Cambio de Variables en la Integral Múltiple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cambio de Variables en la Integral Múltiple"

Transcripción

1 Capítulo 27 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se mantiene por aplicaciones de clase C 1. ste resultado es una consecuencia del hecho de que toda aplicación de clase C 1 en un abierto de R n es lipschitziana sobre cada compacto contenido en él: Transformación de conjuntos medibles por funciones de clase C 1 Lema 27.1 Sea T : U R n R n una aplicación de clase C 1. Supongamos en R n la norma y sea Q un cubo cerrado contenido en U, entonces (i) Si DT (u) α, para todo u Q, entonces m (T (Q)) α n m(q). (ii) T transforma conjuntos medibles en conjuntos medibles. Demostración. i) Sea u 0 el centro de Q y l el lado. Como Q es convexo, del teorema del valor medio se deduce que T (u) T (u 0 ) α u u 0, u Q lo que nos indica que T es lipschitziana sobre Q de constante α y por tanto i) se deduce del lema l apartado ii) se deduce de la proposición 20.7, sin más que tener en cuenta que toda aplicación de clase C 1 es localmente lipschitziana. 267

2 268 Cambio de Variables 27.2 Lema 27.2 Si L es una aplicación lineal de R n en R n, entonces (27.1) m (L()) = det L m (). Demostración. Si L es singular, L() está contenido en un subespacio de dimensión r < n. ste subespacio será por lo tanto isomorfo al subespacio vectorial, R r {0}... {0}, y como él será, según el resultado anterior, un conjunto de medida nula. Se deduce pues que L() es de medida nula y por tanto la fórmula (27.1) es válida en este caso. La demostración en el caso en que L sea no singular, se basa en la existencia de una descomposición de L en término de aplicaciones lineales elementales de uno de estos tres tipos: (L i,j ) Permutación de dos coordenadas. L i,j (u 1,..., u i,..., u j,..., u n ) = (u 1,..., u j,..., u i,..., u n ). (L ci ) Multiplicar una coordenada por un número real. L ci (u 1,..., u i,..., u n ) = (u 1,..., cu i,..., u n ). (L i+cj ) Sumar a una coordenada otra multiplicada por un número real. L i+cj (u 1,..., u n ) = (u 1,..., u i + cu j,..., u n ). (Para simplificar, denotaremos de la misma forma a una aplicación lineal y a su matriz asociada). s fácil ver que la matriz de L i,j se obtiene permutando las filas i y j en la matriz identidad, I. Si T es una aplicación lineal, la multiplicación L i,j T, produce una matriz en la que se han permutado las filas i y j de T. Análogamente, la matriz L ci se obtiene multiplicando por c la fila i de I. Y la matriz L i+cj sumándole a la fila i de esta matriz la j multiplicada por c. La multiplicación L ci T o L i+cj T, produce los efectos anteriores, pero sobre la matriz T en lugar de la I. Vamos a ver que mediante sucesivas transformaciones de los tres tipos anteriores se puede reducir la aplicación lineal L a la identidad. l procedimiento es como el utilizado para obtener ceros en un determinante Paso 1. Conseguir un 1 en el lugar (1,1) de L mediante:

3 27.2 Cambio de Variables 269 Transposición de dos filas de L, para conseguir un elemento no nulo (por ejemplo, igual a c) en posición (1,1). Multiplicación de la primera fila de la matriz obtenida por 1/c. Paso 2. Obtener ceros en la primera columna, sin más que restar a cada fila la primera multiplicada por el número que corresponda. Paso 3. Conseguir de forma análoga un 1 en el lugar (2,2) y un 0 en los demás términos de la segunda columna. Análogamente con las demás columnas. De esta forma, mediante un número finito de estas transformaciones, denotémoslas por ejemplo L 1, L 2,..., L p, hemos reducido (componiendo a la izquierda con L 1, L 2,..., L p ) la aplicación L a la identidad I, es decir L p L p 1... L 1 L = I Como L 1 i,j = L j,i, L 1 ci = L 1/c i, L 1 i+cj = L i cj, se deduce inmediatamente de lo anterior que L es una composición de aplicaciones elementales de los tipos descritos. Y puesto que el determinante de un producto de matrices es el producto de los determinantes, la fórmula (27.1) sólo será preciso probarla para estas aplicaciones elementales. Supongamos primero que es un semintervalo, = n i=1 (a i, b i ], y observemos que det L i,j = 1, det L ci = c, det L i+cj = 1. ntonces, 1. L i,j () = (a 1, b 1 ]... (a j, b j ]... (a i, b i ]... (a n, b n ]. Luego m(l i,j ()) = m() = det L i,j m(). 2. L ci () = (a 1, b 1 ]... (ca i, cb i ]... (a n, b n ]. Luego m(l ci ()) = c m() = det L ci m(). 3. Veamos, por último, el caso de aplicaciones del tipo L i+cj. Para calcular m(l i+cj ()) vamos a utilizar el teorema de Fubini. Podemos suponer para concretar y simplificar que i = 2, j = 1. ntonces: F = L (2)+c(1) () = {(u 1, u 2 + cu 1, u 3,..., u n ): u i (a i, b i ]},

