CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED."

Transcripción

1 CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado y direc o (3 corriene de igual módulo, defaada 0º do a do y ale que la ecuencia --3 igue el enido anihorario, o ea el enido rigonomérico oiivo). En ea condicione, lo diino elemeno de la red (máquina, ranformadore, línea, cable, carga, ec.) reenan deerminada imedancia frene al aaje de ea corriene, que llamaremo imedancia íncrona. Veremo en oro cao, donde e eudian iema deequilibrado (que aarecen como conecuencia de falla aimérica), que no iemre la imedancia que reenan lo elemeno de la red frene a corriene equilibrada ero de ecuencia horaria (iema invero) o a corriene de igual módulo ero en fae (iema homoolar) coinciden con la imedancia que hemo llamado íncrona. Como ya dicho, ara el análii neceario en ee curo, no limiaremo a coniderar la imedancia íncrona. ) Máquina íncrona ( generarice, moore, comenadore) Para ea máquina e conidera olamene una reacancia, ya que e acoumbra dereciar la reiencia ara lo cálculo de iema elécrico de oencia. Ea reacancia e la que reena la máquina frene a un corocircuio rifáico en minada fuerza elecromoriz. La u borne, uoniendo que la máquina genera con deer corriene roducida or la máquina e rácicamene reaciva. La eoría de la máquina elécrica muera que inervienen la reacancia longiudinale y que lo circuio ueo en juego on el arrollamieno del eaor, el del inducor y el arrollamieno amoriguador diueo obre lo olo. La eoría del eablecimieno del corocircuio en una máquina íncrona (régimen raniorio enre el inane inicial y el eablecimieno del régimen ermanene) muera 3 eaa en ee roceo Tiemo aroximado Régimen ub-raniorio Comonene eriódica + aeriódica inicial Régimen raniorio Comonene eriódica + aeriódica amoriguada Régimen ermanene Comonene eriódica (ermanene)

2 CURSO REDES ELECTRICAS I La reolución de la ecuación diferencial lineal que da la corriene en el corocircuio muera claramene ea 3 eaa; en la úlima ya deaareció la comonene aeriódica (olución de la ecuación homogénea, corri e ne roia) quedando ólo la comonene eriódica (corriene forzada). Hacemo noar que en cao de ocurrir un corocircuio, e oco uual que e ingree al régimen ermanene, ya que lo aarao de roección inerrumen la corriene en general ane de. Coniderando valore eficace (raíz cuadrada del valor medio de i durane un eríodo, o ea durane 0.0 i la frecuencia e 50 Hz) ara la re eaa, e iene: I cc > I cc > I cc, emleando el doble aceno ara el régimen ub-raniorio y el aceno imle ara el raniorio. Para una mima f.e.m., la reacancia reenada cumlen enonce: < < (el ubíndice indica íncrona ). Según el roblema que e eé analizando, e debe enonce emlear la reacancia adecuada (or ejemlo cuando e eudian iemo de core, que eán en general enre 0. y, e debe o mar ). Para ener una idea del orden de magniud de ea reacancia (el fabricane de la máquina uminira u valore), damo el iguiene cuadro de valore, exreando en orcieno de U n /S n, iendo U n la enión nominal de la máquina y S n u oencia aarene nominal ( en orcieno e equivalene a la enión de corocircuio, que e el orcenaje de la enión nominal U n que debe generar la máquina como f.e.m. ara que durane el corocircuio circule la corriene nominal S n /U n ; i e rifáica, deberíamo decir: 3. Sn ) U n Reacancia (%) Máquina de olo lio Máquina de olo aliene 0 a 0 5 a 5 5 a 5 5 a a a 00 ) Moore aíncrono En eo moore el régimen raniorio e amorigua an ráidamene, que e lo uede dereciar en lo cálculo de corocircuio. Se oma: 00% (o ea U n /S n )

3 CURSO REDES ELECTRICAS I 3 3) Línea aérea En el róximo caíulo de ee curo, e arenderá a ca lcular la conane uniaria de la línea en función de la caraceríica fíica y geomérica de la mima. Para cálculo aroximado, uede omare ara la imedancia longiudinal (élfica): En línea de ranmiión y ub-ranmiión: z 0. 4 j Ω/ km En línea de diribución: Se derecia reiencia. 3 z j Ω/ km ara conducore de cobre. 8 z j Ω / km ara conducore de aluminio Donde e la ección del conducor en mm. 4) Cable uberráneo. El valor exaco de la conane uniaria eá dado or el fabricane del cable, como reulado de enayo. Como orden de magniud, odemo mencionar: En línea de media enión: 30 z + 0. j Ω / km ara conducore de cobre. 8 z + 0. j Ω/ km ara conducore de aluminio. monene imaginaria. En línea de baja enión, uede dereciare la co

4 CURSO REDES ELECTRICAS I 4 5) Carga aiva. Una de la oible rereenacione e una imedancia de comonene real oiiva (reiencia) y comonene imaginaria oiiva o negaiva, egún que la carga ea élfica o caaciiva. 6) Tranformadore. Para el ranformador de Poencia, olo e conidera la imedancia de ian la corriene de vacío) y, ara éa e oma ólo una corocircuio (e derec reacancia élfica (e derecia la are reiiva). a) Tranformadore de do arrollamieno. Exreada la x cc como orcenaje de U n /S n (noacione uuale), lo órdene de magniud on lo iguiene: Tranformadore MT/BT: 4% Tranformadore EAT/AT: 7% a 5% b) Tranformadore de re arrollamieno. El modelo adoado, rabajando a un ciero nivel de enión, e ambién con reacancia ura y reonde a una erella equivalene:

5 CURSO REDES ELECTRICAS I 5 Lo valore de,, e calculan a arir de la reacancia,, que on la reacancia de corocircuio (or ejemlo e la reacancia de corocircuio enre el rimario y el ecundario), que reulan de enayo en corocircuio y que figuran en la laca del ranformador. Por ejemlo e el valor hallado cuando el ranformador e alimena del lado, con en corocircuio y abiero; obviamene: Se deduce fácilmene: Obervemo que alguna de ea reacancia uede reular negaiva, o ea rereena un valor caaciivo: no debe enare que lo ranformadore reenan caacidade en u coniución fíica; el modelo en erella e un imle modelo maemáico (la reacancia,, on iemre oiiva, o ea élfica).

ANÁLISIS DE LAS ANOMALÍAS OBSERVADAS EN LOS MODELOS TRADICIONALES DE DESCUENTO

ANÁLISIS DE LAS ANOMALÍAS OBSERVADAS EN LOS MODELOS TRADICIONALES DE DESCUENTO NÁLISIS DE LS NOMLÍS OBSERVDS EN LOS MODELOS TRDIIONLES DE DESUENTO Salvador ruz Rambaud Dearameno de Dirección y Geión de Emrea Univeridad de lmería e-mail: cruz@ual.e María Joé Muñoz Torrecilla Dearameno

Más detalles

TEMA 4. TRANSISTOR DE EFECTO DE CAMPO DE POTENCIA

TEMA 4. TRANSISTOR DE EFECTO DE CAMPO DE POTENCIA INTROUCCIÓN. Transisor de Efeco de Camo de eñal TEMA 4. TRANITOR E EFECTO E CAMPO E POTENCIA Fuene () Puera () renador () Conaco meálico 4.1. INTROUCCIÓN 4.1.1. Transisor de Efeco de Camo de eñal 4.2.

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica

Más detalles

TESIS DE MAESTRIA EN FISICA ELASTOGRAFIA ULTRASONORA DE MEDIOS VISCOELASTICOS CON ONDAS DE CIZALLA BAJA FRECUENCIA

TESIS DE MAESTRIA EN FISICA ELASTOGRAFIA ULTRASONORA DE MEDIOS VISCOELASTICOS CON ONDAS DE CIZALLA BAJA FRECUENCIA Programa de Dearrollo de la Ciencia Báica TESIS DE MAESTRIA EN FISICA ELASTOGRAFIA ULTRASONORA DE MEDIOS VISCOELASTICOS CON ONDAS DE CIZALLA BAJA FRECUENCIA Lic. NICOLAS BENECH TRIBUNAL: Dr. HUGO FORT

Más detalles

2 ECUACIONES DE BALANCE

2 ECUACIONES DE BALANCE DINÁMI Y ONRO DE ROESOS 2 EUIONES DE NE alance egral y balance diferencial o balance de maa y/o energía on en general la ecuacione de arida ara lo modelo de roceo. En condicione dámica elocidad de elocidad

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Estimacion puntual y por Intervalo

Estimacion puntual y por Intervalo Eimacio uual y or Iervalo El objeivo e efecuar ua geeraliació de lo reulado de la muera a la oblació. Iferir o adiviar el comoramieo de la oblació a arir del coocimieo de ua muera. E geeral o iereará coocer

Más detalles

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR SUPERINTENDENCI DE NCOS Y SEGUROS REPULIC DEL ECUDOR Inrucivo para la aplicación del Concepo de Valor en Riego (Var), para la eimación de la Liquidez erucural requerida por la Iniucione Financiera OCTURE

Más detalles

TEMA 16. CONVERTIDORES CC/AC.

TEMA 16. CONVERTIDORES CC/AC. INTRODUCCIÓN Símbolos para la Represenación de Converidores CC/C (Inversores) CC C TEM 16. CONVERTIDORES CC/C. 16.1. INTRODUCCIÓN 16.1.1. rmónicos 16.1.. Conexión de un Converidor CC/C 16.1.. Clasificación

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

Tema 13 Modelos de crecimiento exógeno básicos

Tema 13 Modelos de crecimiento exógeno básicos Tema 13 Modelo de crecimieno exógeno báico 13.1 Reolución del modelo con la función genérica de roducción. 13.2 Lo modelo de Harrod-Domar y de Kaldor. 13.3 El modelo de Solo. Bibliografía: Sala i Marin

Más detalles

/5 1/58. Metodología de cálculo del consumo de energía de los trenes de viajeros y actuaciones en el diseño del material rodante para su reducción

/5 1/58. Metodología de cálculo del consumo de energía de los trenes de viajeros y actuaciones en el diseño del material rodante para su reducción Meodología de cálculo del conumo de energía de lo rene de viajero y acuacione en el dieño del maerial rodane para u reducción Albero García Álvarez Mª del Pilar Marín Cañizare Fundación de lo Ferrocarrile

Más detalles

S I S T E MAS DE REPRESENTACIÓN 20

S I S T E MAS DE REPRESENTACIÓN 20 S I S E MS DE RERESENCIÓN 20 R E C N GE N E U N CIR CU NF E R E N CI 1. raz ar una reca angene a una circunferencia or un uno obre ella. E l radio de la circunferencia que a a or e erendicular a la reca

Más detalles

Tema 4: Fuentes y generadores

Tema 4: Fuentes y generadores Tema 4: Fuenes y generadores Fuenes de alimenación: : convieren ensión ac en ensión dc E. Mandado, e al. 995 Generadores de funciones: Fuene de señal calibrada y esable Aplicaciones: obención de respuesa

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT RECTILINE GUIA DE TRABAJ CLASE PRÁCTICA MVIMIENT RECTILINE UNIFRME. Pr.Nr. El movimieno

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

ANÁLISIS, MODELADO Y SIMULACIÓN EN COMPUTADORA DEL MOTOR DE CORRIENTE DIRECTA TIPO SERIE.

ANÁLISIS, MODELADO Y SIMULACIÓN EN COMPUTADORA DEL MOTOR DE CORRIENTE DIRECTA TIPO SERIE. UNIESIDAD TECNOÓGICA DE A MIXTECA ANÁISIS, MODEADO Y SIMUACIÓN EN COMPUTADOA DE MOTO DE COIENTE DIECTA TIPO SEIE. TESIS PAA OBTENE E TÍTUO DE INGENIEO EN EECTÓNICA PESENTA HÉCTO ICENTE MATÍNEZ MATÍNEZ

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada de Laplace 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m g, c 4 Nm/ y 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x

Más detalles

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4.

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4. 6.6 Aplicacione 403 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m kg, c 4 Nm/ y k 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x 0.0/ 0 y que

Más detalles

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica Índice de Precio Hoelero (. Bae 20 (dede enero de 20 a diciembre 2008 Noa meodológica adrid, marzo 2009 El Índice de Precio Hoelero,, e una medida eadíica de la evolución menual del conjuno de la principale

Más detalles

RENDIMIENTO de TRANSFORMADORES

RENDIMIENTO de TRANSFORMADORES ENDMENTO de TANSFOMADOES Norberto A. Lemozy NTODCCÓN El conocimiento del rendimiento de cualquier máquina, disositivo o sistema tiene una gran imortancia or el valor económico que ello reorta, tanto desde

Más detalles

CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA

CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA FÍSICA CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA Galileo Galilei (1564-164) Iaac Newon (164-177) Alber Einein (1879-1955) UNIDAD 6: FUERZA Y MOVIMIENTO 1. CINEMÁTICA: Pare de la Fíica que eudia

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en:

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en: Sisemas Físicos Dependiendo de los elemenos del sisema, los podemos clasificar en: Sisemas elécricos Sisemas mecánicos Sisemas elecromecánicos Sisemas de fluídos Sisemas ermodinámicos Sisemas Físicos En

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Tema 1. Introducción a los circuitos. Objetivo de la actividad

Tema 1. Introducción a los circuitos. Objetivo de la actividad Tema 1. Inroducción a los circuios elécricos y sus unidades Objeivo de la acividad Al finalizar la acividad serás capaz de: Mencionar la imporancia de los circuios en las diversas áreas de especialización

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

El método operacional de Laplace

El método operacional de Laplace Deparameno de ngeniería Elécrica Univeridad Nacional de Mar del Plaa rea Elecroecnia El méodo operacional de Laplace uor: ngeniero Guavo Lui Ferro Prof. duno Elecroecnia EDCÓN 6 . nroducción al méodo operacional

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES DE epiembre DE en n 7 buca en ee número lo comenario de la preguna que aparecieron en la Prueba Oficial de ciencia. el jueve 7 de epiembre publicaremo la cuara pare de la reolución de la prueba

Más detalles

C 1 (UM/hora) = P G1 + 0,003 P G1. C 2 (UM/hora) = P G2 + 0,004P G2. P pérdidas (MW) = 0,0001. (P G1 + P G2-50) 2

C 1 (UM/hora) = P G1 + 0,003 P G1. C 2 (UM/hora) = P G2 + 0,004P G2. P pérdidas (MW) = 0,0001. (P G1 + P G2-50) 2 Fecha:_junio 09 Código aignatura: 5437 Rellene todo u dato, con el DNI. El tiemo total ara la reolución del examen e de hora. Se ermite el uo de calculadora no rogramable. Entregue la hoja del enunciado

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

( ) V t. I t C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II

( ) V t. I t C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II En la nauraleza exien leye de conervación. Una de ea leye e la de Conervación de la Canidad de Movimieno, la cual erá analizada en ea guía. El concepo

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

No Idealidades en Reactores de Flujo

No Idealidades en Reactores de Flujo No Idealidade en Reacore de Flujo Caua principale y no idealidade ípica: Mezclado imperfeco de lo agiadore debido a la preencia de muy baja velocidad denro del iema de reacción (zona muera): Canalización:

Más detalles

Medidores de Impedancia y parámetros de componentes pasivos

Medidores de Impedancia y parámetros de componentes pasivos 4 Medidore de Imedancia y arámetro de comonente aivo 4. Introducción En ete tema e etudia el funcionamiento de lo medidore de imedancia y arámetro de comonente. e conideran do faceta, el dieño del intrumento

Más detalles

[ ] [ m] [ ] [ ] [ ] [ ]

[ ] [ m] [ ] [ ] [ ] [ ] Ejercicio: Ona. El eiicio Sear, ubicao en Chicago, e ece con una recuencia aproxiaa a 0,0 Hz. Cuál e el perioo e la ibración? Dao: 0, [Hz]? 0,Hz 0. Una ola en el océano iene una longiu e 0. Una ona paa

Más detalles

dp=30 bar dp=200 bar dp=1 bar dp=2 bar 0Z1 dp=1 bar

dp=30 bar dp=200 bar dp=1 bar dp=2 bar 0Z1 dp=1 bar A L00 mm D? d? V4 d30 bar 0 t v 0,05 m/s V3 d00 bar d3 bar V d bar d3 bar V d bar 0V 0Z d bar Se disone de una grúa movida or un cilindro hidráulico ara mover masas de hasta 0 t. El esquema es el de la

Más detalles

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod.

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod. UIVEIDAD ACIOAL DEL U - DEPAAMEO DE IGEIEÍA ELECICA Y DE COMPUADOA - AEA 4 COVEIÓ ELECOMECÁICA DE LA EEGÍA (Cod.55) GUIA DE ABAJO PACICO DE LABOAOIO P Enayo de un AFOMADO IFAICO. Objeivo Idenifica bobinado

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

Respuesta A.C. del BJT 1/10

Respuesta A.C. del BJT 1/10 Respuesa A.. del BJT 1/10 1. nroducción Una ez que se ubica al ransisor denro de la zona acia o lineal de operación, se puede uilizar como amplificador de señales. n base a un ransisor BJT NPN en configuración

Más detalles

Lección 8: Demodulación y Detección Paso-Banda. Parte II

Lección 8: Demodulación y Detección Paso-Banda. Parte II Lección 8: Demodulación y Deección ao-banda. are II Gianluca Cornea, h.d. Dep. de Ingeniería de Siema de Información y Telecomunicación Univeridad San ablo-cu Conenido nvolvene Compleja Tolerancia al rror

Más detalles

MOTORES DE C.C. Y C.A.

MOTORES DE C.C. Y C.A. MOTORES DE C.C. Y C.A. La neumática e la tecnología que utiliza el aire comprimido como fluido de trabajo. El compreor e el elemento que comprime el aire dede la preión atmoférica hata lo 6-8 bar; la válvula

Más detalles

V () t que es la diferencia de potencial entre la placa positiva y la negativa del

V () t que es la diferencia de potencial entre la placa positiva y la negativa del :: OBJETIVOS [7.1] En esa prácica se deermina experimenalmene la consane de descarga de un condensador, ambién llamado capacior ó filro cuando esá conecado en serie a una resisencia R. Se esudian asociaciones

Más detalles

Ecuaciones Diferenciales Lineales y Espacios Vectoriales

Ecuaciones Diferenciales Lineales y Espacios Vectoriales Ecuacione Diferenciale Lineale y Epacio Vecoriale Reumen El conjuno de la funcione coninua obre un inervalo forman un epacio vecorial, e decir que la combinación lineal de olucione a la ecuacione diferenciale

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Diciembre 9, 2011 nsrucciones Nombre Ese examen iene 3 secciones: La Sección consa de 10 pregunas en el formao de Falso-Verdadero y con un valor de 20 punos. La Sección es de selección múliple y consa

Más detalles

TEMA 1. INTRODUCCIÓN AL MODELADO Y ANÁLISIS DE CIRCUITOS DE POTENCIA

TEMA 1. INTRODUCCIÓN AL MODELADO Y ANÁLISIS DE CIRCUITOS DE POTENCIA GENERADADES EMA. NRODUCCÓN A MODEADO Y ANÁSS DE CRCUOS DE POENCA.. GENERADADES... REGAS PARA E ANÁSS DE CRCUOS DE POENCA..3. DESARROO EN SERE..3.. Cálculo de Arónicos..3.. Poencia..3.3. Cálculo de valores

Más detalles

Las Opciones Reales y su Influencia en. la Valoración de Empresas

Las Opciones Reales y su Influencia en. la Valoración de Empresas Documeno de Trabajo 2003-01 Faculad de Ciencia Económica y Empreariale Univeridad de Zaragoza La Opcione Reale y u Influencia en la Valoración de Emprea Manuel Epiia Ecuer y Gema Paor Aguín Deparameno

Más detalles

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2 Fundamenos de Elecrónica - Análisis de Circuios en Corriene Alerna 1 Análisis de Circuios en Corriene Alerna 1. Inroducción: Coninuando con el esudio de los principios básicos que rigen el comporamieno

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE 7 LA TRANSFORMADA DE LAPLACE 7 Definición de la ranformada de Laplace 7 Tranformada invera y ranformada de derivada 7 Tranformada invera 7 Tranformada de derivada 73 Propiedade operacionale I 73 Tralación

Más detalles

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso Inervalo de confianza Muera pequeña Eadíica 016 - Prof. Tamara Burdio Qué ocurre cuando n

