Parte I: Introducción

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Parte I: Introducción"

Transcripción

1 Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one con sus clientes. Las empresas recogen datos de todos lo procesos. Los datos recogidos se tienen que analizar, comprender y convertir en información con la que se pueda actuar y aquí es donde Data Mining juega su papel Data Mining proporciona la Inteligencia El Data Warehouse proporciona los datos. La inteligencia permitirá buscar en esos datos tratando de encontrar patrones, descubrir reglas, nuevas ideas que probar, y hacer predicciones acerca del futuro Se estudiarán las técnicas y herramientas que añaden la inteligencia al data warehouse para explotar los datos de los clientes y sacar el máximo rendimiento Como nos ayudan? Definición Intuitiva Qué clientes permanecerán fieles? Qué clientes están a punto de abandonar? Dónde debemos localizar la próxima sucursal? Qué productos se deben promocionar a qué prospectos?... Las respuestas a estas preguntas están enterradas en los datos y se necesitan las técnicas de Data Mining para buscarlas Data Mining (en este contexto) en el análisis y exploración, por medios automáticos o semiautomáticos de grandes cantidades de datos para descubrir patrones significativos (útiles), y reglas. La meta es permitir a la organización mejorar sus ventas, sus campañas de marketing, las operaciones de soporte a los clientes, a través de una mejor comprensión de sus clientes 1

2 Definición Qué es Data Mining? Es una de las actividades principales asociadas a la comprensión, navegación y explotación de los datos en el nuevo mundo digital Automatiza el proceso de identificación y descubrimiento de estructuras útiles en los datos Por qué ahora? Las técnicas que se verán existían hace años pero la convergencia de los siguientes factores: Cantidad de datos producida Los datos están integrados (data warehouse) La potencia de los ordenadores Fuerte presión de la competencia Software de data mining ha hecho que ahora se vuelva a hablar de ellas Cómo se usa Data Mining hoy? Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta de mailings Campañas de adquisición de clientes Parte II: El ciclo de Data Mining El ciclo de data mining Importante Medir los resultados Identificar un problema Actuar basándonos en la información Usar data mining para transformar los datos en información La promesa de Data Mining es encontrar los patrones Simplemente el hallazgo de los patrones no es suficiente Debemos ser capaces de entender los patrones. responder a ellos, actuar sobre ellos, para finalmente convertir los datos en información, la información en acción y la acción en valor para la empresa 2

3 Data Mining es un proceso El Proceso de KDD Data Mining es un proceso que se tiene que centrar en las acciones derivadas del descubrimiento de conocimiento no en el mecanismo de descubrimiento en si mismo. Aunque los algoritmos son importantes, la solución es más que un conjunto de técnicas y herramientas. Las técnicas se tienen que aplicar en el caso correcto a los datos correctos CODIFICACIÓN LIMPIEZA SELECCIÓN Datos INTERPRETACIÓN Y EVALUACIÓN DATA MINING Conocimiento Modelos Datos Transformados Datos Procesados Datos objetivo Estándar de proyecto de Data Mining: Crisp-DM Comprensión del problema (I) Implantación Compresión del problema Evaluación Compresión de los datos. Preparación de los datos Modelado Comprensión de los objetivos y requerimientos del proyecto desde una perspectiva de negocio, convertir este conocimiento en una definición de un problema de data mining y en un plan preliminar diseñado para alcanzar los objetivos Comprensión del problema (II) Fases y salidas: Determinar los objetivos del negocio Antecedentes Objetivos del negocio Criterios de éxito del proyecto (perspectiva del negocio) Evaluar la situación Recursos, Requerimientos, suposiciones, restricciones Riesgos y contingencias Terminología Costes y beneficios Comprensión del problema (III) Fases y salidas: Determinar las metas de Data Mining Metas de data mining Criterios de éxito (perspectiva de data mining) Producir un plan de proyecto Plan de proyecto Evaluación inicial de herramientas y técnicas disponibles 3

