13. Técnicas de simulación mediante el método de Montecarlo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "13. Técnicas de simulación mediante el método de Montecarlo"

Transcripción

1 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que imita el comportamiento de un sistema del mundo real cuando evoluciona en el tiempo. Modelo de simulación = conjunto de hipótesis acerca del funcionamiento del sistema expresado como relaciones matemáticas y/o lógicas entre los elementos del sistema. Proceso de simulación: ejecución del modelo a través del tiempo en un ordenador para generar muestras representativas del comportamiento del sistema. Es una técnica para estimar la bondad de un modelo. NO ES UNA TÉCNICA DE OPTIMIZACIÓN.

2 Qué es la simulación? Un sistema es una colección de elementos que actúan e interactúan para lograr algún fin lógico. El estado de un sistema es el conjunto de variables necesarias para describir el estado del sistema en un momento dado. La simulación suele basarse en un muestreo aleatorio: su salida está sujeta a variaciones aleatorias y debe ser examinada utilizando pruebas de inferencia estadística. Tipos de simulación Un modelo de simulación estática (simulación de Monte Carlo) es una representación de un sistema en un instante de tiempo determinado. Una simulación dinámica es una representación de un sistema cuando evoluciona con el tiempo. Un modelo de simulación determinista no contiene variables aleatorias. Un modelo de simulación estocástica contiene una o más variables aleatorias.

3 Tipos de simulación Modelos continuos: su comportamiento cambia continuamente con el tiempo. Se suelen representar mediante ecuaciones diferenciales que describen las interacciones entre los elementos del sistema Modelos discretos: su comportamiento cambia solo en instantes concretos de tiempo: eventos. Proceso de simulación Enunciado explícito de los objetivos que se persiguen: preguntas que se han de contestar, hipótesis que se quiere probar, posibilidades a considerar. Creación del modelo y reunión de datos Diseñar un programa de ordenador para el modelo Verificar el programa Validar el modelo Utilizar el modelo para experimentar y contestar a las preguntas iniciales. Reunir, procesar y analizar los datos generados como soluciones del modelo y en términos de validez y confiabilidad estadística.

4 Elementos claves del modelo de simulación Estado del sistema Estados posibles Eventos posibles Reloj de simulación Método para generar eventos de forma aleatoria Fórmula para actualizar el estado del sistema una vez generado un nuevo evento Elementos de una simulación Salidas: objetivos del estudio expresadas mediante valores numéricos. Entradas: valores numéricos que permiten iniciar la simulación y obtener las salidas: Condiciones iniciales: valores que expresan el estado del sistema al principio de la simulación Datos determinísticos: valores conocidos necesarios para realizar los cálculos que producen las salidas Datos probabilísticos: cantidades cuyos valores son inciertos pero necesarios para obtener las salidas de la simulación. Los valores específicos de estos datos deben conocerse a través de una distribución de probabilidad.

5 Simulación de eventos discretos Todas las simulaciones de eventos discretos describen situaciones de colas. Cualquier modelo de eventos discretos está formado por una red de colas interrelacionadas. Los dos principales eventos son la llegada y la salida. Si el intervalo de tiempo entre dos eventos consecutivos es probabilístico surge la aleatoriedad. Números aleatorios Métodos para generar una muestra aleatoria a partir de una distribución de probabilidad f(t) a partir de números aleatorios uniformemente distribuidos en (0,1) Método de la inversa: si f es la función de densidad de la distribución se determina F(x)=P[y x] que es una función creciente con valores en [0,1]. Si R es un valor aleatorio obtenido de la distribución uniforme en (0,1), x=f -1 ( R ) es el valor deseado. Método de convolución: la idea fundamental es expresar la muestra deseada como la suma estadística de otras variables aleatorias fáciles de muestrear Método de aceptación-rechazo: se reemplaza la función de densidad f difícil de tratar analíticamente por una aproximación más simple h.

6 Números aleatorios Método de aceptación-rechazo: se reemplaza la función de densidad f difícil de tratar analíticamente por una aproximación más simple h. Función mayorante: g tal que f(x) g(x) para todo x Función aproximada: h tal que El método consiste: Obtener una muestra x=x1 a partir de h con el método de la inversa o de la convolución Obtener un número aleatorio R en (0,1) Si R f g ( x 1 ) ( x ) 1 ( x) ( x) ( y) se acepta x1 como muestra de f, si no, se rechaza x1 y se vuelve al paso 1. La eficiencia del método depende de lo bien que se ajuste g a f mientras se consiguen h analíticamente manejables. h = g g dy Generación de números aleatorios Para generar números aleatorios en un ordenador para su uso en simulación se utilizan operaciones aritméticas: números pseudoaleatorios. Método de congruencia mixta: dados los parámetros u 0 (semilla), b, c y m un número pseudoaleatorio R n se genera: u ( bu + c) mod( m), n = n 1 un Rn =, m n = 1,2, K n = 1,2, K Una selección adecuada de u 0, b, c y m puede hacer que los números pseudoaleatorios cumplan con las propiedades estadísticas de los números aleatorios

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3. LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de

Más detalles

Generación de Números Pseudo-Aleatorios

Generación de Números Pseudo-Aleatorios Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia

Más detalles

Modelos matemáticos de simulación

Modelos matemáticos de simulación Modelos matemáticos de simulación Andrés Ramos Andres.Ramos@iit.icai.upcomillas.es Universidad Pontificia Comillas Begoña Vitoriano bvitoriano@mat.ucm.es Universidad Complutense de Madrid Índice Sistemas,

Más detalles

PROGRAMA DE ESTUDIO. Horas de Práctica

PROGRAMA DE ESTUDIO. Horas de Práctica PROGRAMA DE ESTUDIO Nombre de la asignatura: MODELADO Y SIMULACIÓN DE PROCESOS Clave: IQM12 Ciclo Formativo: Básico ( ) Profesional (X) Especializado ( ) Fecha de elaboración: 7 DE MARZO DE 2015 Horas

Más detalles

Simulación y Modelos Estocásticos

Simulación y Modelos Estocásticos y Modelos Estocásticos Héctor Allende O!"# $# %#&' ( ) *+,-+,,*,/ ) -++,,*,/ ) 0 1 %*++,,*,/ $2,/ 04 %! 2! 5,,#6)5 1 Conceptos básicos: fundamentos de modelos de simulación y del modelado de sistemas complejos,

Más detalles

Simulación. Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu

Simulación. Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu Simulación Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu Índice Sistemas, modelos y simulación Elementos de la simulación Software de simulación

Más detalles

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE-0405 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

Simulación Discreta Estocástica Tutor: Deivis Galván

Simulación Discreta Estocástica Tutor: Deivis Galván Capitulo 1 Simulación Discreta Estocástica Tutor: Deivis Galván OBJETIVOS Al aprobar la asignatura el alumno será capaz de: Conocer, comprender y aplicar los principios del modelado de sistemas complejos

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

Sistemas, modelos y simulación

Sistemas, modelos y simulación Sistemas, modelos y simulación Introducción I Un SISTEMA es una colección de entidades (seres o máquinas) que actúan y se relacionan hacia un fin lógico. Ejemplo: Un banco con: Cajeros [comerciales] [cajas

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA 1. IDENTIFICACIÓN ASIGNATURA: SIMULACIÓN ESTADÍSTICA CODIGO: 070110 NIVEL: VI CREDITOS: 3 DESCRIPCIÓN: DOCENTES:

Más detalles

Introducción a la Investigación Operativa. Enfoque Metodológico y los procesos decisorios

Introducción a la Investigación Operativa. Enfoque Metodológico y los procesos decisorios 1. Introducción A partir de la primera revolución industrial, se produce el crecimiento de la complejidad organizacional Surge la tendencia al crecimiento de los subsistemas en forma autónoma, con sus

Más detalles

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Máster en ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Temario MÓDULO 0: HOMOGENEIZACIÓN Homogeneización en bases matemáticas 3,0 Cr. ECTS Espacios de Medida Algebra. Matrices y Determinantes

Más detalles

Universidad Tecnológica de Panamá. Facultad de Ingeniería Industrial. Departamento de Producción

Universidad Tecnológica de Panamá. Facultad de Ingeniería Industrial. Departamento de Producción Universidad Tecnológica de Panamá Facultad de Ingeniería Industrial Departamento de Producción Introducción a la Simulación Documento para acompañar a los cursos de Diseño de Sistemas Estocásticos, Investigación

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 7 de abril 2015 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para estudiar procesos mediante la seleccion

Más detalles

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Workshop de Investigadores en Ciencias de la Computación WICC 2002 Aplicación del Método de Montecarlo para el cálculo de integrales definidas López, María Victoria y Mariño, Sonia Itatí Departamento de Informática Facultad de Ciencias Exactas y Naturales y Agrimensura

Más detalles

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre Requisito

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

SIMULACIÓN. Texto Base de Teoría. Alfonso Urquía Moraleda

SIMULACIÓN. Texto Base de Teoría. Alfonso Urquía Moraleda SIMULACIÓN Texto Base de Teoría Alfonso Urquía Moraleda Departamento de Informática y Automática Escuela Técnica Superior de Ingeniería Informática, UNED Juan del Rosal 16, 28040 Madrid, España E-mail:

Más detalles

SIMULACIÓN VERSUS OPTIMIZACIÓN:

SIMULACIÓN VERSUS OPTIMIZACIÓN: SIMULACIÓN MONTE CARLO Procesos Químicos II La idea básica de la simulación es la construcción de un dispositivo experimental, o simulador, que actuará como (simulará) el sistema de interés en ciertos

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

Simulación. Carrera: SCD-1022 SATCA 1

Simulación. Carrera: SCD-1022 SATCA 1 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Simulación Ingeniería en Sistemas Computacionales Clave de la asignatura: SATCA 1 SCD-1022 2 3 5 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

CURSO DE INTRODUCCION

CURSO DE INTRODUCCION CURSO DE INTRODUCCION A CRYSTAL BALL Cnel R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar http//www.mgmconsultores.com.ar

Más detalles

PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8

PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8 Índice ÍNDICE PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8 PARTE I: INSTRUMENTOS MATEMÁTICOS DE LA TEORÍA DE LOS SUBCONJUNTOS BORROSOS 19 CAPÍTULO 1: ELEMENTOS

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

Palabras clave: Simulación. Modelos de Inventario. Modelado Visual Interactivo. Didáctica. Educación.

Palabras clave: Simulación. Modelos de Inventario. Modelado Visual Interactivo. Didáctica. Educación. Software de simulación de un modelo de inventario López, María Victoria Departamento de Informática. Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste. 9 de Julio

Más detalles

Simulación Monte Carlo

Simulación Monte Carlo Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

SIMULACIÓN. Texto Base de Teoría. Curso 2008-09. Alfonso Urquía Moraleda

SIMULACIÓN. Texto Base de Teoría. Curso 2008-09. Alfonso Urquía Moraleda SIMULACIÓN Texto Base de Teoría Curso 2008-09 Alfonso Urquía Moraleda Departamento de Informática y Automática Escuela Técnica Superior de Ingeniería Informática, UNED Juan del Rosal 16, 28040 Madrid,

Más detalles

Fundamentos Básicos de Monte Carlo N-Particle.

Fundamentos Básicos de Monte Carlo N-Particle. Capítulo. Fundamentos Básicos de Monte Carlo -Particle.. Historia. El método de Monte Carlo debe su nombre a la cuidad de Montecarlo en Mónaco donde se juega la ruleta, el juego de azar que genera números

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II IO04002 Investigación de Operaciones II Tema #4 Generación de números pseudo aleatorios y Objetivo de aprendizaje del tema Al finalizar la sesión serás capaz de: Calcular números pseudo aleatorios. Determinar

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Propiedades de Muestras Grandes y Simulación

Propiedades de Muestras Grandes y Simulación Propiedades de Muestras Grandes y Simulación Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Esquema 1 Propiedades en muestras grandes (W App C3) 2 3 Las propiedades

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas NUCLEO DE CONTENIDO: Básicas de Ingeniería NUCLEO DE CONOCIMIENTO: Investigación de Operaciones. NUCLEO TEMÀTICO: Modelación (Simulación) SEMESTRE:

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Financiación Francisco Pérez Hernández Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid Objetivo del curso: Dentro del contexto de Economía de la

Más detalles

Generación de Números Aleatorios Uniformes

Generación de Números Aleatorios Uniformes Capítulo 5 Generación de Números Aleatorios Uniformes Vimos en el capítulo sobre repaso de distribuciones de probabilidad, lo que es una distribución uniforme. Pero podemos encontrar un método o experimento

Más detalles

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO 5. PLATEAMIETO DEL MODELO AÁLISIS-PLAZO 5.1. COCEPTOS PREVIOS Previamente a cualquier descripción se presentan aquí una serie de definiciones aclaratorias: Simulación: Es el proceso de diseñar y desarrollar

Más detalles

CURSO DE ANALISIS DE RIESGOS EN INDUSTRIAS DE PETROLEO Y GAS (OIL & GAS)

CURSO DE ANALISIS DE RIESGOS EN INDUSTRIAS DE PETROLEO Y GAS (OIL & GAS) CURSO DE ANALISIS DE RIESGOS EN INDUSTRIAS DE PETROLEO Y GAS (OIL & GAS) Cnel R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar

Más detalles

OPTIMIZACIÓN EN MANTENIMIENTO

OPTIMIZACIÓN EN MANTENIMIENTO OPTIMIZACIÓN EN MANTENIMIENTO Entrenamiento en técnicas avanzadas para optimizar el remplazo de componentes e inspección de equipos Driven by knowledge info@apsoluti.es 2015 1 OPTIMIZACIÓN DE MANTENIMIENTO

Más detalles

Introducción al @RISK 5.7

Introducción al @RISK 5.7 Introducción al @RISK 5.7 Javier Ordóñez, PhD Director de Soluciones Personalizadas Riesgo» Riesgo: Un escenario en donde existe una posibilidad de desviación respecto de un resultado deseado o esperado»

Más detalles

MODELADO Y SIMULACIÓN

MODELADO Y SIMULACIÓN ASIGNATURA DE GRADO: MODELADO Y SIMULACIÓN Curso 2014/2015 (Código:71014106) 1.PRESENTACIÓN DE LA ASIGNATURA La asignatura Modelado y Simulación se imparte en el primer semestre del cuarto curso del Grado

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

SIMULACIÓN. Modelo. Para que? Simulamos para explicar, entender o mejorar el sistema. Ejemplo:

SIMULACIÓN. Modelo. Para que? Simulamos para explicar, entender o mejorar el sistema. Ejemplo: SIMULACIÓN Simulación implica crear un modelo que aproxima cierto aspecto de un sistema del mundo real y que puede ser usado para generar historias artificiales del sistema, de forma tal que nos permite

Más detalles

Generación de valores de las variables aleatorias

Generación de valores de las variables aleatorias Generación de valores de las variables aleatorias Juan F. Olivares-Pacheco * 14 de junio de 007 Resumen En todo modelo de simulación estocástico, existen una o varias variables aleatorias interactuando.

Más detalles

Simulación ISC. Profr. Pedro Pablo Mayorga

Simulación ISC. Profr. Pedro Pablo Mayorga Simulación ISC Profr. Pedro Pablo Mayorga Ventajas 1. Es un proceso relativamente eficiente y flexible. 2. Puede ser usada para analizar y sintetizar una compleja y extensa situación real, pero no puede

Más detalles

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J. Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma

Más detalles

Programación en R para Estadística. Simulación

Programación en R para Estadística. Simulación Programación en R para Estadística 1 de 2 Programación en R para Estadística Simulación J. Elías Rodríguez M. Facultad de Matemáticas Universidad de Guanajuato XXIII Foro Nacional de Estadística 11 de

Más detalles

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co SIMULACION Modelos de http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana

Más detalles

Estadística Computacional

Estadística Computacional Estadística Computacional Estadística Computacional Antonio Salmerón Cerdán María Morales Giraldo ALMERÍA, 2001 Prólogo El objetivo de este trabajo es ofrecer un libro de texto que cubra los contenidos

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Poisson, Exponencial y Uniforme Ejercicio. Se dispone de un sistema formado por dos componentes similares

Más detalles

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus INFORMACIÓN GENERAL Área de formación Núcleo de Contenido Núcleo de Conocimiento Núcleo Temático Profesional Especifica Ingeniería Aplicada Operativa Modelación Semestre IX Número de Créditos Académicos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid Econometría I Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco (MEI, UC3M)

Más detalles

GRADO EN MATEMÁTICAS

GRADO EN MATEMÁTICAS GRADO EN MATEMÁTICAS Cuarto curso: ITINERARIO DE CIENCIAS DE LA COMPUTACIÓN ITINERARIOS DE MATEMÁTICA PURA Y APLICADA 60 ECTS 60 ECTS Itinerario I Itinerario II GRADO EN MATEMÁTICAS Cuarto curso: ITINERARIO

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

ING. YIM APESTEGUI FLORENTINO

ING. YIM APESTEGUI FLORENTINO Sistemas Un sistema es: que interactúan para funcionar Podemos resumir en dos frases: El todo supera la suma de las partes Todo está conectado con todo La interacciones en el mundo real no son simples,

Más detalles

Carrera: IQF-1001 SATCA 1 3 2-5

Carrera: IQF-1001 SATCA 1 3 2-5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Calve de asignatura: SATCA 1 Análisis de Datos Experimentales Ingeniería Química IQF-1001 3 2-5 2.- PRESENTACION Caracterización de la asignatura.

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 CONSIDERACIONES PRÁCTICAS

Más detalles

"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios

Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios "Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Unidad 3 Generación de números aleatorios.

Unidad 3 Generación de números aleatorios. Unidad 3 Generación de números aleatorios. Ejercicio 1. Generadores de números aleatorios. La implementación de un buen generador de números aleatorios uniformemente distribuidos sobre el intervalo (0,

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Programación General Anual Curso 2011/12 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE

Programación General Anual Curso 2011/12 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE ÍNDICE...1 CONTENIDOS... 2 CRITERIOS DE EVALUACIÓN... 4 TEMPORALIZACIÓN... 5 METODOLOGÍA DIDÁCTICA... 6 PROCEDIMIENTOS DE EVALUACIÓN... 7 ACTIVIDADES

Más detalles

DOBLE GRADO EN ECONOMÍA MATEMÁTICAS Y ESTADÍSTICA

DOBLE GRADO EN ECONOMÍA MATEMÁTICAS Y ESTADÍSTICA DOBLE GRADO EN ECONOMÍA MATEMÁTICAS Y ESTADÍSTICA Facultad de Ciencias Económicas y Empresariales Facultad de Ciencias Matemáticas Introducción El doble grado en Economía - Matemáticas y Estadística permite

Más detalles

CAPITULO 8. ANÁLISIS DE RIESGO. 8.1 INTRODUCCIÓN

CAPITULO 8. ANÁLISIS DE RIESGO. 8.1 INTRODUCCIÓN CAPITULO 8. ANÁLISIS DE RIESGO. 8.1 INTRODUCCIÓN Por medio de este capitulo se llegará a establecer por medio de herramientas como el análisis de sensibilidad, análisis de escenarios y la simulación Monte

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

-- -- ~ INTRODUCCIÓN VII

-- -- ~ INTRODUCCIÓN VII -- -- ~ '" Indz'ce general li J PRÓLOGO INTRODUCCIÓN XIII XVII 1. PROBABILIDAD DE MUERTE Y SUPERVIVENCIA 1 1.1. Introducción 1 1.2. Principales variables aleatorias 1 1.2.1. Edad de muerte de un recién

Más detalles

PRACTICA 2: Distribuciones de probabilidad discretas

PRACTICA 2: Distribuciones de probabilidad discretas Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 x PRACTICA 2: Distribuciones de probabilidad discretas 1. Clasi que las siguientes variables como discretas o continuas: (a) Número de crías (b) Peso del contenido

Más detalles

AEF-1024 3-2 - 5. o Permite establecer inferencias sobre una población, conclusiones a partir de la información que arrojan las pruebas de hipótesis.

AEF-1024 3-2 - 5. o Permite establecer inferencias sobre una población, conclusiones a partir de la información que arrojan las pruebas de hipótesis. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Estadística Inferencial I Ingenierías en Logística e Industrial AEF-1024 3-2 - 5 2.- PRESENTACIÓN Caracterización

Más detalles

R-IV. Números Aleatorios. Método de Monte- Carlo. Números Aleatorios. Números Aleatorios 8 -

R-IV. Números Aleatorios. Método de Monte- Carlo. Números Aleatorios. Números Aleatorios 8 - R-IV Método de Monte- Carlo Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento Ingeniería, Economía, Física, Estadística, etc.

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

Modelado de actividades en redes locales.

Modelado de actividades en redes locales. Modelado de actividades en redes locales. Cristóbal Raúl Santa María smaria@sion.com 1561454636 UNLaM y U. de Morón. Gastón Iemmelo iemello_gaston@redlink.com.ar 4662-1365 U. de Morón. Marcelo Gonzalez

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

III Conferencia Interuniversitaria sobre el Grado en Estadística Universidad de la Coruña 16 Abril 2010. Grado en Estadística

III Conferencia Interuniversitaria sobre el Grado en Estadística Universidad de la Coruña 16 Abril 2010. Grado en Estadística III Conferencia Interuniversitaria sobre el Grado en Universidad de la Coruña 16 Abril 2010 Grado en Universidad de Extremadura Estudios actuales de en la Universidad de Extremadura Contexto en el que

Más detalles