REPRESENTACIÓN DE CURVAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REPRESENTACIÓN DE CURVAS"

Transcripción

1 ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía 6. Curvatura Función polinómica de segundo grado. Su gráfica es una parábola. Para representarla basta con hallar los puntos de corte a los ejes y el vértice que es siempre un máimo o un mínimo. Si el coeficiente de es positivo la parábola es cóncava positiva y si es negativo es cóncava negativa. Cuando no eisten puntos de corte con el eje de abscisas podemos ayudarnos con una sencilla tabla de valores. Ejemplo Gráfica y 4 Puntos de corte a los ejes: Para = 0, y = La función corta al eje de ordenadas en el punto (0, ) Para y = 0, Los puntos de corte al eje de abscisas son (, 0) y (, 0) Vértice: y 4 ; y 4 ; y 4 0. El eje de simetría de la parábola es la recta =. Para =, y() 4. V (, ). El vértice es un mínimo ya que la segunda derivada es positiva. La función es decreciente en el intervalo (-, ) y creciente en (, +) /4

2 ºBachillerato Ejemplo. Gráfica y Se trata de una función valor absoluto que se epresa de la forma siguiente: si 0 si ó y si 0 si < Para representarla se dibujan las gráficas de y ; y Después nos quedamos con la parte de la gráfica situada por encima del eje de abscisas. Estudio de la primera función: y Para = 0, y =. Corta al eje de ordenadas en el punto (0, ) Para y = 0, Corta al eje de abscisas en los puntos (, 0) y (, 0) Vértice: y y ; 0 Para, y El vértice es el punto V, ( ). 4 Estudio de la segunda función: y Para = 0, y = - Corta al eje de ordenadas en el punto (0, -) Para y = 0, 0 = ; = Los puntos de corte con el eje de abscisas son los mismos que antes (, 0) y (, 0) Vértice: y ; y ; 0 Para, y El vértice es el punto V, ( ). 4 La función es decreciente en los intervalos (-, ) y (/, ) Es creciente en (, /) y (, +). Tiene un máimo relativo en, 4 y dos mínimos relativos en (,0) y (,0). La función es continua en todo pero no es derivable en = y = (puntos angulosos) 4 4 /4

3 ºBachillerato Funciones polinómicas en general Se siguen los siguientes pasos:. Dominio: Domf. El dominio de toda función polinómica es siempre.. Puntos de corte con los ejes de coordenadas.. Paridad y periodicidad 4. Crecimiento y decrecimiento. Máimos y mínimos 5. Concavidad. Puntos de infleión. Nota: las funciones polinómicas no tienen asíntotas Ejemplo. Gráfica y 9.- Dominio: El dominio es ; Dom(f) =.- Puntos de corte con los ejes de coordenadas: Para = 0, y = 0 0 Para y = 0, 9 0 ( 9) Los puntos de corte son (0, 0), (, 0) y (-, 0)..- Paridad: 9 9 f f impar (simétrica respecto del origen) 4.- Crecimiento y decrecimiento: f ( ) 9 ; Intervalos (, ) (, ) (, ) Signo de y Función 5.- Curvatura: f ( ) 6 ;6 = 0 = 0. Intervalos (,0) ( 0, ) Signo de y - + Función Para Máimo relativo (-, 6 ) ; Para Mínimo relativo (, 6 ) Para = 0, eiste punto de infleión (0, 0) /4

4 ºBachillerato Funciones racionales Ejemplo 4 Gráfica y.- Dominio: = 0 = Dom( f ).- Cortes con los ejes Para = 0, y = - Para y =0, 0 (que no tiene sol real.) Único punto de corte: (-, 0).- Paridad y simetría: no tiene 4.- Asíntotas: Horizontales: No hay Verticales: posible Posición relativa. lim lim in det. signo luego = A.V. 0 lim 0 0 y Oblicuas: y m n; m lím lím lím ( ) n lím( y m) lím lím ; y A.O. Posición Relativa. Para =-00 f(-00) < a(-00) la función está por debajo de la asíntota. Para =00 f(00) > a(-00) la función está por encima de la asíntota. 5.- Crecimiento y decrecimiento: y ; y 0 0 = 0; = ( ) (-, 0) (0, ) (, ) (, +) y y Para = 0, máimo relativo Para =, mínimo relativo 6.- Concavidad: y ( ) ; y no se anula nunca. (-, ) (, +) y - + y No tiene puntos de infleión. 4/4