4 Comprensión de los datos La fase de comprensión de los datos comienza con una colección de datos inicial y realiza actividades para familiarizarse con los datos, identificar problemas de calidad para descubrir las primeras características de los datos o detectar subconjuntos para realizar las primeras hipótesis sobre la información oculta Comprensión de los datos (II) Conseguir el conjunto inicial de datos Informe inicial sobre los datos Describir los datos Informe con la descripción de los datos Explorar los datos Informe acerca de la exploración de los datos Verificar la Calidad de los datos Informe acerca de la calidad de los datos Comprensión de datos: tareas a realizar Selección de las fuentes Estudiar los datos Establecer los metadatos Establecer el tipo de las variables: Cuantitativas Cualitativas Establecer la caducidad de cada dato: vida de las variables Estudio de los datos El mundo que nos rodea consiste de objetos que percibimos y lo que interesa es descubrir las relaciones entre los objetos Los objetos tienen unas características que son las que se van a analizar Las medidas tienen un período de caducidad y se toman en unas circunstancias Tipos de datos Generalmente se hace la distinción en : Cuantitativas. Se distinguen a su vez en Discretas (número de empleados) Continuas (sueldo,...) Cualitativas. Se pueden distinguir: Nominales. Nombrar el objeto al que se refieren (estado civil, género) Ordinales. Se puede establecer un orden en sus valores (alto, medio, bajo) Preparación de los datos Cubre todas las actividades de construcción del conjunto final de datos (datos entrada de los algoritmos de Data mining), desde el conjunto inicial de datos. Es posible que estas actividades se tengan que realizar múltiples veces y sin orden determinado. Entre las tareas destacan las de selección de tablas, atributos, registros, asi como las de transformación y limpieza de los datos. 4

5 Preparación de los datos (II) Entradas Conjunto de datos Descripción del conjunto de datos Selección de datos Informe de los motivos de la selección Limpieza de datos Informe de la limpieza de los datos Preparación de los datos (III) Fases y Salidas (cont.): Construir el conjunto de datos Atributos derivados Registros generados Integrar los datos Datos integrados Formato de los datos Datos con nuevo formato Preparación de los datos Asegurar la calidad de los datos Los datos no fueron recogidos para tareas de Data Mining Datos pobres, inconsistentes Numerosas fuentes, diferentes sistemas Funciones Revisión de los datos Tratamiento de Valores nulos e información incompleta Preparación: Revisión de los datos Métodos estadísticos y de visualización 90 Variables categóricas: Distribución de variables Histogramas 10 0 Pie charts Variables cualitativas Media, varianza, moda Scaterplots, boxplots er trim. 2do trim. 3er trim Este Oeste Norte Este Oeste Norte 1e r 2d o Preparación: Información incompleta Preparación Transformación Valores atípicos ( outliers ): Su tratamiento depende de su naturaleza Se pueden eliminar en el proceso de carga del data warehouse Valores nulos: (ninguna de las técnicas es perfecta) Eliminar las observaciones con nulos Eliminar las variables con muchos nulos Utilizar un modelo predictivo Conseguir una la visión integrada, consistente y consolidada de los datos Los datos hay que refinarlos para que cumplan con los requisitos de entrada de los algoritmos: Conversión de variables Reducción /adición de variables Discretización / generalización 5

6 Modelado En esta fase se seleccionan distintas técnicas de minería y se aplican calibrando sus parámetros para conseguir los valores óptimos. Hay distintas técnicas para el mismo tipo de problema la diferencia muchas veces radica en los requisitos que han de cumplir los datos de entrada por ello a menudo es necesario volver a la fase de preparación de datos. Modelado (II) Selección de la técnica de modelado Técnica elegida Requisitos de la técnica elegida Generar un diseño de prueba Diseño de prueba Construir el modelo Parámetros elegidos Modelo y descripción Evaluar el modelo Evaluación del modelo Parámetros revisados Evaluación En este momento se dispone de al menos un modelo que parece tener buena calidad desde la perspectiva del análisis de datos. Antes de la implantación es importante revisar el proceso para cerciorarse de que también ha logrado los objetivos de negocio. Es importante en este punto determinar si algún aspecto de negocio no ha sido tenido suficientemente en consideración. Al final de la fase se tendrá la decisión sobre el uso de los resultados de minería. Evaluación (II) Evaluar los resultados Contrastar los resultados de minería con los criterios de éxito del negocio Modelos aprobados Proceso de revisión Revisión del proceso Determinar los pasos siguientes Lista de posibles acciones futuras Decisión sobre la implantación Implantación La creación del modelo no es el final del proyecto. Incluso cuando se trata de incrementar el conocimientos, este se tiene que poner en orden y presentarlo de manera que se pueda hacer uso del mismo. Esta fase por tanto, puede ser tan simple como la generación de un informe o tan compleja como la implantación de un proceso de minería en toda la empresa. Es importante que al cliente se le deje claro las acciones necesarias para hacer uso efectivo del los modelos obtenidos. Implantación (II) Desarrollo del plan de implantación Plan de Implantación Desarrollo del plan de monitorización y mantenimiento Plan de seguimiento Realización del informe final Informe final Revisión del proyecto Experiencia Documentación 6

7 Resumen Data Mining es un proceso Todas las fases son igualmente importantes Sin una preparación adecuada los resultados perderán calidad 7

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

EPB 603 Sistemas del Conocimiento!"#$ %& $ %'

EPB 603 Sistemas del Conocimiento!#$ %& $ %' Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM EPB 603 Sistemas del Conocimiento!"#$ %& $ %' Modelos de proceso para proyectos de Data Mining (DM) Son diversos los modelos de

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

La inteligencia de marketing que desarrolla el conocimiento

La inteligencia de marketing que desarrolla el conocimiento La inteligencia de marketing que desarrolla el conocimiento SmartFocus facilita a los equipos de marketing y ventas la captación de consumidores con un enfoque muy relevante y centrado en el cliente. Ofrece

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

PRESENTACIÓN CMMI: (CAPABILITY MATURITY MODEL INTEGRATION)

PRESENTACIÓN CMMI: (CAPABILITY MATURITY MODEL INTEGRATION) PRESENTACIÓN CMMI: (CAPABILITY MATURITY MODEL INTEGRATION) INDICE 1. Introducción 2. Estructura CMMI 3. Nivel 2 4. Nivel 3 5. Nivel 4 6. Nivel 5 7. Bibliografía INTRODUCCIÓN Qué es y por qué usar CMMI?

Más detalles

Habilidades y Herramientas para trabajar con datos

Habilidades y Herramientas para trabajar con datos Habilidades y Herramientas para trabajar con datos Marcelo Ferreyra X Jornadas de Data Mining & Business Intelligence Universidad Austral - Agenda 2 Tipos de Datos Herramientas conceptuales Herramientas

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

Seguimiento y evaluación

Seguimiento y evaluación Seguimiento y evaluación Por qué es necesario contar con herramientas para el seguimiento y la evaluación? Es la manera en que se puede evaluar la calidad e impacto del trabajo en relación con el plan

Más detalles

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Álvaro J. Méndez Services Engagement Manager IBM SPSS / Profesor Econometría UAM Jecas, 22 Oct 2010 Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Business Analytics software Agenda Minería

Más detalles

ISO 17025: 2005. Requisitos generales para la competencia de los laboratorios de ensayo y calibración

ISO 17025: 2005. Requisitos generales para la competencia de los laboratorios de ensayo y calibración ISO 17025: 2005 Requisitos generales para la competencia de los laboratorios de ensayo y calibración El presente documento es la versión impresa de la página www.grupoacms.com Si desea más información

Más detalles

SERIE ESTRATEGIA COMERCIAL CRM. www.artica.com.mx. Lic. Guiomar Patricia González P.

SERIE ESTRATEGIA COMERCIAL CRM. www.artica.com.mx. Lic. Guiomar Patricia González P. SERIE ESTRATEGIA COMERCIAL Lic. Guiomar Patricia González P. 1 en pocas palabras En la época moderna, nos encontramos con distintos conjuntos de siglas para designar procesos, funciones, sistemas, soluciones

Más detalles

Gestión y Desarrollo de Requisitos en Proyectos Software

Gestión y Desarrollo de Requisitos en Proyectos Software Gestión y Desarrollo de Requisitos en Proyectos Software Ponente: María Jesús Anciano Martín Objetivo Objetivo Definir un conjunto articulado y bien balanceado de métodos para el flujo de trabajo de Ingeniería

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

CONCEJO MUNICIPAL DE CHOCONTA- CUNDINAMARCA

CONCEJO MUNICIPAL DE CHOCONTA- CUNDINAMARCA CONCEJO MUNICIPAL DE CHOCONTA- CUNDINAMARCA PLAN DE MANEJO DE RIESGOS Contenido PLAN DE MANEJO DE RIESGOS.... 3 Elaboración del mapa de riesgos... 3 Monitoreo... 4 Autoevaluación... 4 Metodología... 7

Más detalles

PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN

PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN PROPUESTA METODOLOGICA PARA LA EDUCCIÓN DE REQUISITOS EN PROYECTOS DE EXPLOTACIÓN DE INFORMACIÓN Paola Britos 1,2, Enrique Fernandez 1,2, Ramón García-Martinez 1,2 Centro de Ingeniería del Software e Ingeniería

Más detalles

UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M

UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M CONCEPTO: "Customer Relationship Management"), La administración basada en la relación con los clientes.

Más detalles

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad.

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad. MINERIA DE DATOS PREPROCESAMIENTO: LIMPIEZA Y TRANSFORMACIÓN El éxito de un proceso de minería de datos depende no sólo de tener todos los datos necesarios (una buena recopilación) sino de que éstos estén

Más detalles

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 ANEXO A - Plan de Proyecto 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 2.- Diagrama de Gantt de la Solución DIAGRAMA DE GANTT- FASE INICIAL DOCUMENTACION Y ANALISIS2 DIAGRAMA DE GANTT- FASE FINAL

Más detalles

Enfoque del Marco Lógico (EML)

Enfoque del Marco Lógico (EML) Enfoque del Marco Lógico (EML) Qué es el EML? Es una herramienta analítica que se utiliza para la mejorar la planificación y la gestión de proyectos tanto de cooperación al desarrollo como de proyectos

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Agencia de Cooperación Internacional del Japón Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Industrial 7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Elaboración: Kiyohiro

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

DIRECCIÓN DE PROYECTOS

DIRECCIÓN DE PROYECTOS DIRECCIÓN DE PROYECTOS Programa Superior PMP www.ceste.es / info@ceste.es / +34 976 568 586 INTRODUCCIÓN Las empresas están constantemente acometiendo proyectos para adaptarse al mercado y a las innovaciones

Más detalles

Diseño orientado a los objetos

Diseño orientado a los objetos Diseño orientado a los objetos El Diseño Orientado a los Objetos (DOO) crea una representación del problema del mundo real y la hace corresponder con el ámbito de la solución, que es el software. A diferencia

Más detalles

SISTEMA DE INFORMACION GERENCIAL. Lic.Patricia Palacios Zuleta

SISTEMA DE INFORMACION GERENCIAL. Lic.Patricia Palacios Zuleta SISTEMA DE INFORMACION GERENCIAL Lic.Patricia Palacios Zuleta Pentaho Open BI Suite La suite Pentaho cubre principalmente las siguientes áreas: integración de datos, reportes, análisis, alertas y dashboards,

Más detalles

Tema 2. Ingeniería del Software I feliu.trias@urjc.es

Tema 2. Ingeniería del Software I feliu.trias@urjc.es Tema 2 Ciclo de vida del software Ingeniería del Software I feliu.trias@urjc.es Índice Qué es el ciclo de vida del Software? El Estándar 12207 Modelos de proceso Qué es el Ciclo de Vida del SW? Definición

Más detalles

Nota de Información al cliente PRISM ISO 14001 Proceso de auditoría

Nota de Información al cliente PRISM ISO 14001 Proceso de auditoría Nota de Información al cliente PRISM ISO 14001 Proceso de auditoría La presente Nota de Información al Cliente explica el proceso de seis etapas para organizaciones que desean construir progresivamente

Más detalles

Guía Práctica para el Diseño de Proyectos Sociales

Guía Práctica para el Diseño de Proyectos Sociales Guía Práctica para el Diseño de Proyectos Sociales Marcela Román C. CIDE INTRODUCCION Las Políticas de focalización de la acción social del Estado y, en particular la educativa, están fundamentalmente

Más detalles

SEGURIDAD INFORMÁTICA 2º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA

SEGURIDAD INFORMÁTICA 2º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA 2ª evaluación 1ª evaluación DEPARTAMENTO MATERIA CURSO INFORMÁTICA SEGURIDAD INFORMÁTICA 2º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA - Conocer las diferencias

Más detalles

IAP 1009 - TÉCNICAS DE AUDITORÍA APOYADAS EN ORDENADOR (TAAO)

IAP 1009 - TÉCNICAS DE AUDITORÍA APOYADAS EN ORDENADOR (TAAO) IAP 1009 - TÉCNICAS DE AUDITORÍA APOYADAS EN ORDENADOR (TAAO) Introducción 1. Como se indica en la Norma Internacional de Auditoría 401, "Auditoría en un contexto informatizado", los objetivos globales

Más detalles

Metodología para el diseño de la estrategia de TI

Metodología para el diseño de la estrategia de TI Metodología para el diseño de la estrategia de TI La estrategia de TI debe responder a las necesidades de la organización teniendo en consideración sus limitaciones y ventajas desde las distintas dimensiones

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

MINING SOLUTIONS LIMITADA

MINING SOLUTIONS LIMITADA MINING SOLUTIONS LIMITADA Contenido... 1 Resumen Ejecutivo... 3... 4 Nuestros Servicios... 5 Administración de proyectos... 6 Operación y mantenimiento sobre los Sistema de Manejo de la Información Geológica

Más detalles

Portafolio de Servicios y Productos

Portafolio de Servicios y Productos Portafolio de Servicios y Productos Introducción Somos una empresa que se dedica a generar ventajas competitivas para nuestros clientes a través de desarrollos y consultoría en inteligencia de negocios

Más detalles

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results.

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results. Smarter Decisions. Better Results. 1 Aumente el valor de su BI con Análisis Predictivo José Ignacio Marín SPSS Sales Engineer 25/11/2010 2 Agenda Cómo está cambiando la toma de decisiones La potencia del

Más detalles

Elementos requeridos para crearlos (ejemplo: el compilador)

Elementos requeridos para crearlos (ejemplo: el compilador) Generalidades A lo largo del ciclo de vida del proceso de software, los productos de software evolucionan. Desde la concepción del producto y la captura de requisitos inicial hasta la puesta en producción

Más detalles

Mantenimiento de Sistemas de Información

Mantenimiento de Sistemas de Información de Sistemas de Información ÍNDICE DESCRIPCIÓN Y OBJETIVOS... 1 ACTIVIDAD MSI 1: REGISTRO DE LA PETICIÓN...4 Tarea MSI 1.1: Registro de la Petición... 4 Tarea MSI 1.2: Asignación de la Petición... 5 ACTIVIDAD

Más detalles

CÓMO RENTABILIZAR LAS RECLAMACIONES

CÓMO RENTABILIZAR LAS RECLAMACIONES WHITEPAPER CÓMO RENTABILIZAR LAS RECLAMACIONES WHITEPAPER CÓMO RENTABILIZAR LAS RECLAMACIONES 2 INTRODUCCIÓN Cuando empiezan las reclamaciones por parte de los clientes, es cuando se conoce la verdadera

Más detalles

retos LA ACTUALIDAD LA SOLUCIÓN

retos LA ACTUALIDAD LA SOLUCIÓN retos F U T U R O LA ACTUALIDAD En la actualidad, nos vemos rodeados de retos que hace algunos años veíamos muy lejanos. Nuestros clientes son cada vez más exigentes, demandan una mayor calidad de los

Más detalles

Boletín de Asesoría Gerencial* Modelo Credit Scoring: Un paso hacia una gestión diferenciada y eficiente del riesgo de crédito

Boletín de Asesoría Gerencial* Modelo Credit Scoring: Un paso hacia una gestión diferenciada y eficiente del riesgo de crédito Espiñeira, Sheldon y Asociados No. 22-2008 *connectedthinking Contenido Haga click en los enlaces para navegar a través del documento Haga click en los enlaces para llegar directamente a cada sección 4

Más detalles

Business Analytics. Mucho mas que inteligencia de negocios. SBI Technology. Insurance Analytics

Business Analytics. Mucho mas que inteligencia de negocios. SBI Technology. Insurance Analytics Business Analytics. Mucho mas que inteligencia de negocios. SBI Technology Insurance Analytics Presentación SBI Technology. Quienes Somos? Más de 20 años de experiencia a nivel internacional en BI aplicado

Más detalles

CENTRO DE CONTACTO CON EL CLIENTE MÓDULO DE GESTIÓN DE ACTIVIDADES E INTERACCIONES

CENTRO DE CONTACTO CON EL CLIENTE MÓDULO DE GESTIÓN DE ACTIVIDADES E INTERACCIONES CENTRO DE CONTACTO CON EL CLIENTE MÓDULO DE GESTIÓN DE ACTIVIDADES E INTERACCIONES El asesor comercial tiene como principal misión mantener un contacto personalizado con sus clientes potenciales y actuales.

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Índice INTERNET MARKETING 1

Índice INTERNET MARKETING 1 INTERNET MARKETING 1 Índice Manual de Google Analytics... 2 Qué es Google Analytics?... 2 Cómo funciona Google Analytics?... 2 Iniciar Sesión en Google Analytics... 3 Visualizar las estadísticas... 3 Resumen

Más detalles

SERVICIOS. Reingeniería. Instalación / Puesta en marcha. Personalización. Cursos de formación. Servicio técnico. Servicio de mantenimiento

SERVICIOS. Reingeniería. Instalación / Puesta en marcha. Personalización. Cursos de formación. Servicio técnico. Servicio de mantenimiento Instalación / Puesta en marcha Reingeniería Personalización Cursos de formación Servicio técnico Servicio de mantenimiento Desarrollo de software Área reservada en la web Los Servicios de Software de PYV

Más detalles

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM?

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM? Introducción En vista de los comentarios y sugerencias que nos hicieron, via mail y por chat, sobre la posibilidad de la creación de nuevo conocimiento, he creido conveniente introducir el tema Data Mining

Más detalles

Ejemplo Manual de la Calidad

Ejemplo Manual de la Calidad Ejemplo Manual de la Calidad www.casproyectos.com ELABORADO POR: REPRESENTANTE DE LA DIRECCION APROBADO POR: GERENTE GENERAL 1. INTRODUCCIÓN Nuestra organización, nació en el año XXXXXXXXX, dedicada a

Más detalles

Ingeniería de Software

Ingeniería de Software Ingeniería de Software MSDN Ingeniería de Software...1 Ingeniería del Software_/_ Ingeniería y Programación...1 Análisis de Requerimientos...2 Especificación...3 Diseño...4 Desarrollo en Equipo...5 Mantenimiento...6

Más detalles

SISTEMA DE GESTIÓN, INGENIERÍA Y CALIDAD DEL SISTEMA INTEGRADO JÚPITER. NIVEL 2 DE CMMI

SISTEMA DE GESTIÓN, INGENIERÍA Y CALIDAD DEL SISTEMA INTEGRADO JÚPITER. NIVEL 2 DE CMMI SISTEMA DE GESTIÓN, INGENIERÍA Y CALIDAD DEL SISTEMA INTEGRADO JÚPITER. NIVEL 2 DE CMMI Director S.I. Júpiter Jefe Srv. Información de Gastos Jefa Gabinete Información de Gastos Responsable Sistemas del

Más detalles

Taller Regional Las Encuestas en Hogares en América Latina: Estado de situación y prospectiva. EL Salvador SANTIAGO, 14-16 DE OCTUBRE DE 2015

Taller Regional Las Encuestas en Hogares en América Latina: Estado de situación y prospectiva. EL Salvador SANTIAGO, 14-16 DE OCTUBRE DE 2015 Taller Regional Las Encuestas en Hogares en América Latina: Estado de situación y prospectiva EL Salvador SANTIAGO, 14-16 DE OCTUBRE DE 2015 Objetivos Objetivos de DIGESTYC. Compartir los principales

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Clientes Donantonio. Especificación de requisitos software. Juan José Amor David Escorial Ismael Olea

Clientes Donantonio. Especificación de requisitos software. Juan José Amor David Escorial Ismael Olea Especificación de requisitos software Tabla de contenidos Juan José Amor David Escorial Ismael Olea 1. Introducción...3 1.1. Propósito...3 1.2. Ámbito del sistema...3 1.3. Definiciones, acrónimos y abreviaturas...3

Más detalles

Inteligencia de Negocio

Inteligencia de Negocio UNIVERSIDAD DE GRANADA E.T.S. de Ingenierías Informática y de Telecomunicación Departamento de Ciencias de la Computación e Inteligencia Artificial Inteligencia de Negocio Guión de Prácticas Práctica 1:

Más detalles

Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente

Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente En este capítulo definimos los requisitos del modelo para un sistema centrado en la mejora de la calidad del código fuente.

Más detalles

GESTIÓN DE CAPACIDAD DE SERVICIOS TI: UNA SOLUCIÓN DESDE ITIL

GESTIÓN DE CAPACIDAD DE SERVICIOS TI: UNA SOLUCIÓN DESDE ITIL GESTIÓN DE CAPACIDAD DE SERVICIOS TI: UNA SOLUCIÓN DESDE ITIL Consultor Senior de Calidad SW Métodos y Tecnología Responsable de Área Ingeniería y Calidad SW Métodos y Tecnología 1 Palabras clave ITIL,

Más detalles

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El diseño de la base de datos de un Data Warehouse Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El modelo Multidimensional Principios básicos Marta Millan millan@eisc.univalle.edu.co

Más detalles

Metodologías de Desarrollo de Sistemas de Información

Metodologías de Desarrollo de Sistemas de Información Metodologías de Desarrollo de Sistemas de Información Metodología para el Desarrollo de SI Las metodologías son sistemas completos de técnicas que incluyen procedimientos paso a paso, productos resultante,

Más detalles

índice UA 1: GESTIÓN DE ALMACÉN UA 2: GESTIÓN DE STOCKS UA 3: GESTIÓN Y PREPARACIÓN DE PEDIDOS UA 4: GESTIÓN Y PREPARACIÓN DE INVENTARIOS

índice UA 1: GESTIÓN DE ALMACÉN UA 2: GESTIÓN DE STOCKS UA 3: GESTIÓN Y PREPARACIÓN DE PEDIDOS UA 4: GESTIÓN Y PREPARACIÓN DE INVENTARIOS índice UA 1: GESTIÓN DE ALMACÉN 5 Fundamentos de la gestión de almacenes. Configuración del almacén. Tipos de carga y almacenamiento. Equipos para manipulación y almacenamiento. UA 2: GESTIÓN DE STOCKS

Más detalles

POSICIONAMIENTO EN LA WEB (SEM Y SEO)

POSICIONAMIENTO EN LA WEB (SEM Y SEO) POSICIONAMIENTO EN LA WEB (SEM Y SEO) POSICIONAMIENTO EN LA WEB (SEM Y SEO) 1 Sesión No. 3 Nombre: Keywords Contextualización Qué son las Keywords? Debemos de tener en claro la definición de keywords para

Más detalles

PRESENTADO POR: Deborah Bolaffi Martín

PRESENTADO POR: Deborah Bolaffi Martín PRESENTADO POR: Deborah Bolaffi Martín AGENDA 1. Gestión de Relaciones con Clientes () 2. Modelo de Gestión 3. Oportunidades 4. Evolución mercado español 5. Diseño del modelo Sector y funciones Objetivos

