Recuperación de información visual utilizando descriptores conceptuales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recuperación de información visual utilizando descriptores conceptuales"

Transcripción

1 Recuperación de información visual utilizando descriptores conceptuales J. Benavent, X. Benavent y E. de Ves Departament d Informàtica (Universitat de València) Abstract. En este trabajo se propone un nuevo método para búsquedas de imágenes utilizando información visual. La idea básica consiste en describir cada imagen mediante descriptores de bajo nivel (color, textura) junto con descriptores conceptuales construidos a partir de los de bajo nivel. Los descriptores conceptuales se obtienen utilizando distintos modelos de regresión logística, uno para cada uno de los conceptos implicados sobre bases de datos etiquetadas adecuadamente. Estos descriptores se han probado sobre la colección Wikipedia2011 proporcionada por la organización ImageClef. Para las consultas analizadas los nuevos descriptores consiguen mejorar los resultados (en cuanto a MAP y precisión). Keywords: Recuperación de imágenes, descriptores de bajo nivel, descriptores conceptuales, regresión logística, realimentación de relevancia. 1 Introducción El aumento de información visual en las últimas décadas nos ha llevado a la necesidad de proponer nuevos métodos para recuperar imágenes de forma eficiente. Los sistemas de recuperación basados en contenido actuales (CBIR) se apoyan en información obtenida de la propia imagen así como en otro tipo de información textual que puede estar en uno o varios idiomas. Las características de bajo nivel que se suelen utilizar en el contexto de las bases de datos de imágenes son color y textura. Estos descriptores son muy sencillos y aunque funcionan moderadamente bien, existe lo que se conoce como brecha semántica entre los descriptores de bajo nivel almacenados y las imágenes que se desean recuperar de la BDs (estos descriptores no incluyen información semántica). Por este motivo, nos proponemos ampliar el vector de características de bajo nivel e incluir descriptores conceptuales que nos permitan diferenciar imágenes por la aparición o no de estos conceptos en ellas. Para la construcción de estos descriptores conceptuales vamos a utilizar análisis de regresión logística ([3]). La idea general consiste en obtener un modelo de regresión logística para cada concepto con el que se quiera trabajar. Ese modelo nos permitirá predecir la probabilidad de que una imagen incluya o no ese concepto. Estas probabilidades son las que utilizaremos después como descriptores.

2 En la sección 2 se explica la metodología utilizada para obtener descriptores conceptuales. Los resultados experimentales obtenidos con estos descriptores se muestran en la sección 3. 2 Metodología En esta sección proponemos una metodología basada en análisis de regresión logística para obtener descriptores conceptuales que, junto con los descriptores de bajo nivel, nos ayuden a recuperar imágenes relevantes a una consulta. Para cada uno de los conceptos analizqados aplicaremos un modelo de regresión logística sobre un conjunto de imágenes que incluyen el concepto en cuestión. A este conjunto de imágenes etiquetadas para el concepto le llamaremos conjunto de entrenamiento. Sea un grupo de imágenes del conjunto de entrenamiento que sabemos que contienen el concepto (imágenes relevantes o positivas).. Sea un grupo de imágenes que sabemos que no contiene el concepto de interés (imágenes no relevantes o negativas). El análisis de regresión logística permite calcular las probabilidad de que una imagen cualquiera este en el grupo. Suponiendo que cada imagen del grupo de entrenamiento se representa mediante un vector de características K-dimensional,..,,..,, la probabilidad de relevancia para el concepto en una imagen dada la denotaremos por. Estas probabilidades pueden estimarse mediante un modelo de regresión logística. Para una variable de respuesta binaria Y, y k variables explicativa =(,, ), el modelo para π(x) = P(Y=1 X ) (probabilidad de que =1 ) en los valores x ( ) = + + +, donde logit (π(x))=ln(π(x) / (1-π(x)). Los parámetros del modelo se obtienen mediante la resolución numérica de las ecuaciones de verosimilitud. La bondad del modelo utilizado para extraer descriptores conceptuales se ha evaluado mediante un test cruzado. Se ha utilizado un conjunto de imágenes para entrenar. El modelo obtenido se prueba después sobre un conjunto de imágenes etiquetadas para ese concepto y se calcula la probabilidad de relevancia para un conjunto de imágenes etiquetadas. Se asume que una probabilidad de relevancia superior a 0.5 implica que la imagen contiene dicho concepto ( >0.5). A modo de ejemplo, los resultados del test cruzado en cuanto a tasa de correctos positivos para el concepto portrait es de mientras que la tasa de correctos negativos (que no contienen el concepto portrait) es de Se observa que el modelo es capaz de predecir razonablemente bien si una imagen es un retrato. En cambio comete muchos fallos a la hora de predecir cuándo una imagen no incluye el concepto para el que se ha entrenado. Cabe señalar que se ha realizado un análisis similar para el resto de conceptos que se utilizaran (todos estos conceptos se enumeran en la sección de resultados). Se ha realizado una regresión logística por concepto que se desea aprender, esto es, en nuestro caso concreto se tienen 6 modelos de regresión logística. Cada uno de estos modelos permite obtener una probabilidad de concepto para cualquier imagen. Así pretendemos extender el vector de características de bajo nivel (color y textura) con estas probabilidades. Pasamos así a un vector de características ampliado por m componentes más, una componente por cada concepto aprendido. Cada imagen

3 de la BD se describe utilizando el siguiente vector de características: F I = (x, x,c,..,c R 3 Resultados experimentales y conclusiones Las colecciones utilizadas para realizar los experimentos las proporciona el foro internacional ImageClef [2]. El conjunto de imágenes escogido para la fase de entrenamiento de conceptos proviene de la tarea de anotación automática de imágenes denominada Photo Annotation del ImageClef Esta colección contiene un conjunto de 8000 imágenes de Flickr multi-etiquetadas con 93 conceptos generales. Para comprobar el funcionamiento de los descriptores visuales hemos seleccionado 9 conceptos de los 93 (portrait, animals, single person, female, male, dog, cat, bird y insect). Las características de bajo nivel utilizadas contienen información de colorimetría y textura, y han sido programadas por el grupo ([1], [3], [4]). La dimensión del vector de características de bajo nivel es k=293, y el número de imágenes positivas y negativas manejadas para cada concepto es siempre inferior a k, por lo que es difícil encontrar un buen modelo de regresión logística. Por este motivo, se ha de agrupar las componentes del vector características y realizar ajustes por agrupaciones que después fusionamos. Para cada concepto se han realizado distintos tipos de agrupamientos de componentes (3, 4 o 6 agrupaciones), y también se ha variado el número de imágenes positivas y negativas. Se elige el modelo con la tasa de aciertos más alta. Los nuevos descriptores conceptuales se han probado en la colección Wikipedia2011([4]) del ImageClef (distinta de la utilizada para la construcción de descriptores conceptuales). Esta colección contiene imágenes que provienen de artículos de la Wikipedia anotadas en varios idiomas. Una consulta en esta tarea consiste en un título en los 3 idiomas, y 5 imágenes ejemplo. La organización proporciona juicios de relevancia para evaluar la bondad de los resultados obtenidos mediante el MAP y precisiones a distintos valores y En los experimentos realizados se han seleccionado 10 consultas de la edición del ImageClef2011 que contienen información semántica relacionada con los conceptos estudiados. Todas las imágenes de la BD así como las imágenes ejemplo de la consulta se han indexado utilizando los descriptores de bajo nivel y los descriptores conceptuales. Cada imagen tiene un vector de características ampliado F I = (x, x,c,..,c R dónde j es el número de características de bajo nivel y m el número de conceptos. Recordar que cada descriptor conceptual c i corresponde a la probabilidad de relevancia obtenida con un modelo de regresión logística. Cada consulta implica recuperar aquellas imágenes de la BDs relevantes. El módulo de comparación entre imágenes ejemplo e imágenes en la colección utiliza una regresión logística en la que las imágenes positivas son las propias imágenes ejemplo y las imágenes negativas son una selección aleatoria de imágenes que se saben no relevantes. La tabla 1 muestra los 3 experimentos realizados, todos ellos a partir de información visual. El experimento 1 utiliza el vector de características de bajo nivel F (I )= (x, x R. Los experimento 2 y 3 utilizan el vector de características amplia-

4 do F(I )= (x, x,c,..,c R. La diferencia entre los dos experimentos radica en la manera de utilizar la información conceptual. Mientras en el experimento 2 toda la información se trata de forma uniforme, sin diferenciar entre componentes del vector, en el experimento 3 se separa la parte de bajo nivel de la conceptual, obteniéndose 2 puntuaciones distintas por imagen, una procedente de los descriptores de bajo nivel ( )y otra de los descriptores conceptuales ( ). Estas dos puntuaciones se fusionan mediante el producto: ( )= ( ) ( ) que se utiliza para ordenar la BDs. Table 1. Resultados de los experimentos. El experimento 1 es el experimento de referencia. Se han marcado en negrita aquellos valores que igualan o superan al valor de referencia. Consulta Experimento 1 Experimento 2 Experimento 3 Map Map Map La tabla 1 indica que utilizar la información conceptual iguala o mejora en la mayoría de las consultas los resultados del experimento 1 (utilizado como referencia) tanto en MAP como para las precisiones a 5, 10 y 20. Las consultas para las que la incorporación de la información conceptual resulta en un incremento del MAP mayor son aquellas consultas en las que las imágenes ejemplo están bien descritas utilizando los conceptos entrenados (89 que corresponde a retrato de Elvis, y la 75 que corresponde a un rebaño de ovejas). Los resultados del experimento 2 siempre son superiores al experimento 3 lo que indica que es preferible tratar los nuevos descriptores conceptuales de forma uniforme ( como un vector de características ampliado). Referencias 1. Ayala, G.; Domingo, J. Spatial Size Distributions. Applications to Shape and Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 23, N. 12, pages

5 2. Theodora Tsikrika, Adrian Popescu, and Jana Kludas "Overview of the Wikipedia Image Retrieval task at ImageCLEF 2011". In the Working Notes for the CLEF 2011 Labs and Workshop, September, Amsterdam, The Netherlands, Leon. T., Zuccarello. P., Ayala. G., de Ves. E., Domingo. J.: Applying logistic regression to relevance feedback in image retrieval systems. Pattern Recognition. vol. 40. pp (2007). 4. Ruben Granados, Joan Benavent, Xaro Benavent, Esther de Ves, and Ana Garcia-Serrano. Multimodal information approaches for thewikipedia collection at Image-CLEF In Vivien Petras, Pamela Forner, and Paul Clough, editors. CLEF 2011 working notes.

Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes

Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes Fusión de Anotaciones de Información Multimedia: Recuperación de Texto e Imágenes Rubén Granados rgranados@lsi.uned.es VII Jornadas MAVIR: "Avances en Tecnologías de la Lengua y Acceso a la Información

Más detalles

Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal

Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal Ordenamiento de imágenes Web de acuerdo a su relevancia utilizando un enfoque de fusión multimodal Reporte final Ricardo Omar Chávez García Instituto Nacional de Astrofísica Óptica y Electrónica, 72840

Más detalles

Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes.

Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes. Preprocesamiento y Técnicas de alto nivel en la Extracción de Características Visuales para Tareas de Anotación de Imágenes Jesús Sánchez-Oro Es realmente difícil el análisis de imágenes? Problema de la

Más detalles

Sistema categorizador de ofertas de empleo informáticas

Sistema categorizador de ofertas de empleo informáticas Diego Expósito Gil diegoexpositogil@hotmail.com Manuel Fidalgo Sicilia Manuel_fidalgo@hotmail.com Diego Peces de Lucas pecesdelucas@hotmail.com Sistema categorizador de ofertas de empleo informáticas 1.

Más detalles

Fusión Multimedia Semántica Tardía aplicada a la Recuperación de Información Multimedia

Fusión Multimedia Semántica Tardía aplicada a la Recuperación de Información Multimedia UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Departamento de Lenguajes y Sistemas Informáticos Tesis Doctoral Fusión Multimedia Semántica Tardía aplicada

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción El WWW es la mayor fuente de imágenes que día a día se va incrementando. Según una encuesta realizada por el Centro de Bibliotecas de Cómputo en Línea (OCLC) en Enero de 2005,

Más detalles

Clasificación Bayesiana de textos y páginas web

Clasificación Bayesiana de textos y páginas web Clasificación Bayesiana de textos y páginas web Curso de doctorado: Ingeniería Lingüística aplicada al Procesamiento de Documentos Víctor Fresno Fernández Introducción Enorme cantidad de información en

Más detalles

Máster en Lenguajes y Sistemas Informáticos: Tecnologías del Lenguaje en la Web Universidad de Educación a Distancia Marzo 2013

Máster en Lenguajes y Sistemas Informáticos: Tecnologías del Lenguaje en la Web Universidad de Educación a Distancia Marzo 2013 Presentación de Trabajo de Fin de Máster PROPUESTA DE BÚSQUEDA SEMÁNTICA: APLICACIÓN AL CATÁLOGO DE MAPAS, PLANOS Y DIBUJOS DEL ARCHIVO GENERAL DE SIMANCAS Máster en Lenguajes y Sistemas Informáticos:

Más detalles

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA

FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA FILTRADO DE CONTENIDOS WEB EN ESPAÑOL DENTRO DEL PROYECTO POESIA Enrique Puertas epuertas@uem.es Francisco Carrero fcarrero@uem.es José María Gómez Hidalgo jmgomez@uem.es Manuel de Buenaga buenga@uem.es

Más detalles

Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases

Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases Naive Bayes Multinomial para Clasificación de Texto Usando un Esquema de Pesado por Clases Emmanuel Anguiano-Hernández Abril 29, 2009 Abstract Tratando de mejorar el desempeño de un clasificador Naive

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Implementación de un sistema de reconocimiento de imágenes por contenido usando algoritmos genéticos

Implementación de un sistema de reconocimiento de imágenes por contenido usando algoritmos genéticos Implementación de un sistema de reconocimiento de imágenes por contenido usando algoritmos genéticos Juan Villegas-Cortez 1, Yolanda Pérez-Pimentel 2, Ismael Osuna-Galán 2 1 Departamento de Electrónica,

Más detalles

UNED LSI @ TASS 2013: Considerations about Textual Representation for IR based Tweet Classification

UNED LSI @ TASS 2013: Considerations about Textual Representation for IR based Tweet Classification UNED LSI @ TASS 2013: Considerations about Textual Representation for IR based Tweet Classification UNED LSI en TASS 2013: Consideraciones acerca de la Representación Textual para la clasificación de Tweets

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro Capitulo 6 Conclusiones y Aplicaciones a Futuro. En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro para nuestro sistema. Se darán las conclusiones para cada aspecto del sistema,

Más detalles

DISEÑO DE UN CURSO INTERACTIVO Y ADAPTATIVO DE PROCESADORES DE LENGUAJES

DISEÑO DE UN CURSO INTERACTIVO Y ADAPTATIVO DE PROCESADORES DE LENGUAJES Alfonseca, M., Carro, R.M., Pulido, E. and Rodríguez, P. (2000): Diseño de un curso interactivo y adaptativo de procesadores de lenguajes. Proceedings of JENUI 2000: VI Jornadas sobre la Enseñanza Universitaria

Más detalles

Hacia un sistema de marketing dirigido más eficaz y personalizado en redes sociales

Hacia un sistema de marketing dirigido más eficaz y personalizado en redes sociales Hacia un sistema de marketing dirigido más eficaz y personalizado en redes sociales Patxi Galán-García, Dr. Carlos Laorden Gómez, and Dr. Pablo García Bringas DeustoTech Computing - S 3 Lab, University

Más detalles

Modeling the Retrieval Process for an Information Retrieval System using an Ordinal Fuzzy Linguistic Approach

Modeling the Retrieval Process for an Information Retrieval System using an Ordinal Fuzzy Linguistic Approach JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 52(6):460-475, 2001 Modeling the Retrieval Process for an Information Retrieval System using an Ordinal Fuzzy Linguistic Approach

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

Búsqueda por contenido en bases de datos 3D

Búsqueda por contenido en bases de datos 3D Búsqueda por contenido en bases de datos 3D Benjamin Bustos Centro de Investigación de la Web Departamento de Ciencias de la Computación Universidad de Chile Motivación Buscar documentos 3D en una base

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Oferta tecnológica: Procesamiento del lenguaje natural para la extracción y recuperación de información

Oferta tecnológica: Procesamiento del lenguaje natural para la extracción y recuperación de información Oferta tecnológica: Procesamiento del lenguaje natural para la extracción y recuperación de información Oferta tecnológica: Procesamiento del lenguaje natural para la extracción y recuperación de información

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile

Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile Modelos Analíticos de Scoring Motivación original: Predecir qué clientes fallarán

Más detalles

Reconocimiento de caras: Eigenfaces y Fisherfaces

Reconocimiento de caras: Eigenfaces y Fisherfaces Reconocimiento de caras: Eigenfaces y Fisherfaces Guillermo Ottado Resumen En este trabajo se describen dos métodos tradicionales utilizados para el reconocimiento de caras, Eigenfaces y Fisherfaces. Se

Más detalles

Integrando Información de Fuentes Relevantes para un Sistema Recomendador

Integrando Información de Fuentes Relevantes para un Sistema Recomendador Integrando Información de Fuentes Relevantes para un Sistema Recomendador Silvana Aciar, Josefina López Herrera and Javier Guzmán Obando Agents Research Laboratory University of Girona {saciar, jguzmano}@eia.udg.es,

Más detalles

Facultad de Ciencias

Facultad de Ciencias Facultad de Ciencias Trabajo Fin de Grado Grado en Estadística Métodos de predicción de fuga con grandes volúmenes de datos Autor: D. Raquel García Fernández Tutor/es: D. Eusebio Arenal Gutiérrez Página

Más detalles

Técnicas de calidad en servicios

Técnicas de calidad en servicios Técnicas de calidad en servicios Para estudiar la calidad de un servicio disponemos de varias técnicas. A continuación se muestra un cuadro con las principales herramientas que podemos emplear, para los

Más detalles

Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas

Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas Manuel Baena García, Rafael Morales Bueno y Carlos Cotta Porras Workshop MOISES Septiembre 2004 1/15 Contenido Inducción

Más detalles

Ingeniería de Software Dr. Marcello Visconti Z. Ingeniería de Software

Ingeniería de Software Dr. Marcello Visconti Z. Ingeniería de Software Universidad Técnica Federico Santa María Departamento de Informática Ingeniería de Software Dr. Marcello Visconti Z. Programa Proceso de Software y Paradigmas de Desarrollo Gestión de Proyectos Fases del

Más detalles

Introducción. Metadatos

Introducción. Metadatos Introducción La red crece por momentos las necesidades que parecían cubiertas hace relativamente poco tiempo empiezan a quedarse obsoletas. Deben buscarse nuevas soluciones que dinamicen los sistemas de

Más detalles

Apéndices técnicos. Método de representación: forma en que serán representados internamente los documentos.

Apéndices técnicos. Método de representación: forma en que serán representados internamente los documentos. APÉNDICE A: INDEXACIÓN DE INFORMACIÓN. LUCENE 1. INTRODUCCIÓN: INDEXACIÓN DE INFORMACIÓN El desarrollo y crecimiento masivo de las redes de computadoras y medios de almacenamiento a lo largo de los últimos

Más detalles

TEMA 5 ESTUDIOS CORRELACIONALES.

TEMA 5 ESTUDIOS CORRELACIONALES. TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.

Más detalles

Impacto de la ironía en la minería de opiniones basada en un léxico afectivo

Impacto de la ironía en la minería de opiniones basada en un léxico afectivo Impacto de la ironía en la minería de opiniones basada en un léxico afectivo Yolanda Raquel Baca-Gómez a, Delia Irazú Hernández Farías b, Paolo Rosso b, Noé Alejandro Castro-Sánchez a, Alicia Martínez

Más detalles

TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI

TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI TEORÍA CLÁSICA DE MEDICIÓN TC Y TEORÍA DE RESPUESTA AL ITEM TRI UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS Departamento de Evaluación, Medición y Registro Educacional DEMRE ABRIL DE 2005

Más detalles

El modelo Ordinal y el modelo Multinomial

El modelo Ordinal y el modelo Multinomial El modelo Ordinal y el modelo Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Motivación 1 Motivación 2 3 Motivación Consideramos las siguientes

Más detalles

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos I. Barbona - Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparison among

Más detalles

Recuperación de información Bases de Datos Documentales Licenciatura en Documentación Curso 2011/2012

Recuperación de información Bases de Datos Documentales Licenciatura en Documentación Curso 2011/2012 Bases de Datos Documentales Curso 2011/2012 Miguel Ángel Rodríguez Luaces Laboratorio de Bases de Datos Universidade da Coruña Introducción Hemos dedicado la primera mitad del curso a diseñar e implementar

Más detalles

Objeto del informe. ALUMNO 1 Página: 1

Objeto del informe. ALUMNO 1 Página: 1 Nombre: ALUMNO 1 Centro: NOMBRE DEL COLEGIO Curso: 5º E. PRIMARIA Responsable: RESPONSABLE Localidad: LOCALIDAD Fecha: 21 / julio / 2015 Objeto del informe El presente informe recoge la evaluación psicológica

Más detalles

Práctica 5. Curso 2014-2015

Práctica 5. Curso 2014-2015 Prácticas de Seguridad Informática Práctica 5 Grado Ingeniería Informática Curso 2014-2015 Universidad de Zaragoza Escuela de Ingeniería y Arquitectura Departamento de Informática e Ingeniería de Sistemas

Más detalles

Selección de plataformas para el trabajo colaborativo en grupos deslocalizados: formulación del problema.

Selección de plataformas para el trabajo colaborativo en grupos deslocalizados: formulación del problema. Selección de plataformas para el trabajo colaborativo en grupos deslocalizados: formulación del problema. Juan A. Marin-Garcia 1, Teresa Marin-Garcia 2, Mª Rosario Perelló 1, Julio J. Garcia- Sabater 1

Más detalles

PRACTICA 1: RECONOCIMIENTO DE IMAGENES.

PRACTICA 1: RECONOCIMIENTO DE IMAGENES. PRACTICA 1: RECONOCIMIENTO DE IMAGENES. A. Juan, C. Martínez, R. Paredes y E. Vidal Aprendizaje y Percepción. Facultad de Informática. Curso 2005-2006 Introducción. El objetivo de la presente práctica

Más detalles

Enfoque propuesto para la detección del humo de señales de video.

Enfoque propuesto para la detección del humo de señales de video. Capítulo 3 Enfoque propuesto para la detección del humo de señales de video. 3.1 Comportamiento del enfoque propuesto. Una visión general del método propuesto se muestra en la figura 2. El método genera

Más detalles

Mejora de la Recuperación de Información en entorno Oracle: Aplicación práctica a Recursos Cartográficos

Mejora de la Recuperación de Información en entorno Oracle: Aplicación práctica a Recursos Cartográficos Mejora de la Recuperación de Información en entorno Oracle: Aplicación práctica a Recursos Cartográficos Víctor Dart 1, Juan Carlos Martínez 1, José V. Ballester 2, Francisco Rangel 1 1 Corex Soluciones

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Boletín de Asesoría Gerencial* Modelo Credit Scoring: Un paso hacia una gestión diferenciada y eficiente del riesgo de crédito

Boletín de Asesoría Gerencial* Modelo Credit Scoring: Un paso hacia una gestión diferenciada y eficiente del riesgo de crédito Espiñeira, Sheldon y Asociados No. 22-2008 *connectedthinking Contenido Haga click en los enlaces para navegar a través del documento Haga click en los enlaces para llegar directamente a cada sección 4

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

Estadística (Gr. Biología-09) (2010-2011)

Estadística (Gr. Biología-09) (2010-2011) Estadística (Gr. Biología-09) (2010-2011) PRESENTACIÓN OBJETIVOS PROGRAMA METODOLOGÍA EVALUACIÓN BIBLIOGRAFÍA HORARIO ATENCIÓN http://www.unav.es/asignatura/estadisticabio/ 1 de 10 PRESENTACIÓN Descripción

Más detalles

Aplicación de los modelos de credit scoring para instituciones microfinacieras.

Aplicación de los modelos de credit scoring para instituciones microfinacieras. Econ. Reynaldo Uscamaita Huillca Aplicación de los modelos de credit scoring para instituciones microfinacieras. OBJETIVO Proporcionar al ejecutivo del sistema financiero un modelo solido que permita tomar

Más detalles

Apéndice A Herramientas utilizadas

Apéndice A Herramientas utilizadas Apéndice A Herramientas utilizadas A.1 Java Media Framework El Java Media Framework (JMF) es una interfaz para el desarrollo de aplicaciones (API) e incorpora el manejo de audio y video en el lenguaje

Más detalles

A partir de este capítulo se introducen términos, probablemente nuevos para el

A partir de este capítulo se introducen términos, probablemente nuevos para el CAPITULO 3. PSP 0 Y PSP 0.1 A partir de este capítulo se introducen términos, probablemente nuevos para el lector que tienen que ver en su totalidad con PSP. También se dan a conocer los formatos, "scripts

Más detalles

Capítulo 8. Tipos de interés reales. 8.1. Introducción

Capítulo 8. Tipos de interés reales. 8.1. Introducción Capítulo 8 Tipos de interés reales 8.1. Introducción A lo largo de los capítulos 5 y 7 se ha analizado el tipo de interés en términos nominales para distintos vencimientos, aunque se ha desarrollado más

Más detalles

Lección n 5. Modelos de distribución n potencial de especies

Lección n 5. Modelos de distribución n potencial de especies Lección n 5. Modelos de distribución n potencial de especies 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución

Más detalles

340455 - REIN-I7P23 - Recuperación de la Información

340455 - REIN-I7P23 - Recuperación de la Información Unidad responsable: 340 - EPSEVG - Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú Unidad que imparte: 723 - CS - Departamento de Ciencias de la Computación Curso: Titulación: 2015 GRADO

Más detalles

La práctica del análisis de correspondencias

La práctica del análisis de correspondencias La práctica del análisis de correspondencias MICHAEL GREENACRE Catedrático de Estadística en la Universidad Pompeu Fabra Separata del capítulo 23 Recodificación de datos Primera edición: julio 2008 ISBN:

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA

PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA PON-C-22 PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA A. García Sánchez (1), M. Ortega Mier (2), E. Ponce Cueto (3) Dpto. de Ingeniería de Organización, Administración

Más detalles

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos MT 6 Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos Rosario Baltazar 1 Judith Esquivel Vázquez 2 Andrea Rada 3 Claudia Díaz 4 Resumen Durante los últimos 15

Más detalles

Tipos de datos. A la hora de crear un campo en una tabla, hay que especificar de qué tipo son los datos que se van a almacenar en ese campo.

Tipos de datos. A la hora de crear un campo en una tabla, hay que especificar de qué tipo son los datos que se van a almacenar en ese campo. Manual Basico de manejo de Access (Microsoft). 1. Introducción Qué es una base de datos? Una biblioteca ha de mantener listas de los libros que posee, de los usuarios que tiene, una escuela, de sus alumnos

Más detalles

INSTITUTO UNIVERSITARIO DE SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA TRABAJO FINAL DE MÁSTER:

INSTITUTO UNIVERSITARIO DE SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA TRABAJO FINAL DE MÁSTER: INSTITUTO UNIVERSITARIO DE SISTEMAS INTELIGENTES Y APLICACIONES NUMÉRICAS EN INGENIERÍA TRABAJO FINAL DE MÁSTER: Sistema Biométrico de Detección Facial sobre Alumno: Marcos del Pozo Baños Tutor: Dr. Modesto

Más detalles

Visión. Sesión 4: Búsqueda y tracking de modelos 2D en imágenes. Departamento CCIA http://www.jtech.ua.es/vision/2011/

Visión. Sesión 4: Búsqueda y tracking de modelos 2D en imágenes. Departamento CCIA http://www.jtech.ua.es/vision/2011/ Visión Sesión 4: Búsqueda y tracking de modelos 2D en imágenes Departamento CCIA http://www.jtech.ua.es/vision/2011/ Hoy Detección de aristas Transformada de Hough Componentes conectadas Alineación de

Más detalles

UNIDAD 2: PUBLICIDAD ONLINE CURSO DINAMIZACIÓN WEB

UNIDAD 2: PUBLICIDAD ONLINE CURSO DINAMIZACIÓN WEB UNIDAD 2: PUBLICIDAD ONLINE CURSO DINAMIZACIÓN WEB 1. Introducción La publicidad online es una nueva forma de publicidad digital que se promueve especialmente en portales y sitios de Internet. Este tipo

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles

IV. Implantación del sistema.

IV. Implantación del sistema. IV. Implantación del sistema. Para hablar sobre el proceso de desarrollo del sistema de Recuperación de Información Visual propuesto, empezaremos hablando del hardware utilizado, las herramientas de software

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Migración de datos automática a partir de la información de los esquemas conceptuales 1

Migración de datos automática a partir de la información de los esquemas conceptuales 1 Migración de datos automática a partir de la información de los esquemas conceptuales 1 J.Pérez 1, J.A.Carsí 1, I.Ramos 1, V.Anaya 1, J.Silva 1, Departamento de Sistemas Informáticos y Computación Universidad

Más detalles

Clasificación Automática de Textos de Desastres Naturales en México

Clasificación Automática de Textos de Desastres Naturales en México Clasificación Automática de Textos de Desastres Naturales en México Alberto Téllez-Valero, Manuel Montes-y-Gómez, Olac Fuentes-Chávez, Luis Villaseñor-Pineda Instituto Nacional de Astrofísica, Óptica y

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Métricas de complejidad para la transformación del problema de detección de cáncer basado en

Métricas de complejidad para la transformación del problema de detección de cáncer basado en Índice para la transformación del problema de detección de cáncer basado en mamografías Alumna: Núria Macià Antoĺınez Asesora: Ester Bernadó Mansilla Núria Macià Antoĺınez PFC: 1/49 Índice 1 Planteamiento

Más detalles

Laboratorio de Bioingeniería y Cronobiología. Dpto. de Teoría de la Señal y Comunicaciones. Universidad de Vigo RESUMEN

Laboratorio de Bioingeniería y Cronobiología. Dpto. de Teoría de la Señal y Comunicaciones. Universidad de Vigo RESUMEN VI Congreso Galego de Estatística e Investigación de Operacións Vigo 5-7 de Novembro de 2003 ESTADLAB: SOFTWARE MULTIPLATAFORMA DE APOYO A LA DOCENCIA DE PROBABILIDAD, VARIABLES ALEATORIAS Y PROCESOS ESTOCÁSTICOS

Más detalles

Capítulo 2 Silueta. Figura 2.1 Tetera capturada por la cámara con la silueta resaltada

Capítulo 2 Silueta. Figura 2.1 Tetera capturada por la cámara con la silueta resaltada Capítulo 2 Silueta 2.1 Silueta La silueta de un objeto es muy importante porque es lo que nos da las pistas visuales de cómo es que está formado, nos dice dónde están sus límites y ayuda a diferenciar

Más detalles

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte ---o0o--- Introducción a la Inferencia Estadística Bioestadística - Facultad de Medicina Universidad de Granada (España) http://www.ugr.es/~bioest

Más detalles

Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental

Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental El proceso documental El proceso o cadena documental es la razón fundamental de un centro

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

Planificación y Control de Proyectos de Software mediante MS Project

Planificación y Control de Proyectos de Software mediante MS Project Práctica 2 Planificación y Control de Proyectos de Software mediante MS Project E n esta práctica vamos a introducirnos en la Planificación y Control de Proyectos de Software mediante herramientas informáticas

Más detalles

CLASIFICACIÓN TEXTUAL BASADA EN TÉRMINOS JERÁRQUICOS

CLASIFICACIÓN TEXTUAL BASADA EN TÉRMINOS JERÁRQUICOS XXV Jornadas de Automática Ciudad Real, del 8 al 10 de septiembre de 2004 CLASIFICACIÓN TEXTUAL BASADA EN TÉRMINOS JERÁRQUICOS Francisco Javier Panizo, José R. Villar, Ángel Alonso Área de Ingeniería de

Más detalles

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0])

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Regresión logística Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Se trata de calcular la probabilidad en la que una

Más detalles

270028 - CAIM - Búsqueda y Análisis de Información Masiva

270028 - CAIM - Búsqueda y Análisis de Información Masiva Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 723 - CS - Departamento de Ciencias de la Computación Curso: Titulación: 2015 GRADO EN INGENIERÍA INFORMÁTICA (Plan

Más detalles

Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional

Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional Mario A. Bueno a, Josué Álvarez-Borrego b, Leonardo Acho a y Vitaly Kober c mbueno@cicese.mx,

Más detalles

RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS EN IMÁGENES CON TRANSFORMADA SIFT

RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS EN IMÁGENES CON TRANSFORMADA SIFT UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA TÉCNICA DE TELECOMUNICACIÓN (ESPECIALIDAD EN SONIDO E IMAGEN) PROYECTO FIN DE CARRERA RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Metodología. CURSOS e-learning

Metodología. CURSOS e-learning Together. Free your energies Metodología Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau CURSOS e-learning En los cursos de habilidades, idiomas y PRL se explican conceptos,

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Cómo aprovechar al máximo las dos horas de clase?

Cómo aprovechar al máximo las dos horas de clase? Cómo aprovechar al máximo las dos horas de clase? Programa de Formación de Académicos / Enero 2012 Muchos de nosotros no sabemos qué hacer para aprovechar al máximo las dos horas de clase. Observamos que

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

Introducción al DataMining

Introducción al DataMining Introducción al DataMining Lluís Garrido garrido@ecm.ub.es Universitat de Barcelona Índice Qué es el DataMining? Qué puede hacer el DataMining? Cómo hacer el DataMining? Técnicas Metodología del DataMining

Más detalles

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo Laboratorio de Redes de Neuronas Artificiales y Sistemas Adaptativos Universidade

Más detalles

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral

Más detalles

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas. El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los

Más detalles

ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015

ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015 Ir a golabz.eu y activar la pestaña de ANÁLISIS DE APPS DEL GOLAB, 27 de Enero del 2015 s Básicas de GoLab: Son aquellas que forman el corazón del diseño y uso de los. Configuran y explotan las. Deben

Más detalles

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA M.ª del Pilar Cantero Blanco Jefa de Servicio de Sistemas Informáticos. Subdirección General de Planificación

Más detalles

XIII Congreso Latinoamericano de Auditoria Interna y Evaluación n de Riesgos

XIII Congreso Latinoamericano de Auditoria Interna y Evaluación n de Riesgos XIII Congreso Latinoamericano de Auditoria Interna y Evaluación n de Riesgos mayo de de 2009 BASILEA II GESTIÓN DEL EXPOSITOR: Kay Dunlop 1 AGENDA MARCO CONCEPTUAL SISTEMA DE GESTIÓN N DEL RIESGO DE CRÉDITO

Más detalles

FICHA TÉCNICA DE ASIGNATURA

FICHA TÉCNICA DE ASIGNATURA FICHA TÉCNICA DE ASIGNATURA 1. DESCRIPCIÓN DE LA ASIGNATURA Grado Asignatura Módulo Área Departamental Semestre Comunicación Digital Posicionamiento en Buscadores (SEO) Módulo VI. Diseño Web y Técnicas

Más detalles

La recopilación de los datos y la clasificación del material.

La recopilación de los datos y la clasificación del material. Apuntes sobre Técnicas de Investigación La recopilación de los datos y la clasificación del material. Llamamos técnicas de investigación a las formas que empleamos para la recopilación de datos que van

Más detalles

Índice. Tema 7: Teoría de la respuesta al ítem (1) : Conceptos básicos. Forma y parámetros de los modelos:

Índice. Tema 7: Teoría de la respuesta al ítem (1) : Conceptos básicos. Forma y parámetros de los modelos: Tema 7: Teoría de la respuesta al ítem () : Conceptos básicos Índice. Introducción 2. Limitaciones de la TCT superadas por la TRI 3. Modelos y características comunes 4. Supuestos 5. La Curva Característica

Más detalles