Más detalles

SUAVIZAMIENTO EXPONENCIAL AJUSTADO A LA TENDENCIA Y A LA VARIACIÓN ESTACIONAL: MÉTODO DE WINTERS

SUAVIZAMIENTO EXPONENCIAL AJUSTADO A LA TENDENCIA Y A LA VARIACIÓN ESTACIONAL: MÉTODO DE WINTERS Pronósicos II Un maemáico, como un inor o un oea, es un fabricane de modelos. i sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico, como

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Solucionario. Cuaderno de Física y Química 3

Solucionario. Cuaderno de Física y Química 3 Solucionario Cuaderno de Fíica y Quíica 3 UNIDAD 7.. El iea de referencia e fundaenal para conocer la poición exaca de un cuerpo y por ano u rayecoria y u velocidad.. Por ejeplo i eao enado en un ren en

Más detalles

Curvas de descarga de un condensador

Curvas de descarga de un condensador Curvas de descarga de un condensador Fundameno Cuando un condensador esá cargado y se desea descargarlo muy rápidamene basa hacer un corocircuio enre sus bornes. Esa operación consise en poner enre los

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA Deño de Controladore PID Stema de Control Prof. Marela CERRADA Controlador del to PI: Mejorando la reueta etaconara Lo controladore del to PI olo ncororan la accone Proorconale Integrale, aumentando en

Más detalles

UNIONES ATORNILLADAS SEGÚN EC3

UNIONES ATORNILLADAS SEGÚN EC3 UNIONES ATONILLADAS SEGÚN 1. GENEALIDADES Toda la nione endrán na reiencia de cálclo al qe la ercra e comore aiacoriamene y ea caaz de cmlir odo lo reqiio báico ara el cálclo.. CLASES DE TONILLOS Valore

Más detalles

TEMA 17. CONVERTIDORES CC/CA CON SALIDA SINUSOIDAL

TEMA 17. CONVERTIDORES CC/CA CON SALIDA SINUSOIDAL INTRODUCCIÓN TEM 7. CONVERTIDORES CC/C CON SLID SINUSOIDL 7. INTRODUCCIÓN 7. ESTUDIO DE UN RM DE UN PUENTE INVERSOR 7.. Moulación Senoial PWM 7... rmónico 7.. Sobremoulación 7... rmónico 7..3 Generación

Más detalles

Contenido. Intervenciones en el mercado. Impuestos. Impuestos. Tema 7. Impuestos

Contenido. Intervenciones en el mercado. Impuestos. Impuestos. Tema 7. Impuestos Conenido Tema 7 Inervenciones en el mercado Imuesos Incidencia Pérdida irrecuerable de eficiencia Precios mínimos y recios máximos osenimieno de recios Resricciones en la canidad y cuoas 2 Imuesos Los

Más detalles

Introducción al Análisis de Circuitos Eléctricos

Introducción al Análisis de Circuitos Eléctricos Universidad Auónoma de Madrid Escuela Poliécnica Superior Inroducción al Análisis de Circuios Elécricos TEMA ESTUDIO DE CIRCUITOS EN RÉGIMEN PERMANENTE SINUSOIDAL Jesús Bescós Cano Fabriio Tiburi Paramio

Más detalles

CONOCIMIENTOS BÁSICOS DE

CONOCIMIENTOS BÁSICOS DE Deparameno de Tecnología Curso: Asignaura: Tema: 4º EO nsalaciones elécricas y auomaismos CONOCMENTO BÁCO DE ELECTCDAD PEGUNTA DE EXAMEN.E.. BUTAQUE 1. Cuando un áomo pierde elecrones se queda con carga

Más detalles

CAPÍTULO 2 RESPUESTA EN FRECUENCIA

CAPÍTULO 2 RESPUESTA EN FRECUENCIA CAPÍTULO RESPUESTA EN FRECUENCIA.1 GENERALIDADES Introducción Para el circuito de la figura.1, e encontrarán la funcione circuitale de admitancia de entrada y de ganancia de voltaje, la cuale e definen

Más detalles

Aislante. Coulomb voltio

Aislante. Coulomb voltio UTOS ELÉTOS ONDENSADOES Los condensadores, ambién denominados capaciares, son componenes elécricos que ienen la capacidad de almacenar energía elécrica en forma de campo elécrico, carga elécrica. Un condensador

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

AUTOCORRELACIÓN. Autocorrelación. Contraste de Hipótesis. Test de Durbin-Watson para. autocorrelación de tipo AR(1)

AUTOCORRELACIÓN. Autocorrelación. Contraste de Hipótesis. Test de Durbin-Watson para. autocorrelación de tipo AR(1) Auocorrelación AUTOCORRELACIÓN Auore: Ángel Alejandro Juan Pérez (ajuanp@uoc.edu), Renaa Kizy (rkizy@uoc.edu), Lui María Manzanedo Del Hoyo (lmanzanedo@uoc.edu). ESQUEMA DE CONTENIDOS Mariz Var[U] en modelo

Más detalles

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS AUNES DE ELERÓNA DE OENA. DESARROLLO EN SERE RGONOMÉRA DE FOURER.... Ejemlos de series de Fourier... Onda cuadrada..... ÁLULO DE ARMÓNOS....5.. Disorsión armónica...7... Disorsión de un armónico...7...

Más detalles

Flujo en Redes de Transporte

Flujo en Redes de Transporte Flujo en Rede de Tranpore Eduardo Urei Flujo en Rede de Tranpore p./55 Red de Tranpore Una Red de Tranpore e un grafo dirigido con peo (V, E, c) donde hay do vérice diinguido: uno llamado fuene y oro llamado

Más detalles

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Indutrial 008, Miguel

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Ecuaciones de evolución como ecuaciones integrales

Ecuaciones de evolución como ecuaciones integrales 22 (28) 46-51 Ecacione de evolción como ecacione inegrale Gonzalo orga 1 Lciano Barbani 2 1. Deparameno de Maemáica, Univeridad de acama. Copiapó, Chile 2. E-mail: gonzalo.aorga@da.cl 3. Inio de Maemáica

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inroducción a las Ondas. Ondas en cuerdas 3. Ondas sonoras acúsica Modulo II: Ondas. Ejemplos deinición de onda. Función de onda iajera.3 Ondas armónicas.4 Ecuación de ondas elocidad de propagación Bibliograía:

Más detalles

Definición de Rendimientos

Definición de Rendimientos 4/7/0 Definición de Rendimiento rof. Miguel ASUAJE Marzo 0 Una Definición General de Rendimiento La Energía no e crea ni e detruye. Solo e tranforma ero ay que agar Dionible aróx. 60 enando en la dionibilidad

Más detalles

INSTALACIONES DE PUESTA A TIERRA

INSTALACIONES DE PUESTA A TIERRA NSTALACONES DE PUESTA A TERRA NTRODUCCÓN Normaiva. ME BT 039. ME BT 0008 UNE 20-460 ME RAT 13 Recomendaciones UNESA Puesa a ierra Toda ligazón meálica direca, sin fusible ni proección alguna, de sección

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Apuntes de Fundamentos Físicos de la Informática Tema 6. El Transistor MOS

Apuntes de Fundamentos Físicos de la Informática Tema 6. El Transistor MOS Aune de Fundameno Fíico de la Informáica Tema 6. El Tranior MOS Verión: 1.1 Dae: 1/1/00 Auore: Reumen: Pedro Gómez Vilda Aune del ema 6 del rograma de Fundameno Fíico de la Informáica en el curo 000/01.

Más detalles

Anexo A.- ADAPTACIÓN DE IMPEDANCIA

Anexo A.- ADAPTACIÓN DE IMPEDANCIA Comilado, anexado y redactado or el Ing. Ocar M. Santa Cruz - 003 Anexo A.- ADAPTACIÓN DE IMPEDANCIA Tradicionalmente, la adatación de imedancia ha ido coniderada como una oeración difícil y delicada,

Más detalles

U R U L. Figura 4.1 Agrupamiento de impedancias en serie. La impedancia de un circuito serie está dada por la siguiente expresión: 1 L.

