transporte y problemas de transporte con carga fija

Problemas de transporte y problemas de transporte con carga fija Probleas de trasporte y probleas de trasporte co carga fija Mauel García Narváez Trabajo de fi del grado e Mateáticas Uiversidad de Zaragoza Itroducció Etre los probleas ás iteresates e el capo de la

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

8. Modelos de transporte y análisis de redes

8. Modelos de transporte y análisis de redes 8. Modelos de trasporte y aálisis de redes Problema de trasporte Problema de asigació Aálisis de redes. Redes de actividades: método CPM Problemas de trasporte. Eiste m orígees que cotiee diversas catidades

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

ANALISIS CONVEXO CAPITULO CONVEXIDAD

ANALISIS CONVEXO CAPITULO CONVEXIDAD CAPITULO 2 ANALISIS CONVEXO 2.1 CONVEXIDAD Bajo este título geérico, se itroduce e esta secció las ocioes de cojuto covexo, fució cócava y fució covexa. Coceptos todos ellos que juega u destacado papel

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

X si existe una transformación lineal. : de modo que se verifique que: 0 =

X si existe una transformación lineal. : de modo que se verifique que: 0 = Pro. Adrea Capillo Aálisis ateático II Diereciabilidad Deiició: Sea el capo vectorial D : y sea puto iterior de D. Se dice que es diereciable e si eiste ua trasoració lieal : de odo que se veriique que:

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Cálculo de ceros de funciones

Cálculo de ceros de funciones Cálculo de ceros de fucioes El objetivo de la presete secció es el de resolver la ecuació f(x) = 0, siedo f ua fució cotiua, co ua precisió prefijada. Geeralmete esta precisió se medirá por medio del error

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales.

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales. DIEÑO ANÁLII DE DATO II. NOVIEMBRE 00 Problea.- Relacioaos la variable X co la variable. Dispoeos de las putuacioes observadas e de las putuacioes residuales. ) Deteriar R. OL: Calculeos la sua de cuadrados

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO 2. Método de Enumeración De Soluciones Básicas

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO 2. Método de Enumeración De Soluciones Básicas MÉTODO SIMPLE PROFESOR: LILIN DELGDO HIDLGO Liliaadelgado@correouivalleeduco Método de Eumeració De Solucioes Básicas Ya se ha afirmado que la solució óptima (e geeral) de u modelo de Programació Lieal

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

6. RÉGIMEN FINANCIERO DE DESCUENTO COMPUESTO A TANTO CONSTANTE

6. RÉGIMEN FINANCIERO DE DESCUENTO COMPUESTO A TANTO CONSTANTE Regíees Fiacieros. escueto copuesto a tato costate 6. RÉGIMEN FINANCIERO E ESCUENTO COMPUESTO A TANTO CONSTANTE Los pactos que caracteriza al régie fiaciero de descueto copuesto a tato costate so: a. El

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

UNIONES ATORNILLADAS

UNIONES ATORNILLADAS PROBLEMA Nº4 Diseñar ediate torillos resistetes al deslizaieto e ELU la uió últiple de la pieza co secció e cajó y plata e T a la placa frotal, teiedo e cueta las diesioes y la solicitació de servicio

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Los números irracionales

Los números irracionales Los úmeros irracioales Los úmeros irracioales E las matemáticas de la Educació Secudaria Obligatoria se preseta los úmeros irracioales como aquellos que o so racioales, es decir, aquellos que o se puede

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Gestión de operaciones

Gestión de operaciones Gestió de operacioes Modelos de programació lieal l y etera Pedro Sáchez Pedro Sáchez pedro.sachez@upcomillas.es Coste fio Coteidos Trasporte Trasbordo Viaate (TSP) Asigació Partició (set partitioig) Mochila

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Uiversidad del Perú, DECANA DE AMERICA) MEDIDAS DE DISPERSION 14/06/008 Ig. SEMS .3 MEDIDAS DE DISPERSIÓN Todos los valores represetativos discutidos e las seccioes

Más detalles

Capítulo 10 Transporte y Transbordo

Capítulo 10 Transporte y Transbordo Capítulo Trasporte y Trasbordo Fuetes Destios D S P O N B L D A a F C X D b R C JX J E C X Q U C i X i E F C i ij X ij R a i D j b J M C i X i E C X N C J X J T O a F C X D b troducció E éste capítulo

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

1.- CONCEPTOS BÁSICOS.

1.- CONCEPTOS BÁSICOS. 1.- CONCEPTOS BÁSICOS. Muchos problemas reales so susceptibles de ser represetados e forma de red, por este motivo comezaremos por defiir los coceptos básicos de redes y posteriormete alguos problemas

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Covolució Apellidos, ombre Apellidos, ombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumo co la suma de covolució, fudametal e el estudio de los sistemas lieales,

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

En diferentes campos de la actividad científica se encuentran casos en los que ciertos experimentos u observaciones, pueden repetirse varias veces

En diferentes campos de la actividad científica se encuentran casos en los que ciertos experimentos u observaciones, pueden repetirse varias veces CAPÍTULO 5 SUCESOS ALEATORIOS E diferetes capos de la actividad cietífica se ecuetra casos e los que ciertos experietos u observacioes, puede repetirse varias veces bajo siilares codicioes, dado para cada

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias La Matemática Fiaciera desde u efoque de las Ecuacioes e Diferecias Luis Eresto Valdez Efraí Omar Nieva Luis Edgardo Barros Eje temático: Matemática aplicada Resume Usualmete, se preseta a la Matemática

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones limpiada Nacioal de Matemática Fase Fial - Nivel U Solucioes Problema 1. Sea a y reales positivos. Se defie la curva l como y = ax y como el orige del plao cartesiao. Para u puto cualquiera P sobre la

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

INTRODUCCIÓN A LAS PROGRESIONES

INTRODUCCIÓN A LAS PROGRESIONES Apédice A INTRODUCCIÓN A LAS PROGRESIONES A.. A..3 E el Apédice A, los alumos ivestigaro progresioes buscado patroes y reglas. E la primera parte del apédice, se cocetraro e las progresioes aritméticas

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD

Tema 7: FLEXIÓN: HIPERESTATICIDAD Tea 7: Flexió: Hiperestaticidad Tea 7: FEXÓN: HPERESTTCDD Prof.: Jaie Sato Doigo Satillaa E.P.S.-Zaora (U.S.) - 008 Tea 7: Flexió: Hiperestaticidad 7..- NTRODUCCÓN Segú vios e la secció 4.4 ua viga o ua

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

Análisis en Componentes Principales (ACP).

Análisis en Componentes Principales (ACP). Capítulo Aálisis e Compoetes Pricipales (ACP) Como ates se ha dicho, el Aálisis e Compoetes Pricipales, ACP, cosidera ua matriz R de datos iiciales de carácter o simétrico: Sus compoetes, r ij, so valores

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

Apéndice. A.1. Definición y notaciones.

Apéndice. A.1. Definición y notaciones. Apédice. Apédice A.1. Defiició y otacioes. Los polioios de Zerike so u cojuto ifiito de fucioes polióicas, ortogoales e el circulo de radio uidad. So uy útiles para represetar la fora del frete de oda

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles