Recuperación de información visual utilizando descriptores conceptuales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recuperación de información visual utilizando descriptores conceptuales"

Transcripción

1 Recuperación de información visual utilizando descriptores conceptuales J. Benavent, X. Benavent y E. de Ves Departament d Informàtica (Universitat de València) Abstract. En este trabajo se propone un nuevo método para búsquedas de imágenes utilizando información visual. La idea básica consiste en describir cada imagen mediante descriptores de bajo nivel (color, textura) junto con descriptores conceptuales construidos a partir de los de bajo nivel. Los descriptores conceptuales se obtienen utilizando distintos modelos de regresión logística, uno para cada uno de los conceptos implicados sobre bases de datos etiquetadas adecuadamente. Estos descriptores se han probado sobre la colección Wikipedia2011 proporcionada por la organización ImageClef. Para las consultas analizadas los nuevos descriptores consiguen mejorar los resultados (en cuanto a MAP y precisión). Keywords: Recuperación de imágenes, descriptores de bajo nivel, descriptores conceptuales, regresión logística, realimentación de relevancia. 1 Introducción El aumento de información visual en las últimas décadas nos ha llevado a la necesidad de proponer nuevos métodos para recuperar imágenes de forma eficiente. Los sistemas de recuperación basados en contenido actuales (CBIR) se apoyan en información obtenida de la propia imagen así como en otro tipo de información textual que puede estar en uno o varios idiomas. Las características de bajo nivel que se suelen utilizar en el contexto de las bases de datos de imágenes son color y textura. Estos descriptores son muy sencillos y aunque funcionan moderadamente bien, existe lo que se conoce como brecha semántica entre los descriptores de bajo nivel almacenados y las imágenes que se desean recuperar de la BDs (estos descriptores no incluyen información semántica). Por este motivo, nos proponemos ampliar el vector de características de bajo nivel e incluir descriptores conceptuales que nos permitan diferenciar imágenes por la aparición o no de estos conceptos en ellas. Para la construcción de estos descriptores conceptuales vamos a utilizar análisis de regresión logística ([3]). La idea general consiste en obtener un modelo de regresión logística para cada concepto con el que se quiera trabajar. Ese modelo nos permitirá predecir la probabilidad de que una imagen incluya o no ese concepto. Estas probabilidades son las que utilizaremos después como descriptores.

2 En la sección 2 se explica la metodología utilizada para obtener descriptores conceptuales. Los resultados experimentales obtenidos con estos descriptores se muestran en la sección 3. 2 Metodología En esta sección proponemos una metodología basada en análisis de regresión logística para obtener descriptores conceptuales que, junto con los descriptores de bajo nivel, nos ayuden a recuperar imágenes relevantes a una consulta. Para cada uno de los conceptos analizqados aplicaremos un modelo de regresión logística sobre un conjunto de imágenes que incluyen el concepto en cuestión. A este conjunto de imágenes etiquetadas para el concepto le llamaremos conjunto de entrenamiento. Sea un grupo de imágenes del conjunto de entrenamiento que sabemos que contienen el concepto (imágenes relevantes o positivas).. Sea un grupo de imágenes que sabemos que no contiene el concepto de interés (imágenes no relevantes o negativas). El análisis de regresión logística permite calcular las probabilidad de que una imagen cualquiera este en el grupo. Suponiendo que cada imagen del grupo de entrenamiento se representa mediante un vector de características K-dimensional,..,,..,, la probabilidad de relevancia para el concepto en una imagen dada la denotaremos por. Estas probabilidades pueden estimarse mediante un modelo de regresión logística. Para una variable de respuesta binaria Y, y k variables explicativa =(,, ), el modelo para π(x) = P(Y=1 X ) (probabilidad de que =1 ) en los valores x ( ) = + + +, donde logit (π(x))=ln(π(x) / (1-π(x)). Los parámetros del modelo se obtienen mediante la resolución numérica de las ecuaciones de verosimilitud. La bondad del modelo utilizado para extraer descriptores conceptuales se ha evaluado mediante un test cruzado. Se ha utilizado un conjunto de imágenes para entrenar. El modelo obtenido se prueba después sobre un conjunto de imágenes etiquetadas para ese concepto y se calcula la probabilidad de relevancia para un conjunto de imágenes etiquetadas. Se asume que una probabilidad de relevancia superior a 0.5 implica que la imagen contiene dicho concepto ( >0.5). A modo de ejemplo, los resultados del test cruzado en cuanto a tasa de correctos positivos para el concepto portrait es de mientras que la tasa de correctos negativos (que no contienen el concepto portrait) es de Se observa que el modelo es capaz de predecir razonablemente bien si una imagen es un retrato. En cambio comete muchos fallos a la hora de predecir cuándo una imagen no incluye el concepto para el que se ha entrenado. Cabe señalar que se ha realizado un análisis similar para el resto de conceptos que se utilizaran (todos estos conceptos se enumeran en la sección de resultados). Se ha realizado una regresión logística por concepto que se desea aprender, esto es, en nuestro caso concreto se tienen 6 modelos de regresión logística. Cada uno de estos modelos permite obtener una probabilidad de concepto para cualquier imagen. Así pretendemos extender el vector de características de bajo nivel (color y textura) con estas probabilidades. Pasamos así a un vector de características ampliado por m componentes más, una componente por cada concepto aprendido. Cada imagen

3 de la BD se describe utilizando el siguiente vector de características: F I = (x, x,c,..,c R 3 Resultados experimentales y conclusiones Las colecciones utilizadas para realizar los experimentos las proporciona el foro internacional ImageClef [2]. El conjunto de imágenes escogido para la fase de entrenamiento de conceptos proviene de la tarea de anotación automática de imágenes denominada Photo Annotation del ImageClef Esta colección contiene un conjunto de 8000 imágenes de Flickr multi-etiquetadas con 93 conceptos generales. Para comprobar el funcionamiento de los descriptores visuales hemos seleccionado 9 conceptos de los 93 (portrait, animals, single person, female, male, dog, cat, bird y insect). Las características de bajo nivel utilizadas contienen información de colorimetría y textura, y han sido programadas por el grupo ([1], [3], [4]). La dimensión del vector de características de bajo nivel es k=293, y el número de imágenes positivas y negativas manejadas para cada concepto es siempre inferior a k, por lo que es difícil encontrar un buen modelo de regresión logística. Por este motivo, se ha de agrupar las componentes del vector características y realizar ajustes por agrupaciones que después fusionamos. Para cada concepto se han realizado distintos tipos de agrupamientos de componentes (3, 4 o 6 agrupaciones), y también se ha variado el número de imágenes positivas y negativas. Se elige el modelo con la tasa de aciertos más alta. Los nuevos descriptores conceptuales se han probado en la colección Wikipedia2011([4]) del ImageClef (distinta de la utilizada para la construcción de descriptores conceptuales). Esta colección contiene imágenes que provienen de artículos de la Wikipedia anotadas en varios idiomas. Una consulta en esta tarea consiste en un título en los 3 idiomas, y 5 imágenes ejemplo. La organización proporciona juicios de relevancia para evaluar la bondad de los resultados obtenidos mediante el MAP y precisiones a distintos valores y En los experimentos realizados se han seleccionado 10 consultas de la edición del ImageClef2011 que contienen información semántica relacionada con los conceptos estudiados. Todas las imágenes de la BD así como las imágenes ejemplo de la consulta se han indexado utilizando los descriptores de bajo nivel y los descriptores conceptuales. Cada imagen tiene un vector de características ampliado F I = (x, x,c,..,c R dónde j es el número de características de bajo nivel y m el número de conceptos. Recordar que cada descriptor conceptual c i corresponde a la probabilidad de relevancia obtenida con un modelo de regresión logística. Cada consulta implica recuperar aquellas imágenes de la BDs relevantes. El módulo de comparación entre imágenes ejemplo e imágenes en la colección utiliza una regresión logística en la que las imágenes positivas son las propias imágenes ejemplo y las imágenes negativas son una selección aleatoria de imágenes que se saben no relevantes. La tabla 1 muestra los 3 experimentos realizados, todos ellos a partir de información visual. El experimento 1 utiliza el vector de características de bajo nivel F (I )= (x, x R. Los experimento 2 y 3 utilizan el vector de características amplia-

4 do F(I )= (x, x,c,..,c R. La diferencia entre los dos experimentos radica en la manera de utilizar la información conceptual. Mientras en el experimento 2 toda la información se trata de forma uniforme, sin diferenciar entre componentes del vector, en el experimento 3 se separa la parte de bajo nivel de la conceptual, obteniéndose 2 puntuaciones distintas por imagen, una procedente de los descriptores de bajo nivel ( )y otra de los descriptores conceptuales ( ). Estas dos puntuaciones se fusionan mediante el producto: ( )= ( ) ( ) que se utiliza para ordenar la BDs. Table 1. Resultados de los experimentos. El experimento 1 es el experimento de referencia. Se han marcado en negrita aquellos valores que igualan o superan al valor de referencia. Consulta Experimento 1 Experimento 2 Experimento 3 Map Map Map La tabla 1 indica que utilizar la información conceptual iguala o mejora en la mayoría de las consultas los resultados del experimento 1 (utilizado como referencia) tanto en MAP como para las precisiones a 5, 10 y 20. Las consultas para las que la incorporación de la información conceptual resulta en un incremento del MAP mayor son aquellas consultas en las que las imágenes ejemplo están bien descritas utilizando los conceptos entrenados (89 que corresponde a retrato de Elvis, y la 75 que corresponde a un rebaño de ovejas). Los resultados del experimento 2 siempre son superiores al experimento 3 lo que indica que es preferible tratar los nuevos descriptores conceptuales de forma uniforme ( como un vector de características ampliado). Referencias 1. Ayala, G.; Domingo, J. Spatial Size Distributions. Applications to Shape and Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 23, N. 12, pages

5 2. Theodora Tsikrika, Adrian Popescu, and Jana Kludas "Overview of the Wikipedia Image Retrieval task at ImageCLEF 2011". In the Working Notes for the CLEF 2011 Labs and Workshop, September, Amsterdam, The Netherlands, Leon. T., Zuccarello. P., Ayala. G., de Ves. E., Domingo. J.: Applying logistic regression to relevance feedback in image retrieval systems. Pattern Recognition. vol. 40. pp (2007). 4. Ruben Granados, Joan Benavent, Xaro Benavent, Esther de Ves, and Ana Garcia-Serrano. Multimodal information approaches for thewikipedia collection at Image-CLEF In Vivien Petras, Pamela Forner, and Paul Clough, editors. CLEF 2011 working notes.

Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes

Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes Rubén Granados rgranados@lsi.uned.es VII Jornadas MAVIR: "Avances en Tecnologías de la Lengua y Acceso a la Información

Más detalles

Práctica 5. Curso 2014-2015

Práctica 5. Curso 2014-2015 Prácticas de Seguridad Informática Práctica 5 Grado Ingeniería Informática Curso 2014-2015 Universidad de Zaragoza Escuela de Ingeniería y Arquitectura Departamento de Informática e Ingeniería de Sistemas

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Máster en Lenguajes y Sistemas Informáticos: Tecnologías del Lenguaje en la Web Universidad de Educación a Distancia Marzo 2013

Máster en Lenguajes y Sistemas Informáticos: Tecnologías del Lenguaje en la Web Universidad de Educación a Distancia Marzo 2013 Presentación de Trabajo de Fin de Máster PROPUESTA DE BÚSQUEDA SEMÁNTICA: APLICACIÓN AL CATÁLOGO DE MAPAS, PLANOS Y DIBUJOS DEL ARCHIVO GENERAL DE SIMANCAS Máster en Lenguajes y Sistemas Informáticos:

Más detalles

Objeto del informe. ALUMNO 1 Página: 1

Objeto del informe. ALUMNO 1 Página: 1 Nombre: ALUMNO 1 Centro: NOMBRE DEL COLEGIO Curso: 5º E. PRIMARIA Responsable: RESPONSABLE Localidad: LOCALIDAD Fecha: 21 / julio / 2015 Objeto del informe El presente informe recoge la evaluación psicológica

Más detalles

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro Capitulo 6 Conclusiones y Aplicaciones a Futuro. En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro para nuestro sistema. Se darán las conclusiones para cada aspecto del sistema,

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases

Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases Emmanuel Anguiano-Hernández Abril 29, 2009 Abstract Tratando de mejorar el desempeño de un clasificador Naive

Más detalles

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte ---o0o--- Introducción a la Inferencia Estadística Bioestadística - Facultad de Medicina Universidad de Granada (España) http://www.ugr.es/~bioest

Más detalles

Introducción. Metadatos

Introducción. Metadatos Introducción La red crece por momentos las necesidades que parecían cubiertas hace relativamente poco tiempo empiezan a quedarse obsoletas. Deben buscarse nuevas soluciones que dinamicen los sistemas de

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Técnicas de calidad en servicios

Técnicas de calidad en servicios Técnicas de calidad en servicios Para estudiar la calidad de un servicio disponemos de varias técnicas. A continuación se muestra un cuadro con las principales herramientas que podemos emplear, para los

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

DE VIDA PARA EL DESARROLLO DE SISTEMAS

DE VIDA PARA EL DESARROLLO DE SISTEMAS MÉTODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS 1. METODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS CICLO DE VIDA CLÁSICO DEL DESARROLLO DE SISTEMAS. El desarrollo de Sistemas, un proceso

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR Juan Mascareñas Universidad Complutense de Madrid Versión inicial: mayo 1998 - Última versión: mayo 2008 - El valor en riesgo (VaR), 2 - El método histórico, 3 - El método varianza-covarianza, 6 - El método

Más detalles

Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal

Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal Reporte final Ricardo Omar Chávez García Instituto Nacional de Astrofísica Óptica y Electrónica, 72840

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

ESTRATEGIAS CON OPCIONES

ESTRATEGIAS CON OPCIONES ESTRATEGIAS CON OPCIONES Por Pablo García Estévez Pablo García Estévez. Doctor en Económicas y Empresariales por la Universidad Complutense de Madrid. Acreditado Doctor por la ACAP. Miembro del IEEE. Es

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

TEMA 5 ESTUDIOS CORRELACIONALES.

TEMA 5 ESTUDIOS CORRELACIONALES. TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

Diseño de controladores en el dominio de la frecuencia

Diseño de controladores en el dominio de la frecuencia Práctica 5 Diseño de controladores en el dominio de la frecuencia Sistemas Automáticos, EPSIG Abril 2007 1. Requisitos previos Los requisitos enumerados a continuación son imprescindibles para el adecuado

Más detalles

ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015

ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015 Ir a golabz.eu y activar la pestaña de ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015 s Básicas de GoLab: Son aquellas que forman el corazón del diseño y uso de los. Configuran y explotan las. Deben

Más detalles

Esther Sui-chu Ho Evelyn Yee-fun Man Facultad de Educación Instituto de Investigación Educativa de Hong Kong Universidad China de Hong Kong

Esther Sui-chu Ho Evelyn Yee-fun Man Facultad de Educación Instituto de Investigación Educativa de Hong Kong Universidad China de Hong Kong Resultados de los alumnos de escuelas cuya lengua de instrucción es el chino (CMI) y de escuelas en las que la lengua de instrucción es el inglés (EMI): Qué hemos aprendido del estudio PISA. Esther Sui-chu

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Roberto Quejido Cañamero

Roberto Quejido Cañamero Crear un documento de texto con todas las preguntas y respuestas del tema. Tiene que aparecer en él todos los contenidos del tema. 1. Explica qué son los modos de presentación en Writer, cuáles hay y cómo

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

Sistema categorizador de ofertas de empleo informáticas

Sistema categorizador de ofertas de empleo informáticas Diego Expósito Gil diegoexpositogil@hotmail.com Manuel Fidalgo Sicilia Manuel_fidalgo@hotmail.com Diego Peces de Lucas pecesdelucas@hotmail.com Sistema categorizador de ofertas de empleo informáticas 1.

Más detalles

UNIVERSIDAD DE SALAMANCA

UNIVERSIDAD DE SALAMANCA UNIVERSIDAD DE SALAMANCA FACULTAD DE CIENCIAS INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS Resumen del trabajo práctico realizado para la superación de la asignatura Proyecto Fin de Carrera. TÍTULO SISTEMA

Más detalles

PROYECTO MANUAL USUARIO DOTPROJECT

PROYECTO MANUAL USUARIO DOTPROJECT PROYECTO MANUAL USUARIO DOTPROJECT 1/22 Índice de contenido DOTPROJECT...... 3 Algunos conceptos PREVIOS...... 3 ACCEDIENDO A DOTPROJECT...... 6 OPERATIVA LÓGICA...... 7 CREANDO UN PROYECTO...... 7 CREANDO

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI

TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS Departamento de Evaluación, Medición y Registro Educacional DEMRE ABRIL DE 2005

Más detalles

El modelo Ordinal y el modelo Multinomial

El modelo Ordinal y el modelo Multinomial El modelo Ordinal y el modelo Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Motivación 1 Motivación 2 3 Motivación Consideramos las siguientes

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Reseñas. Ángeles Maldonado y Elena Fernández, Cindoc. El profesional de la información, vol. 9, nº 3, marzo de 2000

Reseñas. Ángeles Maldonado y Elena Fernández, Cindoc. El profesional de la información, vol. 9, nº 3, marzo de 2000 Reseñas Análisis comparativo de buscadores en internet Por Ángeles Maldonado Martínez y Elena Fernández Sánchez Resumen de la comunicación presentada por las autoras a la conferencia Online Information

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Técnicas de valor presente para calcular el valor en uso

Técnicas de valor presente para calcular el valor en uso Normas Internacionales de Información Financiera NIC - NIIF Guía NIC - NIIF NIC 36 Fundación NIC-NIIF Técnicas de valor presente para calcular el valor en uso Este documento proporciona una guía para utilizar

Más detalles

Curso de Certificación BCI (Certified Business Continuity Institute) basado en la norma ISO22301:2012.

Curso de Certificación BCI (Certified Business Continuity Institute) basado en la norma ISO22301:2012. Curso de Certificación BCI (Certified Business Continuity Institute) basado en la norma ISO22301:2012. Conviértase en un Profesional certificado BCI en Continuidad de Negocio (BC) y obtenga un título con

Más detalles

Operación Microsoft Access 97

Operación Microsoft Access 97 Trabajar con Controles Características de los controles Un control es un objeto gráfico, como por ejemplo un cuadro de texto, un botón de comando o un rectángulo que se coloca en un formulario o informe

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Investigación Operativa Práctica 6: Simulación Guión práctico: Generación de Números Aleatorios y Simulación Monte Carlo Curso 08/09 Objetivo: Aprender

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

GMAIL (avanzado) 1. Accede a la web de Gmail, www.gmail.com. Te destacamos las funcionalidades que vamos a enseñarte a. 2. Vamos a enseñarte a:

GMAIL (avanzado) 1. Accede a la web de Gmail, www.gmail.com. Te destacamos las funcionalidades que vamos a enseñarte a. 2. Vamos a enseñarte a: Sabes que puedes hacer muchas más cosas que enviar y recibir correo con Gmail? Puedes organizarlo, crear reglas de correo, filtrar correo, organizar contactos Adriana va a enseñar a su padre cómo aprovechar

Más detalles

Se pueden manipular bajo el control de un virus troyano nuestros SMS y WhatsApp?

Se pueden manipular bajo el control de un virus troyano nuestros SMS y WhatsApp? Se pueden manipular bajo el control de un virus troyano nuestros SMS y WhatsApp? Según publicaba El País, el borrador de anteproyecto de Código Procesal Penal quiere permitir a la Policía instalar troyanos

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Comparar las siguientes ecuaciones, y hallar sus soluciones:

Comparar las siguientes ecuaciones, y hallar sus soluciones: TEMA. Iteraciones. % Hemos aprendido que para resolver una ecuación en x, se despeja la x y se evalúa la expresión que resulta. El siguiente ejemplo nos hará revisar ese esquema. Ejemplo. Comparar las

Más detalles

Guía del alumno Aula Virtual

Guía del alumno Aula Virtual Guía del alumno Aula Virtual ÍNDICE 1. Presentación y objetivos... 3 2. Características generales de la formación... 4 2.1. Organización y estructura del Aula Virtual on line. Formación acreditada por

Más detalles

Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes.

Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes. Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes Jesús Sánchez-Oro Es realmente difícil el análisis de imágenes? Problema de la

Más detalles

WINDOWS 2008 7: COPIAS DE SEGURIDAD

WINDOWS 2008 7: COPIAS DE SEGURIDAD 1.- INTRODUCCION: WINDOWS 2008 7: COPIAS DE SEGURIDAD Las copias de seguridad son un elemento fundamental para que el trabajo que realizamos se pueda proteger de aquellos problemas o desastres que pueden

Más detalles

Ministerio de Educación,Cultura y Deporte. Aulas en Red. Windows. Módulo 2: Servicios Básicos. DNS

Ministerio de Educación,Cultura y Deporte. Aulas en Red. Windows. Módulo 2: Servicios Básicos. DNS Ministerio de Educación,Cultura y Deporte. Aulas en Red. Windows Módulo 2: Servicios Básicos. DNS Aulas en red. Aplicaciones y servicios. Windows DNS DNS (Domain Name System) es una abreviatura de Sistema

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Promociones internas. Contenido

Promociones internas. Contenido Promociones internas Este es uno de los mayores quebraderos de cabeza de cualquier PYME. Ante la realidad de tener que cubrir una vacante por el motivo que sea Cómo cubrimos ese puesto? Pero antes hay

Más detalles

TeCS. Sistema de ayuda a la gestión del desarrollo de producto cerámico

TeCS. Sistema de ayuda a la gestión del desarrollo de producto cerámico TeCS Sistema de ayuda a la gestión del desarrollo de producto cerámico En el origen de todo proyecto de éxito se halla la capacidad de encauzar y estructurar la creatividad TeCS ofrece un entorno de fácil

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo Laboratorio de Redes de Neuronas Artificiales y Sistemas Adaptativos Universidade

Más detalles

Tema 1 con soluciones de los ejercicios. María Araceli Garín

Tema 1 con soluciones de los ejercicios. María Araceli Garín Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un

Más detalles

El objetivo principal del presente curso es proporcionar a sus alumnos los conocimientos y las herramientas básicas para la gestión de proyectos.

El objetivo principal del presente curso es proporcionar a sus alumnos los conocimientos y las herramientas básicas para la gestión de proyectos. Gestión de proyectos Duración: 45 horas Objetivos: El objetivo principal del presente curso es proporcionar a sus alumnos los conocimientos y las herramientas básicas para la gestión de proyectos. Contenidos:

Más detalles

Gestión de proyectos

Gestión de proyectos Gestión de proyectos Horas: 45 El objetivo principal del presente curso es proporcionar a sus alumnos los conocimientos y las herramientas básicas para la gestión de proyectos. Gestión de proyectos El

Más detalles

S P I N. Selling. Neil Rackham (1988) Profesor: Luis Mª García Bobadilla

S P I N. Selling. Neil Rackham (1988) Profesor: Luis Mª García Bobadilla S P I N Selling Neil Rackham (1988) Ver página web y newsletter de www.huthwaite.com SPIN Selling Para ventas a gran escala Método basado en investigación Los métodos tradicionales de entrenamiento de

Más detalles

Introducción a los Tipos Abstractos de Datos

Introducción a los Tipos Abstractos de Datos Página 1 de 8 Introducción a los Tipos Abstractos de Datos Introducción: Concepto de abstracción Abstracción funcional y abstracción de datos Construcción de tipos abstractos de datos Especificación de

Más detalles

Tratamiento borroso del intangible en la valoración de empresas de Internet

Tratamiento borroso del intangible en la valoración de empresas de Internet Tratamiento borroso del intangible en la valoración de empresas de Internet Mª Carmen Lozano Gutiérrez Federico Fuentes Martín Esta página está alojada por el Grupo EUMED.NET de la Universidad de Málaga

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

Sistemas de Información Geográficos (SIG o GIS)

Sistemas de Información Geográficos (SIG o GIS) Sistemas de Información Geográficos (SIG o GIS) 1) Qué es un SIG GIS? 2) Para qué sirven? 3) Tipos de datos 4) Cómo trabaja? 5) Modelos de datos, Diseño Conceptual 6) GeoDataase (GD) 7) Cómo evaluamos

Más detalles

Realización y corrección automática de exámenes con hoja de cálculo

Realización y corrección automática de exámenes con hoja de cálculo Realización y corrección automática de exámenes con hoja de cálculo Realización y corrección automática de exámenes con hoja de cálculo Bernal García, Juan Jesús juanjesus.bernal@upct.es Martínez María

Más detalles

Presentaciones. Con el estudio de esta Unidad pretendemos alcanzar los siguientes objetivos:

Presentaciones. Con el estudio de esta Unidad pretendemos alcanzar los siguientes objetivos: UNIDAD 8 Presentaciones Reunión. (ITE. Banco de imágenes) as presentaciones son documentos formados por una sucesión de páginas, llamadas diapositivas, que transmiten información estructurada de manera

Más detalles

Lección 1. Representación de números

Lección 1. Representación de números Lección 1. Representación de números 1.1 Sistemas de numeración Empecemos comentando cual es el significado de la notación decimal a la que estamos tan acostumbrados. Normalmente se escribe en notación

Más detalles

Módulo 10: Aplicaciones Informáticas de Gestión Comercial. Guía del formador por cada módulo formativo

Módulo 10: Aplicaciones Informáticas de Gestión Comercial. Guía del formador por cada módulo formativo Módulo 10: Aplicaciones Informáticas de Gestión Comercial Guía del formador por cada módulo formativo Módulo 10 1. DENOMINACIÓN DEL MÓDULO MÓDULO 10: APLICACIONES IN ORMÁTICAS DE GESTIÓN COMERCIAL 2.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

POSICIONAMIENTO EN LA WEB (SEM Y SEO)

POSICIONAMIENTO EN LA WEB (SEM Y SEO) POSICIONAMIENTO EN LA WEB (SEM Y SEO) POSICIONAMIENTO EN LA WEB (SEM Y SEO) 1 Sesión No. 3 Nombre: Keywords Contextualización Qué son las Keywords? Debemos de tener en claro la definición de keywords para

Más detalles

Para optimizar este proceso lo dividiremos en etapas y deberemos tener bien claro el objetivo que debemos alcanzar en cada una de ellas:

Para optimizar este proceso lo dividiremos en etapas y deberemos tener bien claro el objetivo que debemos alcanzar en cada una de ellas: ETAPAS DEL PROCESO DE SELECCIÓN DE PERSONAL EN LAS EMPRESAS FAMILIARES En la actualidad muchas empresas familiares han evolucionado intentando aplicar técnicas adecuadas para el proceso de Selección de

Más detalles

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE?

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE? QUÉ ES BUSINESS INTELLIGENCE? Según Wikipedia Definición de BI El término inteligencia de negocios se refiere al uso de datos en una empresa para facilitar la toma de decisiones. Abarca la comprensión

Más detalles

En el presente informe se describe el proceso de condicionamiento operante, el cuál fue realizado a una niña de 9 años de edad.

En el presente informe se describe el proceso de condicionamiento operante, el cuál fue realizado a una niña de 9 años de edad. En el presente informe se describe el proceso de condicionamiento operante, el cuál fue realizado a una niña de 9 años de edad. I Tipo de condicionamiento: Teniendo en cuenta que el condicionamiento operante

Más detalles

5.- ANÁLISIS DE RIESGO

5.- ANÁLISIS DE RIESGO 5.- ANÁLISIS DE RIESGO El módulo de Análisis de Riesgo se caracteriza por desarrollar una herramienta formativa para la gestión, que permite al usuario identificar, analizar y cuantificar el riesgo de

Más detalles

1. I N T R O D U C C I Ó N 2 2. O B J E T I V O S 9 3. C O M P E T E N C I A S B Á S I C A S 1 1 4. C O N T E N I D O S 1 2

1. I N T R O D U C C I Ó N 2 2. O B J E T I V O S 9 3. C O M P E T E N C I A S B Á S I C A S 1 1 4. C O N T E N I D O S 1 2 Í N D I C E 1. I N T R O D U C C I Ó N 2 1. 1. J u s t i f i c a c i ó n 2 1. 2. E n t o r n o e d u c a t i v o 6 2. O B J E T I V O S 9 3. C O M P E T E N C I A S B Á S I C A S 1 1 4. C O N T E N I D

Más detalles

MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS. Autor: Daniel Hernández Cárceles

MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS. Autor: Daniel Hernández Cárceles MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS Autor: Daniel Hernández Cárceles INDICE: 1. INTRODUCCIÓN.... 2 2. COMPETENCIAS BÁSICAS... 2 3. PASOS PARA ELABORAR UNA

Más detalles

"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios

Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios "Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Preguntas más frecuentes sobre PROPS

Preguntas más frecuentes sobre PROPS Preguntas más frecuentes sobre PROPS 1. Qué es un modelo? Un modelo es un marco común para toda la organización. Está alineado con los estándares de gestión de proyectos, como PMBOK, ISO10006, ISO9000

Más detalles

Manual CMS Mobincube

Manual CMS Mobincube Manual CMS Mobincube CMS Mobincube Qué es? El CMS (Sistema de Gestión de Contenidos) es un completo website que permite la creación y actualización de contenido remoto. De esta forma, una vez creada una

Más detalles

Mantenimiento de Sistemas de Información

Mantenimiento de Sistemas de Información de Sistemas de Información ÍNDICE DESCRIPCIÓN Y OBJETIVOS... 1 ACTIVIDAD MSI 1: REGISTRO DE LA PETICIÓN...4 Tarea MSI 1.1: Registro de la Petición... 4 Tarea MSI 1.2: Asignación de la Petición... 5 ACTIVIDAD

Más detalles

5.4. Manual de usuario

5.4. Manual de usuario 5.4. Manual de usuario En esta sección se procederá a explicar cada una de las posibles acciones que puede realizar un usuario, de forma que pueda utilizar todas las funcionalidades del simulador, sin

Más detalles

Word. Qué es Office? Cuando se abre el programa, se muestra una pantalla como la siguiente. Manual Microsoft Office 2007 - MS Word

Word. Qué es Office? Cuando se abre el programa, se muestra una pantalla como la siguiente. Manual Microsoft Office 2007 - MS Word Word Qué es Office? Microsoft Office (MSO) es una suite ofimática creada por la empresa Microsoft. Funciona oficialmente bajo los sistemas operativos Microsoft Windows y Apple Mac OS. Word Microsoft Word

Más detalles

Módulo 9: Aplicaciones Informáticas de Gestión de Personal. Guía del formador por cada módulo formativo

Módulo 9: Aplicaciones Informáticas de Gestión de Personal. Guía del formador por cada módulo formativo Módulo 9: Aplicaciones Informáticas de Gestión de Personal Guía del formador por cada módulo formativo Módulo 9 1. DENOMINACIÓN DEL MÓDULO MÓDULO 9: APLICACIONES IN ORMÁTICAS DE GESTIÓN DE PERSONAL 2.

Más detalles

Correspondencias entre taxonomías XBRL y ontologías en OWL Unai Aguilera, Joseba Abaitua Universidad de Deusto, EmergiaTech

Correspondencias entre taxonomías XBRL y ontologías en OWL Unai Aguilera, Joseba Abaitua Universidad de Deusto, EmergiaTech Correspondencias entre taxonomías XBRL y ontologías en OWL Unai Aguilera, Joseba Abaitua Universidad de Deusto, EmergiaTech Resumen Todo documento XBRL contiene cierta información semántica que se representa

Más detalles

TIPOS DE MUESTREO. Jordi Casal 1, Enric Mateu RESUMEN

TIPOS DE MUESTREO. Jordi Casal 1, Enric Mateu RESUMEN TIPOS DE MUESTREO Jordi Casal 1, Enric Mateu CReSA. Centre de Recerca en Sanitat Animal / Dep. Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona RESUMEN Se discute

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA Enrique Puertas epuertas@uem.es Francisco Carrero fcarrero@uem.es José María Gómez Hidalgo jmgomez@uem.es Manuel de Buenaga buenga@uem.es

Más detalles

Capítulo 9. Archivos de sintaxis

Capítulo 9. Archivos de sintaxis Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta

Más detalles

También comparten un segmento importante, los motores de búsqueda proveídos por estos, a diferentes sitios Web.

También comparten un segmento importante, los motores de búsqueda proveídos por estos, a diferentes sitios Web. Las principales diferencias entre SEO y SEM en los motores de búsqueda Este documento está dirigido a personas con un nivel intermedio de conocimiento en el área del mercadeo digital y busca dar una visión

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Estructuras de datos: Proyecto 2

Estructuras de datos: Proyecto 2 Estructuras de datos: Proyecto 2 28 de mayo de 2013 Instrucciones Enviar las soluciones por email a los ayudantes, con copia a la profesora. Plazo de entrega: 16 de junio (durante todo el día). Se debe

Más detalles