U R U L. Figura 4.1 Agrupamiento de impedancias en serie. La impedancia de un circuito serie está dada por la siguiente expresión: 1 L. ESONANA EN EDES ESONANA EN EDES A EGMEN SENODA 4. esonancia por variación de la frecuencia Agrupamieno en serie En ese ipo de agrupamieno los elemenos se conecan uno a coninuación del oro de forma al que

Más detalles

Modelo de planificación agregada de la producción, la plantilla, el tiempo de trabajo y la tesorería

Modelo de planificación agregada de la producción, la plantilla, el tiempo de trabajo y la tesorería Modelo de lanificación agregada de la roducción, la lanilla, el iemo de rabajo y la esorería Orlando ane Boieux, Alber Corominas Subias, Amaia Lusa García EOLI Enginyeria d Organizació i Logísica Indusrial

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. Estadística alicada a la emresa I Prof. D. Juan José Pérez Castejón 1 CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. En este tema se ersigue introducir el conceto

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque I. Cilindros neumáticos y oleohidráulicos ág. 1 BLOQUE I. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la arte de la Tecnología que estudia los fenómenos y las alicaciones

Más detalles

Asimetrías en la Respuesta de los Precios de la Gasolina en Chile 1

Asimetrías en la Respuesta de los Precios de la Gasolina en Chile 1 Aimería en la Repuea de lo Precio de la Gaolina en Chile 1 Felipe Balmaceda Cenro de Economía Aplicada Univeridad de Chile Paula Soruco Deparameno de Economía ILADES-Univeridad Albero Hurado 27 diciembre

Más detalles

ANÁLISIS TÉRMICO DE ALEACIONES BINARIAS DEL SISTEMA Al-Si INOCULADAS CON Al-3%Ti-1%B

ANÁLISIS TÉRMICO DE ALEACIONES BINARIAS DEL SISTEMA Al-Si INOCULADAS CON Al-3%Ti-1%B Página 1 ANÁLISIS ÉRMICO DE ALEACIONES BINARIAS DEL SISEMA Al-Si INOCULADAS CON Al-3%i-1%B JUAN MARCELO ROJAS 1, MARCELO DE AQUINO MARORANO 1 Docente, Deartamento de Ingeniería Metalúrgica y de Materiale

Más detalles

ESTUDIO DE LA MÁQUINA DE C.C.

ESTUDIO DE LA MÁQUINA DE C.C. ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº 3: Sistemas Eléctricos ESTUDIO DE LA MÁQUINA DE C.C. Sistemas Eléctricos 2009-2010. La Máquina de Corriente Continua

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Montaje. Vista frontal. Power Bus

Montaje. Vista frontal. Power Bus Amplificador Caracerísicas Monaje Acondicionador de señal de 1 canal Alimenación de 2 V CC Enrada para sensores de 2 o hilos o fuenes de alimenación de CA/CC de conaco de relé Función del emporizador Configurable

Más detalles

Máquinas Eléctricas (4º Curso)

Máquinas Eléctricas (4º Curso) Escuela Técnica Superior de Ingenieros de Minas Máquinas Elécricas (4º Curso) Apunes de la asignaura. Curso 200/2002 Juan José Sánchez Inarejos Tema. FUNDAMENTOS DE MÁQUINA ELÉCTRICAS... Inroducción a

Más detalles

6. Métodos para resolver la ecuación completa.

6. Métodos para resolver la ecuación completa. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 6. Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y +

Más detalles

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

Efecto traspaso de precios internacionales de alimentos sobre precios internos: Perú 1994 2009. Resumen

Efecto traspaso de precios internacionales de alimentos sobre precios internos: Perú 1994 2009. Resumen Efeco rapao de precio inernacionale de alimeno obre precio inerno: Perú 1994 2009. Guavo Ganiko Maumura. Reumen El rabajo iene como objeivo medir la magniud del rapao de precio exerno de alimeno obre precio

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: rabajo y poencia mecánica SGUICES020CB32-A16V1 Solucionario guía Energía I: rabajo y poencia mecánica Íem Alernaiva Habilidad 1 D Comprensión 2 C Aplicación

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Propuesto en el libro Problemas de Física. J. Ruiz Vázquez. Científicas

Propuesto en el libro Problemas de Física. J. Ruiz Vázquez. Científicas POBLEMAS VAIADOS -08.-Cundo un poirón choc de frene con un elecrón e niquiln bo y, coo reuldo, e obienen do foone dirigido en enido conrrio. Si l energí cinéic de cd prícul e de MeV, deerinr l longiud

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane

Más detalles

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas:

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas: Se puede reecribir la unción de onda de aria orma diina: T 1 T coπ Si deinimo el número de onda: π π π co Onda enoidal que aanza en dirección + Onda enoidal que aanza en dirección - co co co T π π + +

Más detalles