5 ºBachillerato Ejemplo 5 Gráfica y.-dominio: 0 ; No hay soluciones reales. Dom( y) R.- Puntos de corte: Para = 0, y = 0; Para y = 0, = 0. Único punto de corte: (0, 0).-Paridad: f f y por tanto par (simétrica respecto de OY) 4.-Asíntotas: Horizontales: lím luego y = es una A.H. Posición relativa. Para =00 f(00) < y para =-00 f(-00) <, en ambos casos la función está por debajo de la asíntota Nota: Si hay horizontales lo son por la derecha y por la izquierda Verticales: No hay porque el denominador no se anula Oblicuas: No hay. ( ). 5.- Crecimiento y decrecimiento: y ( ) ( ) Si hacemos y 0 entonces = 0 = 0 Para = 0, Mínimo relativo (0, 0) 6.- Concavidad: (-, 0) (0, +) y - + y ( y ) ( ). ( ) 8 4 ( ) ( ) 6 ( ) Si hacemos y 0, 6 0,,, y y Eisten puntos de infleión para y para y y 5/4

6 ºBachillerato Ejemplo 6 Gráfica y 5 La gráficas de la forma a b y, siendo c 0, son siempre hipérbolas y para representarlas c d podemos omitir el método general de representación de funciones racionales. Basta con hallar los puntos de corte y las asíntotas. Puntos de corte: Para = 0, y = -/5 Para y = 0, = 0 = / Los puntos de corte son (0, -/5) y (/, 0) Asíntotas: Asíntota vertical: = -5 Asíntota horizontal: lím ;y = es una asíntota horizontal 5 Con las dos asíntotas dibujadas aparecen unos nuevos ejes. La curva ocupará primero y tercer cuadrante, o bien segundo y cuarto. Los puntos de corte hallados nos indican los que hemos de elegir. En este caso, segundo y cuarto. y 5 y 5 Observando la gráfica vemos que siempre es creciente. No hay máimos ni mínimos. Es cóncava positiva en (-, -5) y cóncava negativa en (-5, +). No hay puntos de infleión porque aunque en el punto = -5, pasa de cóncava positiva a cóncava negativa, dicho punto no es de su dominio. 6/4

7 ºBachillerato Ejemplo 7 Gráfica y.- Dominio: 0 ; Dom ( y) R,.-Puntos de corte: Para = 0, y = - Un punto de corte es (0,-) Para y = 0, 0 0.No hay solución, no hay más puntos de corte..-paridad: f ( ) f Par. Simétrica respecto de OY 4.- Asíntotas: Horizontales: lím ; y = es una A.H. Asíntotas oblicuas no hay. Posición relativa. Para =00 f(00) > y para =-00 f(-00) >, en ambos casos la función está por encima de la asíntota Verticales: Las posibles son =- y =. lim Indet.Signo 0 A.V en =-. Posición relativa. lim lim 0 0 Por simetría = es una A.V. ( ) ( ) Crecimiento y decrecimiento: y. ( ) ( ) Si hacemos y 0, -4 = 0 = 0 (-, -) (-, 0) (0, ) (, +) y y Para = 0, eiste máimo 6.- Concavidad : 4( y ) ( ) ( 4) 4( ) 6 4 ( ) ( ) 4 ( ) Si hacemos y 0 entonces 4 0 que no tiene solución. (-, -) (-, ) (, +) y y No tiene puntos de infleión. 7/4

8 ºBachillerato Ejemplo 8 Gráfica y Hacemos primero la representación de la función:.- Dominio: Domf y 0 (0, 0) con OX: y=0 0.- Cortes con los ejes: 0 (, 0) con OY: 0 y 0 (0, 0).- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales: lim lim no hay. Verticales: posible =. lim lim 0 0 f Oblicuas: m lim lim n lim f ( ) m lim. y=+ es una asíntota oblicua (por la dcha. y por la izda.) Posición relativa: Para = f (00) 0.0 a(00) 00 0 f (00) a(00) 99 La función está por encima de la asíntota. Para =-00 f 9900 ( 00) 98.0 ( 00) ( 00) ( 00) 0 a f a La función está por debajo de la asíntota. 8/4

9 ºBachillerato 5.- Monotonía. y ' y ' 0 0 posibles etremos relativos + y' 0 y' 0 y' 0 y' 0 CRECIENTE MÁXIMO RELATIVO DECRECIENTE DECRECIENTE mínimo RELATIVO CRECIENTE 6.- Curvatura 4 y '' y '' 0 no tiene solución. y'' 0 y'' 0 CONCAVA NEGATIVA CONCAVA POSITIVA Pasamos a graficar su valor absoluto y 9/4

10 ºBachillerato Funciones logarítmicas. Los pasos a seguir son los mismos que en las racionales pero en el dominio hemos de tener en cuenta que el logaritmo de los números negativos no eiste. En los límites se cuidará si la tendencia es por la derecha o por la izquierda. Ejemplo 9 ln Gráfica y.- Dominio: Globalmente es una función racional, luego el punto donde se anula el denominador, 0, no es de su dominio. Además, como figura ln, ha de ser 0, por tanto, Dom( y) (0, ). Puntos de corte: Para = 0, la función no está definida. Para y = 0, ln = 0 =. El único punto de corte es (, 0).- Asíntotas: Horizontales: ln lím Indet. lím lím 0 L' Hôpital, y 0 es una A.H. derecha. Posición relativa. Para =00 f(00)>0 luego la función está por encima de la A.H. Verticales: Posible 0. ln lim 0 0 luego =0 es una A.V. y ln Oblicuas: y m n; m lím lím lím lím 0. No hay. ln ; 4.- Monotonía: y Si y 0 entonces ln 0 ln e Para =e, eiste un máimo relativo Me, / e ln ; 5.- Concavidad : y Si y 0, - + ln = 0 ln ; Para e eiste un punto de infleión ( e, ) e e (0, e) (e, +) y + - y 0,e e, y - + y ln y 0/4

11 ºBachillerato Ejemplo 0 Gráfica y ln.- Dominio: Por ser parte de la función logarítmica, > 0. Por ser globalmente racional ln 0. Es decir, Domf (0, ) (, ).- Puntos de corte: Para 0 Domf. Para y = 0, 0 ln = 0 pero 0 No hay puntos de corte. - Asíntotas: Horizontales: lím lím lím (No hay) ln Verticales: posible = lim indet. de signo tiene asíntota vertical en = ln 0 lim lim Posición relativa: ln 0 ln 0 Oblicuas: f( ) m lím lím L lím 0 (No hay) ln 4.- Monotonía: ln y ; Si y 0, Ln = 0 Ln = es decir, = e. (ln ) (0, ) (, e) (e, + y y Para = e, mínimo relativo M(e, e) 5.- Concavidad: ln y ; Si y 0, ln = 0 ln = (ln ) (0, ) (, e ) (e. +) y y e Domf Para =, pasa de cóncava positiva a negativa pero el punto no es del dominio de la función. Para = e pasa de cóncava negativa a positiva. Hay un punto de infleión en dicho punto /4

12 ºBachillerato Ejemplo Gráfica y ln.- Dominio: al ser un logaritmo >0 Domf 0, 0 0 Domf con OX: y=0 ln 0.- Cortes con los ejes: ln 0 con OY: 0 no pertenece al dominio.- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales. Solo puede haber por la derecha lim ln no hay. Verticales: posible =0. No consideraremos lim ln por no estar definido en el dominio de definición. ln lim ln 0 ln 0 0 indet. lim In det. lim lim no tiene L ' Hôpital 0 0 asíntotas verticales. f Oblicuas: m lim lim ln. No tiene sentido hallar el límite cuando. No tiene asíntotas oblicuas 5.- Monotonía. 0 y ' ln ln 0 Domf y ' 0 ln 0 ln e posible etremo relativo y' 0 y' 0 DECRECIENTE e MINIMO CRECIENTE e e 0 Mínimo relativo para, 6.- Curvatura y '' ln ln y '' 0 ln 0 ln e posible punto de infleión y'' 0 y'' 0 CONCAVA NEGATIVA e CONCAVA POSITIVA P I e e PUNTO DE INFLEXIÓN 0.. para, e e /4

13 ºBachillerato Funciones eponenciales. Ejemplo Gráfica y e.- Dominio: La función dada es el producto de una polinómica (de dominio R) y de la eponencial natural (de dominio R), por tanto, Dom(y) = R.- Puntos de corte: Para = 0, y = 0; Para y = 0, = 0. Único punto de corte (0, 0).- Asíntotas: Horizontales: lím e ; asíntota horizontal por la izquierda Verticales: No hay lím e lím ( e ) lím lím 0, luego y 0 es una e e Oblicuas: Solo puede haber por la derecha y m n ; m lím lím e ; No hay. 4.- Monotonía: y e ( ) ; Si hacemos 0 y, ( ) 0 e = - y (-,-) (-, +) y - + y Para = - eiste mínimo M, e 5.- Concavidad : y e ( ) ; Si hacemos 0 e = - y, ( ) 0 (-,-) (-, +) y - + y Para = - eiste punto de infleión I, e y e /4

14 ºBachillerato Ejemplo Gráfica y e.-dominio. Domf.- Cortes con los ejes:.- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales. 0 con OX: y=0 - e 0 (, 0) e 0 no tiene solución 0 con OY: 0 y e 0 0, no hay A.H. por la derecha lim e t t lim e limt e 0 in det. lim In det. e t t t L ' Hôpital t t 6 6 lim In det. lim In det. lim 0 e e e L ' Hôpital t t L ' Hôpital t t L ' Hôpital t t y=0 es una A.H. por la izquierda. Posición relativa: Para =-00 f 8 ( 00).80 0 la función está por debajo de la A.H. Verticales: No tiene. Oblicuas: Solo puede haber por la derecha. f e m lim lim In det. = orden del infinito del numerador> No tiene asíntotas oblicuas 5.- Monotonía. y ' e e 0 no tiene solución y ' 0 0 posible etremo relativo +=0 =- posible etremo relativo y' 0 y' 0 y' 0 DECRECIENTE CRECIENTE MINIMO CRECIENTE 7 Mínimo relativo para, e 6.- Curvatura y '' e 4 >orden del infinito del denominadador 0 posible punto de infleión y '' posibles puntos de infleión y'' 0 y'' 0 Y '' 0 y'' 0 CONCAVA NEGATIVA P. I. CONCAVA POSITIVA P. I. CONCAVA NEGATIVA PI.. CONCAVA POSITIVA Tenemos tres puntos de infleión, f 4.7,.54, f 0.7,.56, 0 que es un P.I. con tangente horizontal (recordar que se anula la ª derivada) 4/4

15 ºBachillerato 5/4

16 ºBachillerato Funciones irracionales Ejemplo 4 Gráfica y -.- Dominio: Como no eisten las raíces cuadradas de números negativos, ha de ser 0 ; Dom ( y) [, ).- Puntos de corte: Para = 0, no eiste la función. Para y = 0, 0 =. El único punto de corte es (, 0).- Asíntotas: Verticales: no hay. Horizontales: lím. No hay Eiste rama parabólica. y Oblicuas: lím lím lím lím 0 0. No hay. 4.- Monotonía: y 0. La función es creciente en todo su dominio. No hay máimos ni mínimos. 5.- Concavidad: y ( ). ( ) y. ( ). 4 ( ) 4 ( ) 4( ) La segunda derivada no se anula nunca y es negativa para todo valor de >. Por tanto, siempre es cóncava positiva. 6/4

17 ºBachillerato Ejemplo 5 Gráfica y.- Dominio: 0 siempre Domf.- Cortes con los ejes:.- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales. con OX: y=0 +=0 =-, 0 con OY: 0 y 0, lim in deter. Posición relativa: 0 y= asíntota horizontal por la derecha. Para 00 f la función está por encima de la asíntota. 000 t lim lim in det. t t Posición relativa: 99 y=- asíntota horizontal por la izquierda. Para 00 f la función está por encima de la A.H. 000 Verticales: no tiene asíntotas verticales. Oblicuas: No tiene asíntotas oblicuas 5.- Monotonía. y ' y' 0 =0 = posible etremo relativo y' 0 y' 0 CRECIENTE MÁXIMO RELATIVO DECRECIENTE Alcanza un máimo relativo para =, 6.- Curvatura y '' 7 y'' 0 --=0 = posibles puntos de infleión 4 y'' 0 7 y'' 0 7 y'' 0 CONCAVA POSITIVA CONCAVA NEGATIVA CONCAVA POSITIVA 4 4 PUNTO DE INFLEXIÓN P. I. para,f 0.8, P.I. para =, f.78, PUNTO DE INFLEXIÓN 7/4

18 ºBachillerato 8/4

19 ºBachillerato Ejemplo 6: Gráfica y e.- Dominio: Domf 6 9 e 0 no tiene sol. con OX: y=0.- Cortes con los ejes: 6 9 0, 0 con OY: 0 y 9 0,9.- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales. 6 9 lim e 6 9 lim indeter. 0 e e 69 Posición relativa: y=0 A.H. por la derecha. Para =00 f 00 0 por tanto la función está por encima de la asíntota. 00 lim e 6 9 t lim e ( t 6t 9) t e no tiene A.H. por la izquierda. Verticales: no tiene asíntotas verticales. Oblicuas: solo podría tener por la izquierda. e 6 9 t e ( t 6t 9) m lim lim in det. t t t e ( t 6t 9) t No tiene asíntotas oblicuas 5.- Monotonía. y ' e 6 9 e 6 e =-; =- posibles etremos relativos y ' 0 e 0 no tiene solución y' 0 y' 0 y' 0 DECRECIENTE MINIMO RELATIVO CRECIENTE MÁXIMO RELATIVO DECRECIENTE Mínimo relativo para, f, 0 Máimo relativo para =-, f, 4e 6.- Curvatura y e y '' 8 '' 0 +-=0 = = posibles puntos de infleión y'' 0 y'' 0 y'' 0 CONCAVA POSITIVA PUNTO DE INFLEXIÓN CONCAVA NEGATIVA PUNTO DE INFLEXIÓN CONCAVA POSITIVA P. I. para, f.4,,84 P.I. para, f 0.4, 7.7 9/4

20 ºBachillerato 0/4

21 ºBachillerato Ejemplo 7 Gráfica y ln.-dominio. con OY: 0 no es del do minio.- Cortes con los ejes:.- Paridad: no tiene simetrías. 4.- Asíntotas: Horizontales. con OX: y=0 ln 0 0, (., 0) o por la derecha lim ln ln no hay. o por la izquierda No se estudia por no estar en el dominio de definición. Verticales: Los posibles valores son =, =0, =- o =- lim ln ln 0 tenemos una asíntota vertical en =- (no tiene sentido estudiar lim ln o =0 lim ln 0 por no estar en el dominio) ln0 tenemos una asíntota vertical en =0 (no tiene sentido estudiar tenemos una asíntota vertical en = (no tiene sentido estudiar lim ln 0 o = por no estar en el dominio) lim ln ln 0 tenemos una asíntota vertical en = (no tiene sentido estudiar lim ln por no estar en el dominio) Oblicuas: Por la misma razón que en las horizontales solo puede haber por la derecha. f ln In L ' Hôpital m lim lim det. = lim 0 No tiene asíntotas oblicuas 5.- Monotonía. y ' y ' 0 0 Como Domf el único posible etremo relativo puede ser y' 0 y' 0 CRECIENTE DECRECIENTE 0 MÁXIMO RELATIVO Máimo relativo para 0.58, 0, Curvatura 4.. 0,0, Domf t q y0 y0 y0 y0 0 4 y '' y '' 0 0 no tiene sol. 6 4 Y ' 0 CRECIENTE (recodar que m 0 y real) 0.58 y'' 0 y'' 0 y'' 0 CONCAVA NEGATIVA 0 CONCAVA NEGATIVA CONCAVA NEGATIVA /4

22 ºBachillerato Es siempre cóncava negativa. /4

23 ºBachillerato Ejemplo 8 Gráfica y Vamos a definir la función quitando el valor absoluto: si 0 si 0 y f si 0 F si 0 si 0 Nota: La función f() presenta una discontinuidad evitable en =, si asignamos f()= obtenemos su etensión continua F() en =..-Dominio... 0, Domf t q.- Cortes con los ejes:.- Paridad: no tiene simetrías. con OX: y=0 0 no es del dominio con OY: 0 y (0,) 4.- Asíntotas: Horizontales. o por la derecha lim f( ) lim asíntota horizontal y= o por la izquierda lim f( ) lim asíntota horizontal y=- Verticales: Los posibles valores son =, =- o =- lim in det. signo tenemos una asíntota vertical en =- 0 Posición relativa: lim 0 lim 0 o = lim f( ) no es una asíntota vertical Oblicuas: Tiene dos horizontales, luego no tiene asíntotas oblicuas. 5.- Monotonía. si 0 y ' 0 si 0 y ' 0 no tiene solución, se estudia la monotonía en los puntos que no son del dominio y donde cambia la función. 0 y' 0 y' 0 y' 0 y' 0 DECRECIENTE DECRECIENTE CONSTANTE CONSTANTE 6.- Curvatura 4 y '' y '' 0 no tiene solución 0 y'' 0 y'' 0 y'' 0 y'' 0 COCAVA NEGATIVA CONCAVA POSITIVA CONSTANTE CONSTANTE /4

24 ºBachillerato 4/4

REPRESENTACIÓN DE CURVAS - CCSS

REPRESENTACIÓN DE CURVAS - CCSS REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

I.- Representación gráfica de una función polinómica

I.- Representación gráfica de una función polinómica Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