Más detalles

Diseño orientado al flujo de datos

Diseño orientado al flujo de datos Diseño orientado al flujo de datos Recordemos que el diseño es una actividad que consta de una serie de pasos, en los que partiendo de la especificación del sistema (de los propios requerimientos), obtenemos

Más detalles

GUÍA PARA SISTEMAS DE RASTREABILIDAD

GUÍA PARA SISTEMAS DE RASTREABILIDAD REQUISITOS GENERALES Y RECOMENDACIONES PARA IMPLEMENTAR RASTREABILIDAD DE ALIMENTOS AGROPECUARIOS PRIMARIOS Y PIENSOS 1 CAMPO DE APLICACIÓN Esta guía específica los requisitos mínimos que debe cumplir

Más detalles

Términos definiciones

Términos definiciones Términos y definiciones 3Claves para la ISO 9001-2015 Términos y definiciones: ISO9001 utiliza una serie de definiciones ligadas a la gestión de la calidad, que también deben ser comprendidas por la organización

Más detalles

Introducción...3. Herramientas de diseño y seguimiento de los proyectos...3. El ciclo del proyecto...4. Identificación del proyecto...

Introducción...3. Herramientas de diseño y seguimiento de los proyectos...3. El ciclo del proyecto...4. Identificación del proyecto... Contenidos Introducción...3 Herramientas de diseño y seguimiento de los proyectos...3 El ciclo del proyecto...4 Identificación del proyecto...5 Formulación del proyecto...7 Financiación del proyecto...8

Más detalles

Anexo VI EVALUACIÓN DEL DESEMPEÑO

Anexo VI EVALUACIÓN DEL DESEMPEÑO Anexo VI EVALUACIÓN DEL DESEMPEÑO EVALUACIÓN DEL DESEMPEÑO ÍNDICE Introducción......Pg.03-03 Para que sirve la Evaluación del Desempeño?...Pg.03-04 Finalidad de la......pg.04-04 Utilidades de la.......pg.05-05

Más detalles

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas. El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los

Más detalles

Figure 7-1: Phase A: Architecture Vision

Figure 7-1: Phase A: Architecture Vision Fase A Figure 7-1: Phase A: Architecture Vision Objetivos: Los objetivos de la fase A son: Enfoque: Desarrollar una visión de alto nivel de las capacidades y el valor del negocio para ser entregado como

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Propuesta Matriz de Actividades para un Ciclo de Vida de Explotación de Datos

Propuesta Matriz de Actividades para un Ciclo de Vida de Explotación de Datos Propuesta Matriz de Actividades para un Ciclo de Vida de Explotación de Datos Britos, P. 1,2 ; Fernández, E. 2,1 ; García Martínez, R 1,2 1 Centro de Ingeniería del Software e Ingeniería del Conocimiento.

Más detalles

1. Introducción... 3. 2. Objetivos... 4. 3. El MUISCA Modelo Único de Ingresos, Servicio y Control Automatizado... 4

1. Introducción... 3. 2. Objetivos... 4. 3. El MUISCA Modelo Único de Ingresos, Servicio y Control Automatizado... 4 CONTENIDO 1. Introducción... 3 2. Objetivos... 4 3. El MUISCA Modelo Único de Ingresos, Servicio y Control Automatizado... 4 4. Ingreso a los Servicios Informáticos Electrónicos... 5 5. Solicitud de inscripción

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Guía del sitio Evaluación de teamseoblasteo 1

Guía del sitio Evaluación de teamseoblasteo 1 Incluso si usted está armado con una gran cantidad de conocimiento en teamseoblasteo 1, es posible que necesite los servicios de una empresa SEO a nivel profesional. Tener un gran conocimiento de SEO sera

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

CAPITULO III POR QUE NECESITA LA EMPRESA UN BALANCED

CAPITULO III POR QUE NECESITA LA EMPRESA UN BALANCED CAPITULO III POR QUE NECESITA LA EMPRESA UN BALANCED SCORECARD? Los empresarios se preguntaran por que necesitan mas indicadores, si con los financieros es suficiente, lo que no se dan cuenta es que así

Más detalles

INSTRODUCCION. Toda organización puede mejorar su manera de trabajar, lo cual significa un

INSTRODUCCION. Toda organización puede mejorar su manera de trabajar, lo cual significa un INSTRODUCCION Toda organización puede mejorar su manera de trabajar, lo cual significa un incremento de sus clientes y gestionar el riesgo de la mejor manera posible, reduciendo costes y mejorando la calidad

Más detalles

INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas

INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas 1 INTRODUCCIÓN. Una visión global del proceso de creación de empresas Cuando se analiza desde una perspectiva integral el proceso de

Más detalles

Dar a conocer el contexto de los metadatos geográficos como un elemento clave en la consolidación de una Infraestructura de Datos Espaciales.

Dar a conocer el contexto de los metadatos geográficos como un elemento clave en la consolidación de una Infraestructura de Datos Espaciales. METADATOS Objetivos: Compartir experiencias con los asistentes en la elaboración de metadatos geográficos y reconocer su importancia como mecanismo de preservación y difusión de la información geográfica.

Más detalles

Gestión del Conocimiento. Gestión del Conocimiento. Herramientas para la

Gestión del Conocimiento. Gestión del Conocimiento. Herramientas para la Herramientas para la Departamento de Informática Facultad de Ciencias Económicas Universidad Nacional de Misiones Universidad Nacional de Misiones Facultad de Ciencias Económicas Departamento de Informática

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Introducción al Proceso de Pruebas.

Introducción al Proceso de Pruebas. Introducción al Proceso de Pruebas. Javier Gutiérrez / javierj@us.es Introducción al proceso de pruebas Objetivo: repasar las ideas principales sobre las pruebas del software y, en concreto, las que usaremos

Más detalles

Diseño de un estudio de investigación de mercados

Diseño de un estudio de investigación de mercados Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,

Más detalles

CAPITULO III MARCO METODOLÓGICO. Desde la perspectiva de Hurtado de Barrera (2008), el tipo de

CAPITULO III MARCO METODOLÓGICO. Desde la perspectiva de Hurtado de Barrera (2008), el tipo de CAPITULO III MARCO METODOLÓGICO 1. TIPO DE INVESTIGACIÓN Desde la perspectiva de Hurtado de Barrera (2008), el tipo de investigación que propone soluciones a una situación determinada a partir de un proceso

Más detalles

CA ERwin Data Profiler

CA ERwin Data Profiler RESUMEN DEL PRODUCTO: CA ERWIN DATA PROFILER CA ERwin Data Profiler CA ERWIN DATA PROFILER AYUDA A LAS ORGANIZACIONES A REDUCIR LOS COSTOS Y RIESGOS ASOCIADOS CON LA INTEGRACIÓN DE DATOS, AL BRINDAR CAPACIDADES

Más detalles

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Introducción La visión artificial, también conocida como visión por computador

Más detalles

Ciclo de vida del Software

Ciclo de vida del Software Tema 2: Ciclo de vida del Software Marcos López Sanz Índice Qué es el ciclo de vida del Software? La norma 12207-2008 Modelos de desarrollo Qué es el Ciclo de Vida del SW? Es una sucesión de etapas por

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

Planeación del Proyecto de Software:

Planeación del Proyecto de Software: Apéndice A. Cuestionarios del Sistema Evaluador Nivel2. Requerimientos de Administración: Goal 1: Los requerimientos del sistema asociados a software están bien controlados y existe un estándar para los

Más detalles

Cómo elegir una profesión cuando no se tiene ni idea de lo que se desea hacer

Cómo elegir una profesión cuando no se tiene ni idea de lo que se desea hacer Cómo elegir una profesión cuando no se tiene ni idea de lo que se desea hacer Fuente/adaptación: Dawn Rosenberg McKay, About.com Guide http://careerplanning.about.com/od/careerchoicechan/tp/career-choice.htm

Más detalles

Parámetros con la ventana de selección de usuario, reglas, texto y descomposición (IVE)

Parámetros con la ventana de selección de usuario, reglas, texto y descomposición (IVE) QUÉ SON CONCEPTOS PARAMÉTRICOS? Los conceptos paramétricos de Presto permiten definir de una sola vez una colección de conceptos similares a partir de los cuales se generan variantes o conceptos derivados

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

NEXTPLAYS INSPIRED SOCIAL INNOVATION

NEXTPLAYS INSPIRED SOCIAL INNOVATION 100 FUNDACION ORB 2013 PAGE 1 FUNDACION ORB 2013 PAGE 2 Qué es 100X? NextPlays 100x está diseñado como un programa de pre-incubación para poner a prueba ideas en etapa temprana antes de un periodo de incubación,

Más detalles

Plataformas tecnológicas CRM de datos a conocimiento

Plataformas tecnológicas CRM de datos a conocimiento Rambla Catalunya, 124 2º 2ª 08008 BARCELONA Telf. 932 857 099 www.mk-r.es Plataformas tecnológicas CRM de datos a conocimiento Whitepaper nº3 - por Josep Ma. Abella El desarrollo de una estrategia relacional

Más detalles

Evolución de Software

Evolución de Software Evolución de Software Marcello Visconti & Hernán Astudillo Departamento de Informática Universidad Técnica Federico Santa María Mantención de Software Gestión de Configuración

Más detalles