CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA"

Transcripción

1 CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco, Tarragona La medda de una masa en una balanza analítca es una de las operacones más comunes en un laboratoro de análss. Como cualquer otra medda nstrumental, la medda de una masa tambén está sujeta a un error expermental, error que depende de la propa balanza y de las condcones en que se lleva a cabo la pesada. Tras la verfcacón de la trazabldad de la medda de masa a través del proceso de calbracón de la balanza, abordada en otro artículo de esta sere, en este artículo se descrbe cómo calcular la ncertdumbre asocada a la pesada de una determnada muestra. Incertdumbre de las meddas de masa La ncertdumbre de una medda de masa depende de los errores asocados al proceso de calbracón de la balanza, a la derva de la msma y al propo proceso de pesada de la muestra. Para calcularla es recomendable segur la metodología propuesta por la ISO (Gude to the Expresson of Uncertanty n Measurement) [GUM 199], la cual se basa en dentfcar, cuantfcar y combnar todas las fuentes de ncertdumbre del procedmento de medda. La Fgura 1 muestra las cuatro etapas dferencadas propuestas por la ISO para calcular la ncertdumbre [Maroto 00]. A contnuacón, se detalla cómo aplcar cada una de dchas etapas al cálculo de la ncertdumbre de una medda de masa. Especfcacón masa = masam correccón derva Identfcacón Calbracón Fuentes de ncertdumbre: Medda de la masa Derva Cuantfcacón Cálculo de las fuentes de ncertdumbre dentfcadas Combnacón Cálculo de la ncertdumbre total: Ley de propagacón de errores Fgura 1. Etapas a segur para calcular la ncertdumbre de una medda de masa según el método de la ISO. 1

2 Especfcacón En la etapa de la especfcacón debe establecerse cuál es la relacón, s es posble a través de una ecuacón matemátca, entre el resultado de la medda (en este caso la masa de una muestra) y los parámetros de los que depende. La masa de una muestra se expresa como: masa = masam correccón derva [1] donde masa m es el peso de la muestra regstrado por la balanza. La correccón se calcula en el proceso de calbracón de la balanza [Ru 001] y consdera la dferenca entre el valor asgnado de las masas patrón y el valor proporconado por la balanza al pesar la masa patrón. La derva de la balanza es debda a dos causas: 1) a que con el paso del tempo la balanza se va descalbrando; y ) al error sstemátco debdo a la dferenca entre la temperatura a la que se calbra la balanza (0ºC) y la temperatura a la que se pesa la muestra. En esta expresón no se ha consderado el efecto del empuje del are ya que suele ser desprecable porque la densdad de las muestras normalmente es mucho mayor que la densdad del are. Este efecto es consecuenca drecta del prncpo de Arquímedes y hace que los valores proporconados por la balanza sean nferores a su verdadero valor [Ru 001]. Identfcacón En esta etapa deben dentfcarse todas las fuentes de ncertdumbre asocadas a la pesada de una muestra. Estas fuentes de ncertdumbre son: 1. Incertdumbre de la calbracón. Cualquer nstrumento de medda debe calbrarse para garantzar la trazabldad de los resultados que proporcona [Ru 001]. Durante el proceso de calbracón tambén se realzan meddas, las cuales, obvamente, no están exentas de error nstrumental. La ncertdumbre de esta etapa, pues, está asocada a la correccón calculada durante la calbracón de la balanza y depende de la ncertdumbre de las masas patrón y de los errores asocados al propo proceso de calbracón.. Incertdumbre de la propa medda de la masa. Depende de la resolucón de la balanza y de la precsón de la pesada, a la cual contrbuyen los errores aleatoros asocados al analsta y a las magntudes de nfluenca (temperatura, presón atmosférca, humedad,...).. Derva de la balanza. Consdera el error sstemátco debdo a que la balanza se va descalbrando con el paso del tempo y a la dferenca entre la temperatura a la que se realza la pesada y la temperatura a la que se ha calbrado la balanza. El lector puede preguntarse por qué es necesaro consderar tambén la ncertdumbre de la calbracón y de la derva. Imagnemos que sólo consderásemos la ncertdumbre de medda de la balanza, y que esta fuera de ±0.000 g. Entonces, s pesáramos una muestra y obtuvéramos un valor de g, podríamos consderar (con una confanza del 95%) que la masa verdadera está comprendda entre y g. Sn embargo, magnemos que hemos calbrado la balanza

3 con una masa patrón de g y que la balanza do un valor medo (procedente de dversas meddas) de exactamente g. Según esto, no habría que aplcar nngún tpo de correccón a las meddas futuras. No obstante, ambos g son ncertos. El prmero porque toda masa patrón lleva asgnada una ncertdumbre (supongamos de ± g) y el segundo porque la masa patrón hay que pesarla con la balanza, la cual hemos dcho que tene una ncertdumbre asocada a la propa medda de ±0.000 g. Esto mplca que el valor de correccón de g obtendo en la calbracón posee una ncertdumbre asocada. Es decr, es un cero ncerto, y esa ncertdumbre hay que trasladarla al resultado fnal. Del msmo modo, en el caso de la derva hay que contemplar el hecho de que la temperatura a la que se realza la pesada de la muestra problema no sea la msma que la temperatura a la que se calbró la balanza en su día. Del msmo modo, es necesaro consderar que la correccón calculada en la calbracón puede haber varado ya que con el paso del tempo la balanza se va descalbrando. Cuantfcacón Una vez dentfcadas todas las fuentes de error que pueden contrbur a la ncertdumbre fnal, la sguente etapa consste en cuantfcar su magntud: 1. Incertdumbre de la calbracón La ncertdumbre de la calbracón depende de que la balanza la calbre el propo laboratoro (calbracón nterna) o ben de que se calbre en otro laboratoro (calbracón externa). a) Calbracón nterna En un artículo anteror de esta sere [Ru 001], se descrbó el proceso de calbracón de una balanza. Este tpo de calbracón se realza por comparacón drecta con masas patrones que cubren el campo de medda de la balanza. A este tpo de calbracón se la conoce como calbracón drecta ya que el valor de referenca de las masas patrón se expresa en la msma magntud en que mde la balanza (es decr, en undades de masa). La calbracón de la balanza debe hacerse entre 5 y 10 puntos de la escala de la balanza de tal forma que el campo de medda quede dvddo en ntervalos aproxmadamente guales. En cada uno de estos puntos de calbracón debe pesarse entre 6 y 10 veces la masa patrón [MINER 1994]. De esta forma, se puede calcular la correccón, c, para cada punto de calbracón a partr de la desvacón entre el valor de la masa patrón, m pat,, y el valor medo obtendo al pesar la masa patrón n veces con la balanza, m : c = m m [] pat, En esta expresón se ha desprecado el efecto del empuje del are, ya que la densdad del acero de las masas patrón es mucho mayor que la densdad del are.

4 La ncertdumbre debda a la calbracón tene, por tanto, dos componentes: uno SISTEMÁTICO debdo a la propa correccón (ya que las pesadas futuras no se corrgen por el valor de la correccón) y que debe nclurse s la correccón calculada es sgnfcatva, y uno ALEATORIO debdo a la ncertdumbre de dcha correccón. La ncertdumbre de la correccón en cada punto de calbracón se calcula aplcando la ley de propagacón de errores a la expresón anteror [GUM 199, Maroto 00]: s( m ) res U( mpat, ) ( calbracón ) c u = n [] El prmer térmno de la Ec. consdera la ncertdumbre del valor medo, m, obtendo al pesar la masa patrón. Esta ncertdumbre tene dos componentes. El prmero consdera los errores cometdos en el proceso de pesada debdos a la varabldad de las condcones ambentales y al propo analsta y se calcula utlzando la desvacón estándar, s ( m ), de las n meddas obtendas al pesar la masa patrón. El segundo componente consdera la ncertdumbre debda a la resolucón, res, de la balanza. El segundo térmno de la Ec. consdera la ncertdumbre de la masa patrón y se calcula utlzando la ncertdumbre expandda, U(m pat, ), proporconada por el fabrcante. Esta ncertdumbre se ha dvddo por porque, normalmente, el fabrcante la calcula utlzando un valor de k=. Fnalmente, c es la correccón calculada durante la calbracón. Este térmno debe nclurse s la correccón calculada es sgnfcatva ya que las futuras meddas hechas con la balanza calbrada no se corrgen por dcho valor. b) calbracón externa El cálculo de la ncertdumbre de calbracón es más sencllo s la calbracón la ha realzado otro laboratoro ya que se utlza la nformacón obtenda en el certfcado de calbracón. En este certfcado, debe fgurar el valor de la correccón obtenda, c, y su ncertdumbre asocada, U(c ), para cada uno de los puntos del campo de medda donde se ha realzado la calbracón de la balanza. Normalmente, el fabrcante proporcona una ncertdumbre expandda calculada con un valor de k=. Para obtener la ncertdumbre estándar, u(c ), debe dvdrse U(c ) por el valor de k=. Además, al gual que en la calbracón nterna, debe nclurse en la ncertdumbre de calbracón la propa correccón calculada cuando ésta sea sgnfcatva.. Incertdumbre de la medda de masa U( c ) ( calbracón ) c u = [4] Esta ncertdumbre depende de la precsón (condcones ambentales en las cuales se realza la medda) y de la resolucón de la balanza: res u( medda) = s( m ) [5] 4

5 La ncertdumbre debda a la precsón puede evaluarse a partr de la desvacón estándar, s ( m ), de las meddas de las masas patrón para cada punto y la resolucón de la balanza, res, vene especfcada por el fabrcante.. Derva de la balanza La ncertdumbre de la derva consdera dos componentes: 1) la ncertdumbre debda a que la balanza se va descalbrando con el paso del tempo, u(d cal ); y ) la ncertdumbre asocada al error sstemátco debdo a la dferenca entre la temperatura a la que se calbra la balanza (0ºC) y la temperatura a la que se pesa la muestra, u(d T ). cal ) u( T ) u ( derva) = u( d d [6] La ncertdumbre u(d cal ) puede obtenerse calculando la derva que tene la balanza entre dos calbracones sucesvas. Esta derva se calcula para cada punto de la calbracón como la dferenca, df, entre las correccones obtendas en ambas calbracones. La ncertdumbre u(d cal ) se calcula asumendo una dstrbucón rectangular: df u ( dcal) = [7] La ncertdumbre debda a la dferenca entre la temperatura en que se calbra la balanza y la temperatura en que se pesa la muestra debe calcularse para las dferentes masas en que se ha realzado la calbracón de la balanza con la sguente expresón: u( d T sen T mpat, ) = [8] donde sen es la derva de sensbldad debda a cambos de temperatura y vene dada en las especfcacones de la balanza, T es la dferenca máxma que puede haber entre la temperatura del laboratoro y la temperatura a la que se hace la calbracón de la balanza (0ºC) y m pat, es el valor de referenca de la masa patrón. S, por ejemplo, la temperatura del laboratoro puede tomar valores comprenddos entre ºC y 18ºC, el T sería el correspondente al máxmo ntervalo entre T cal T lab, es decr, ºC - 0ºC = ºC. Combnacón Una vez que en la etapa de cuantfcacón se han calculado todas las fuentes de ncertdumbre, éstas deben combnarse aplcando la ley de propagacón de errores a la expresón propuesta en la etapa de especfcacón (ecuacón 1). De esta forma, se obtene una ncertdumbre estándar combnada, u, asocada al peso de una muestra problema. 5