Tema 9: Estudio y representación de funciones

Tema 9: Estudio y representación de funciones 1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

Tema 8: Estudio y representación de funciones

Tema 8: Estudio y representación de funciones Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Unidad 13 Representación gráfica de funciones

Unidad 13 Representación gráfica de funciones 1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con

Más detalles

Matemáticas aplicadas a las CC.SS. II

Matemáticas aplicadas a las CC.SS. II Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN ESTUDIO DE LA MONOTONÍA DEF.- Una función es CRECIENTE en un intervalo I del dominio de la función si: x1 < x2 I f ( x1 ) f ( x2). Si se cumple

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

Estudio y gráficas de funciones

Estudio y gráficas de funciones PROBLEMAS RESUELTOS DE SELECTIVIDAD DE ESTUDIO Y GRÁFICAS DE FUNCIONES ) Sea f: R R la función definida por f() ( ) e. a) Halla las asíntotas de la gráfica de f. A.H. Hay que calcular ( ) e. Pero como

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS º ESO 1) Halla el dominio de las siguientes funciones: a) f ( ) = + 1 función polinómica Dom( f ) = R b) 1 f ( ) / = 0} = R {} c) f ( ) = ( 1) función polinómica

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

Unidad 8 Representación gráfica de funciones

Unidad 8 Representación gráfica de funciones Unidad 8 Representación gráfica de funciones PÁGINA 187 SOLUCIONES 1. Las funciones quedan: a) f( ) = 8 Dominio: Dom f =R Puntos de corte con el eje OX: Puntos de corte con el eje OY Simetrías: f( ) =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS. Septiembre( 00 / OPCIÓN B / EJERCICIO ) (puntuación máima puntos) Se considera

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Tema 8 Representación de funciones

Tema 8 Representación de funciones Tema 8 Representación de funciones 8.1 Dominio y recorrido Página 17 Ejercicios 1. Obtén el dominio de las siguientes funciones. 3 d) f 6 Como se trata de una fracción, tendremos problemas si el denominador

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio

Más detalles

Tema 9 Funciones elementales

Tema 9 Funciones elementales Tema 9 Funciones elementales 9.1Gráfica de una función. Signo simetría. PÁGINA 175 EJERCICIOS 1. Encuentra los puntos de corte con los ejes de las siguientes funciones estudia su signo. 3 c) f 1 c.1) Cortes

Más detalles

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Matemáticas Aplicadas a las Ciencias Sociales II. Soluciones de los problemas propuestos. Tema 7 TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento.

Más detalles

ESTUDIO LOCAL DE UNA FUNCIÓN

ESTUDIO LOCAL DE UNA FUNCIÓN ESTUDIO LOCAL DE UNA FUNCIÓN CRECIMIENTO. DECRECIMIENTO. MÁXIMOS Y MINIMOS. Sea Sea DEF.- f es creciente en a E(a) / { ( ) ( ) ( ) ( ) E(a) De la misma forma se define función decreciente. ***TEOREMA.

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 7 a) La función f(x) = x 4 2x 2 tiene por dominio todo R, es continua y derivable en todo su dominio. Se trata de una función con simetría par ya

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

"""##$##""" !!!""#""!!!

##$## !!!#!!! Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV 5HVXHOYHW~3iJppp 'HPXHVWUDTXHODIXQFLyQI[ [ FRV[WLHQHDOJ~QSXQWRFUtWLFRHQHOLQWHUYDOR f() = ( - 4) cos Como es producto de dos funciones continuas y derivables, una polinómica de º grado ( -4) y otra trigonométrica

Más detalles

Tema 8: Aplicaciones de la derivada, Representación de Funciones

Tema 8: Aplicaciones de la derivada, Representación de Funciones Tema 8: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función..- Etremos relativos...- Etremos

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones:

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones: EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: II5 CURSO 5 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

10 Representación de funciones

10 Representación de funciones 0 Representación de funciones Página 99 Límites y derivadas para representar una función 5 lm í x f (x) = lm í x + f (x) = lm í f (x) = + lm í f (x) = + x x + f ( 9) = 0; f ' (0) = 0; f () = 0 f ' (0)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8 Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una

Más detalles

12 Representación de funciones

12 Representación de funciones Representación de funciones ACTIVIDADES INICIALES.I. Factorizando previamente las epresiones, resuelve las siguientes ecuaciones: 3 a) 6 7 4 + 5 = 0 6 4 c) 4 + 4 = 0 7 b) 6 d) + + + + 3 = 0.II. Resuelve

Más detalles

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición

Más detalles