4 270 Cambio de Variables 27.2 luego m(f ) = = b1 a 1 = F dx 1 dx 2... dx n = n (b i a i ) i=3 B ( b2 +cx 2 ) a 2 +cx 1 dx 2 dx 1 = Se tiene pues que B dx 1 dx 2 = b1 ( ) dx 3 dx 4... dx 1 dx 2 F (x 1,x 2 ) ( (x 1 )dx 2 )dx 1 A B a 1 (b 2 a 2 )dx 1 = (b 2 a 2 )(b 1 a 1 ). m(l i+cj ()) = det L i+cj m(). Sea ahora un conjunto cualquiera y L una aplicación lineal de uno de los tipos descritos antes. ntonces, para ε > 0, tomemos {I k } una colección numerable de semintervalos tal que I k, m(ik ) m () + ε. entonces, utilizando la monotonía y la subaditividad de la medida exterior, se tiene: m (L()) m(l(i k )) = det L m(i k ) det L ( m () + ε ), lo que, debido al carácter arbitrario de ε, implica que m (L()) det L m (). Puesto que la aplicación L 1 es del mismo tipo que L, se obtiene la desigualdad contraria: m () = m (L 1 L()) det L 1 m (L()) = por tanto m (L()) = det L m (). l teorema del cambio de variables en la integración Lebesgue 1 det L m (L()), Teorema 27.3 (l teorema del cambio de variables (TCV) Sea T : U T (U) un difeomorfismo de clase C 1 entre los abiertos U y T (U) de

5 27.3 Cambio de Variables 271 R n y f una aplicación de T (U) en R. ntonces para cada conjunto medible U se tiene: f = (f T ) det DT T () (n el sentido de que la existencia de una de las integrales implica la existencia de la otra y la igualdad entre ambas). Obsérvese en primer lugar que por ser T un difeomorfismo, del lema 27.1 ii) se deduce que la función f es medible sobre T () si y sólo si f T es medible sobre, y por ser det DT continua y 0, si y sólo si (f T ) det DT es medible. Para la demostración del caso general consideraremos algunas reducciones. n primer lugar, puesto que f es medible si y sólo si f + y f lo son, bastará demostrar el teorema para funciones no negativas. Por otra parte, será suficiente con probar que (27.2) f (f T ) det DT (f 0), T () pues entonces, considerando el difeomorfismo T 1 y la función g = (f T ) det DT, al aplicar (27.2) resulta que g (g T 1 ) det DT 1 = f. T () T () s inmediato comprobar que para la validez de (27.2) sólo es preciso que ésta se satisfaga en el caso en que = U, es decir que (27.3) f (f T ) det DT (f 0), T (U) U y aún es posible reducir la demostración de (27.3) al caso particular en que f = X T (Q) donde Q es un semicubo de adherencia contenida en U, es decir a probar que (27.4) m(t (Q)) det DT. n efecto, (27.4) se extiende sin dificultad primero a los conjuntos abiertos. A continuación podemos extenderla a conjuntos medibles que sean subconjuntos de cubos abiertos de adherencia contenida en U: Sea Q un cubo abierto tal que Q U y Q. ntonces, por la regularidad de la medida Q

6 272 Cambio de Variables 27.3 y la continuidad absoluta de la integral, para cada ε > 0 podemos encontrar un δ > 0 y un conjunto abierto O Q tales que (27.5) m(o \ ) < δ; det DT < ε. O\ De esto se deduce que m(t ()) m(t (O)) det DT O = det DT + det DT < det DT + ε, O\ de lo que resulta, debido al carácter arbitrario de ε, que m(t ()) det DT. Sea ahora medible contenido en U, y sea {Q i } una partición numerable de U por semicubos de adherencia contenida en U. Bastará probar que para cada uno de estos semicubos se tiene m(t ( Q i )) det DT. Q i n efecto, o m(t ( Q i )) = m(t ( Q i )) + m(t ( F r (Q i )) = m(t ( det DT = det DT. Q o i Q i o Q i )) Por la linealidad de la integral la fórmula (27.3) quedaría ya establecida para funciones simples. Con ello, y teniendo en cuenta que toda función medible no negativa, f, puede aproximarse por funciones simples, la desigualdad (27.3) se obtiene para f por el teorema de la convergencia monótona. l teorema del cambio de variable queda sólo pendiente de la demostración del lema: Lema 27.4 Supongamos que T : U T (U) es un difeomorfismo entre los abiertos U y T (U) y sea Q es un semicubo tal que Q U, entonces: i) Para cada ε > 0 existe δ > 0 tal que si C es un semicubo de lado menor igual que δ, contenido en Q, m(t (C)) (1 + ε) n det DT (v) m(c), v C.

7 27.4 Cambio de Variables 273 ii) m(t (Q)) Q det DT. Demostración. (n R n trabajaremos con la norma ). i) Puesto que T es un difeomorfismo, es fácil comprobar que la aplicación, u DT (u) 1, es continua sobre U. Por tanto sup DT (v) 1 <. v Q Teniendo en cuenta ahora que DT es uniformemente continua sobre Q, dado ε > 0 podemos encontrar un δ > 0 tal que u 1 u 2 δ, u 1, u 2 Q DT (u 1 ) DT (u 2 ) ε sup v Q DT (v) 1. Sea C Q un semicubo de lado menor que δ. Fijemos un punto v C cualquiera y consideremos el difeomorfismo T 1 = DT (v) 1 T. Utilizando los lemas 27.1 y 27.1, podemos escribir: m(t 1 (C)) = det DT (v) 1 m(t (C)) α n m(c), donde α = sup u Q DT 1 (u). Se deduce pues que y como se tiene ya, que m(t (C)) α n det DT (v) m(c), α = sup DT 1 (u) = sup DT (v) 1 DT (u) u Q u Q = sup I + DT (v) 1 (DT (u) DT (v)) u Q 1 + DT (v) 1 DT (u) DT (v) 1 + ε, m(t (C)) (1 + ε) n det DT (v) m(c), v C ii) Para cada número natural p tomemos δ p, asociado a ε = 1/p en i), tal que la sucesión {δ p } tienda a 0, y sea {C ip } una partición finita de Q mediante semicubos de lado menor o igual que δ p. Fijemos v ip C ip. Por i) sabemos que (27.6) m(t (C ip )) (1 + 1/p) n det DT (v ip ) m(c ip ).

8 274 Cambio de Variables 27.4 Consideremos entonces para cada p la función simple s p = det DT (v ip ) X Cip. De (27.6) se deduce fácilmente que 1 s p m(t (Q)). (1 + 1/p) n Por otra parte, la sucesión {s p } converge uniformemente (en Q) a la función det DT. n efecto, sea δ > 0 asociado a ε por la continuidad uniforme de la función det DT. ntonces, si u Q y C ip es el semicubo de la partición en el que está u (luego u v ip < δ p ), se tiene que sp (u) det DT (u) = det DT (vip ) det DT (u) < ε, si δp < δ. l teorema de la convergencia dominada nos permite deducir ya det DT = lim s p m(t (Q)). p Q jercicios 27A (a) Utilizar coordenadas polares para deducir la fórmula que da el área del círculo (b) Considerar la elipse de ecuación x 2 /a 2 + y 2 /b 2 = 1. Utilizar el cambio de coordenadas x = au; y = bv para demostrar que el área limitada por la esta elipse es igual a πab. 27B Sea z = f(y) una función de una variable, A = [a, b] y B = Ord A (f). (a) Probar que el volumen del sólido obtenido al girar B en torno al eje Y es V = π b a f 2 (y)dy. (b) Probar que el volumen del sólido obtenido a girar B en torno al eje Z es V = 2π b a yf(y)dy. indicación. Utilizar coordenadas cilíndricas. (c) Obtener el volumen del toro obtenido al girar el círculo z 2 + (y a) 2 R 2 en torno al eje Z (Sol: 2π 2 R 2 a).

9 27N Cambio de Variables C Obtener el volumen del recinto D = {(x, y, z) : x 2 + y 2 9; x 2 + z 2 9}. 27D Obtener el área encerrada por la curva cuya ecuación en polares es r = sen θ. 27 Obtener el área de uno de los segmentos circulares en que divide el eje Y al círculo de ecuación (x 1) 2 + (y 1) F Calcular el área de uno de los bucles de la lemniscata (x 2 + y 2 ) 2 = x 2 y 2. 27G (a) Mediante el cambio a polares para calcular R 2 e (x2 +y 2) dxdy. (b) Utilizar (a) para calcular R e x2 dx 27H Calcular el área limitada por las curvas: x 2 + y 2 = 2x; x 2 + y 2 = 4x; y = x; y = 0. 27I Calcular B cos π 2 (x y ) dxdy, x + y donde B es el recinto limitado por los ejes y la recta x + y = 1 (Hacer el cambio x y = u; x + y = v). 27J Calcular el volumen del cuerpo limitado por la esfera x 2 + y 2 + z 2 = 25 y el cilindro (x 1) 2 + (y 1) 2 = 2 27K Calcular D xz 2 y dxdydz, siendo D = {(x, y, z) : x 2 + y 2 + z 2 1; 0 x y}. 27L Calcular D zdxdydz, siendo D = {(x, y, z) : x2 +y 2 +z 2 4; z 2 x 2 +y 2 ; 0 z 3} (Utilizar coordenadas esféricas). 27M Calcular el volumen del sólido que se encuentra fuera del cono de ecuación x 2 +y 2 = z 2 y dentro de la esfera de ecuación x 2 +y 2 +z 2 = 4z (utilizar coordenadas esféricas). 27N Determinar el volumen de la zona interior al cilindro de altura 4, x 2 +y 2 = 2y y al paraboloide z = x 2 + y 2.

10

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 24 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

CÁLCULO INTEGRAL. HOJA 9.

CÁLCULO INTEGRAL. HOJA 9. CÁLCULO INTEGRL. HOJ 9. EL TEOREM DEL CMIO DE VRILES. 1. Teorema (del cambio de variables). Sea g : U V un difeomorfismo de clase C 1 entre dos abiertos de R n, sea f : V R medible. Entonces f g es medible

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Conjuntos Medibles. La identidad de Caratheodory

Conjuntos Medibles. La identidad de Caratheodory Capítulo 18 Conjuntos Medibles La identidad de Caratheodory En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

4.5 Funciones de Lipschitz

4.5 Funciones de Lipschitz 1 4.5 Funciones de Lipschitz El siguiente resultado corresponde al teorema 4.5.1 del libro. Teorema 1 Sea D IR N. Si f : D IR N es una función de Lipschitz, entonces: i) Existe K > 0 tal que µ (f(a)) Kµ

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo A, curso 15/16 Francisco José Freniche Ibáñez

Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo A, curso 15/16 Francisco José Freniche Ibáñez Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo, curso 5/6 Francisco José Freniche Ibáñez. Demuestra que si I R es un intervalo y f : I R es una función

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales Parte II Cálculo Diferencial para Funciones de Varias Variables Reales Capítulo 5 Derivadas Direccionales y Derivadas Parciales Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Tema 2. Ejercicios propuestos

Tema 2. Ejercicios propuestos Tema 2. Ejercicios propuestos 1.- - Calcular 2.- - Calcular 3.- - Sea = x2 y2 dx dy, siendo = {(x, y) 2 : 1 x y 2, x y 4x}. (x2 +y2 )dx dy, donde = (x, y) 2 : x2 + y2 2y, x2 + y2 1, x 0. (x, y) 2 1 x 2

Más detalles

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas Problemas Curso 2013-2014 Problemas 1. Sea E un espacio normado. Si a, b son elementos de E, probar: (a) 1 2 (a + b) 2 1 2 a 2 + 1 2 b 2. (b) a max{ a + b, a b }. 2. Demostrar que en un espacio normado,

Más detalles

Apuntes sobre la integral de Lebesgue

Apuntes sobre la integral de Lebesgue Apuntes sobre la integral de Lebesgue Miguel Lacruz Martín Universidad de Sevilla 1. Medida de Lebesgue 1.1. Introducción La longitud l(i) de un intervalo I R se define habitualmente como la distancia

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Análisis IV. Joaquín M. Ortega Aramburu

Análisis IV. Joaquín M. Ortega Aramburu Análisis IV Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en Julio de 2001 2 Índice General 1 Integral de Riemann 5 1.1 Integración de Riemann............................... 5 1.2 Contenido

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Parte III. Medida e Integración en R n

Parte III. Medida e Integración en R n Parte III Medida e Integración en R n Capítulo 17 La Medida Exterior de Lebesgue en R n El cálculo de longitudes, áreas y volúmenes es uno de los asuntos matemáticos con más larga tradición histórica,

Más detalles

Unidad 1: Topología de R n

Unidad 1: Topología de R n Unidad 1: Topología de R n Cronología: 14 horas (2 1 2 semanas ) en 7 sesiones de trabajo en aula, incluyendo tres en las horas asistenciales: dos de ejercicios y la de la evaluación escrita. Recuros instruccionales

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2004) * El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1)

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1) Selectividad Matemáticas II septiembre 16, Andalucía (versión 1) Pedro González Ruiz 14 de septiembre de 16 1. Opción A Problema 1.1 Sabiendo que es finito, calcular m y el valor del límite. ( 1 lím x

Más detalles

El Teorema de Stone-Weierstrass

El Teorema de Stone-Weierstrass Capítulo 3 El Teorema de Stone-Weierstrass Vamos a ver en esta lección el teorema clásico de Weierstrass y la importante generalización del mismo dada por Stone. El teorema de Weierstrass El teorema de

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables.

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. 1. Calcular para =[0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcularlasintegralesdoblessiguientesenlosrecintosqueseindican:

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Capítulo 6 Extremos de funciones de varias variables En este capítulo vamos a considerar la teoría clásica de extremos para funciones diferenciables de varias variables, cuyos dos tópicos habituales son

Más detalles

Teoremas de la función inversa, función implícita y del rango constante

Teoremas de la función inversa, función implícita y del rango constante Teoremas de la función inversa, función implícita y del rango constante Pablo Zadunaisky 13 de marzo de 2015 A lo largo de este documento usamos varias normas sobre espacios vectoriales de dimensión finita,

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007 Álgebra Lineal Departamento de Matemáticas Universidad de Los Andes Primer Semestre de 2007 Universidad de Los Andes () Álgebra Lineal Primer Semestre de 2007 1 / 50 Texto guía: Universidad de Los Andes

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad - Fernando Sánchez - - 6 Funciones Cálculo II de Rn en Rm Límites y continuidad En este capítulo se van a estudiar funciones f : A R n m donde A es un conjunto en R n, f = (f 1,..., f m ), x = (x 1,...,

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Cambio de variable en la integral de Riemann

Cambio de variable en la integral de Riemann J Cambio de variable en la integral de Riemann J.1. Preliminares En esta sección se recogen algunos resultados preliminares que intervienen en la demostración del teorema del cambio de variable, que tienen

Más detalles

1. Teorema de Cambio de Variable para la Integral de Riemann.

1. Teorema de Cambio de Variable para la Integral de Riemann. 1. Teorema de Cambio de Variable para la Integral de Cambio de En el caso de la de Riemann para funciones reales de una variable real, se puede demostrar un teorema de cambio de variable de forma muy sencilla

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

Medida de Lebesgue. 16 de diciembre de 2015

Medida de Lebesgue. 16 de diciembre de 2015 Medida de Lebesgue 16 de diciembre de 2015 En este capítulo construiremos la Teoría de la Medida de Lebesgue sin ningún tipo de prerequisito, excepto ciertos conocimientos elementales de Análisis Real.

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad - Fernando Sánchez - - 6 Funciones Cálculo II de Rn en Rm Límites y continuidad En este capítulo se van a estudiar funciones f : A R n R m donde A es un conjunto en R n, f = (f 1,..., f m ), x = (x 1,...,

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 2 La Diferencial de Fréchet Dedicaremos este capítulo a extender la derivabilidad a las funciones de varias variables reales. Límites y continuidad El contenido de este parágrafo es eminentemente

Más detalles

1 Clase sobre determinantes

1 Clase sobre determinantes 1 Clase sobre determinantes Una herramienta muy útil cuando trabajamos con matrices y con el producto de matrices, es su interpretación como: una colección de números, A = [a ij ] ; como una colección

Más detalles

Ejercicios de teoría de la medida

Ejercicios de teoría de la medida Ejercicios de teoría de la medida Pedro Alegría Capítulo. Dada una aplicación F : Ω Ω, demostrar que: a) Si A es una σ-álgebra de Ω, A = {B Ω : F B) A} lo es de Ω. b) Si A es una σ-álgebra de Ω, A = F

Más detalles

Índice general. 4. Subgrupos de Lie Subgrupos de Lie Subvariedades Teorema de Cartan... 7

Índice general. 4. Subgrupos de Lie Subgrupos de Lie Subvariedades Teorema de Cartan... 7 Índice general 4. Subgrupos de Lie 3 4.1. Subgrupos de Lie.......................... 3 4.2. Subvariedades............................ 6 4.3. Teorema de Cartan......................... 7 1 2 ÍNDICE GENERAL

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

CUESTIONES TEÓRICAS. Matemáticas II Curso

CUESTIONES TEÓRICAS. Matemáticas II Curso CUESTIONES TEÓRICAS Matemáticas II Curso 2013-14 1. Definición de función continua: Una función es continua en un punto a si existe el valor de la función en dicho punto, el límite de la función cuando

Más detalles

INTEGRALES MULTIPLES. Integral doble sobre rectángulos

INTEGRALES MULTIPLES. Integral doble sobre rectángulos INTEGRALES MULTIPLES En este tema se estudia la integral de Riemann de funciones de varias variables. Como veremos, la forma de introducirla es similar a la de la integral de Riemann de funciones reales

Más detalles

Variedades diferenciables

Variedades diferenciables Capítulo 10 Variedades diferenciables 1. Variedades diferenciables en R n A grandes rasgos, una variedad diferenciable es un conjunto que, localmente, es difeomorfo al espacio euclideano. En este capítulo

Más detalles

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 1: Sistemas de Ecuaciones Lineales - Matrices En todas las prácticas, K es un cuerpo; en general K = Q (los números racionales, R (los números reales o

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Funciones convexas Definición de función convexa. Tema 14

Funciones convexas Definición de función convexa. Tema 14 Tema 14 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones definidas en intervalos, las funciones

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

La integral doble sobre recintos no rectangulares

La integral doble sobre recintos no rectangulares La integral doble sobre recintos no rectangulares IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Conjuntos de tipos I II 2 3. Aplicaciones

Más detalles

Funciones convexas Definición de función convexa. Tema 7

Funciones convexas Definición de función convexa. Tema 7 Tema 7 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones definidas en intervalos, las funciones

Más detalles

Medida y Probabilidad

Medida y Probabilidad Medida y Probabilidad Jorge Salazar 1 Enero 2015 1 Con el apoyo del Programa PROMETEO/SENESCYT del Gobierno del Ecuador. ii Contents 7 Integral de Lebesgue 1 7.1 Integración de funciones simples.................

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Parte 5: Integración en espacios producto.

Parte 5: Integración en espacios producto. Parte 5: Integración en espacios producto. Definición 1 Sean (X; M, µ) y (Y, N, ν) espacios de medida. Se define la σ álgebra producto M N como la σ álgebra generada por los llamados rectángulos medibles,

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 12 Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Cambio de variables 2 / 12 Idea básica: en ocasiones, la utilización de variables apropiadas en lugar de

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS En este capítulo definiremos las funciones olomorfas como las funciones complejas que son diferenciables en sentido

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez.

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Medidas Problemas para examen Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Sigma-álgebras 1. Propiedades elementales de σ-álgebras. Demuestre que una σ-álgebra es

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos Índice Pág. INTRODUCCIÓN... 9 UNIDAD DIDÁCTICA 1 Espacios Métricos CAPÍTULO 1. ESPACIOS MÉTRICOS... 13 1. Espacios métricos... 17 2. Adherencia y acumulación de un conjunto... 23 3. Conjuntos compactos.

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Inversa de una matriz

Inversa de una matriz Capítulo 2 Álgebra matricial 2.1. Inversa de una matriz Inversa de una matriz Para una matriz cuadrada A n n, la matriz B n n que verifica las condiciones AB = I n y B A=I n se denomina inversa de A, y

Más detalles