6 Calbracón de la balanza Medda de masa Derva de la balanza u = s res n U( m pat, ) res c s df ( sen T m pat, ) Fgura. Expresón para calcular la ncertdumbre de la masa de una muestra. La Fgura muestra la expresón para calcular la ncertdumbre total de la masa de una muestra. Se observa que esta expresón es la suma de los tres componentes de ncertdumbre dentfcados durante la etapa de dentfcacón: 1) Calbracón de la balanza; ) medda de masa; y ) derva de la balanza. La ncertdumbre de calbracón está calculada asumendo que la balanza se calbra nternamente. Se observa, a partr de la ecuacón de la Fgura, que la ncertdumbre estándar asocada a la medda de una masa, u, depende del valor de la propa masa medda, a través de los dferentes térmnos que contenen el subíndce. Dchos térmnos se han obtendo a partr de meddas sobre la masa patrón de masa. El últmo paso, consste en calcular la ncertdumbre total expandda, U. Para ello, debe multplcarse la ncertdumbre estándar por un factor de cobertura, k: U = k u [7] Normalmente, k es gual a. De esta forma, hay aproxmadamente un 95% de probabldad de que el ntervalo masa ± U contenga la masa verdadera de la muestra problema. Como se ha dcho anterormente, la ncertdumbre debe calcularse para cada punto donde se realza la calbracón de la balanza. Para asgnar la ncertdumbre de la masa de una muestra problema hay dos posbldades: 1) asgnar a la muestra problema el valor de ncertdumbre del punto de calbracón más próxmo a la masa de la muestra problema; y ) asgnar a todas las muestras la ncertdumbre mayor calculada, ndependentemente de la masa de la muestra problema. Conclusones En el presente artículo hemos abordado el cálculo de la ncertdumbre del peso de una muestra problema. Para ello, se ha utlzado la metodología propuesta por la ISO que consste en dentfcar, cuantfcar y combnar cada uno de los componentes de ncertdumbre. Se ha vsto que hay tres componentes de ncertdumbre: la ncertdumbre de la calbracón, la ncertdumbre del proceso de pesada de la 6

7 muestra problema y la derva de la balanza. Los dos prmeros térmnos de ncertdumbre pueden obtenerse a partr de la nformacón obtenda en la calbracón mentras que el tercer térmno puede obtenerse utlzando la nformacón de las especfcacones de la balanza. La ncertdumbre debe calcularse en cada uno de los puntos del campo de medda donde se ha realzado la calbracón de la balanza. Una forma senclla de asgnar la ncertdumbre de la masa de una muestra problema es asgnándole la ncertdumbre mayor calculada. En el caso de que se requeran ncertdumbres menores, debe asgnarse la ncertdumbre del punto de calbracón más próxmo a la masa de la muestra problema. Referencas bblográfcas Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Estrategas para el cálculo de la Incertdumbre Técncas de Laboratoro 70 (00) -7. Jord Ru, Rcard Boqué, Alca Maroto, F. Xaver Rus, Trazabldad en meddas físcas medante calbracón drecta: calbracón de una balanza Técncas de Laboratoro, 65 (001) Gude to the expresson of uncertanty n measurement. BIPM, IEC IFCC, ISO, IUPAC, IUPAP, OIML, Gnebra, 199. (ISBN ) Mnstero de Industra y Energía, Sstema de Calbracón Industral (SCI), Proceso de calbracón M-00 para balanzas monoplato M-01.05, Madrd, Los autores agradecen todos los comentaros relaconados con los contendos de este artículo. Pueden drgrse, medante mensaje electrónco, a la dreccón: Una versón en soporte electrónco de este artículo e nformacón adconal puede encontrarse en 7

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL Procedmento de Calbracón Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS 10 Edcón dgtal 1 Este procedmento ha sdo revsado, corregdo y actualzado, s ha sdo necesaro. La presente edcón se emte

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

PROCEDIMIENTO ME- 021 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS

PROCEDIMIENTO ME- 021 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS PROCEDIMIENTO ME- 0 PARA LA CALIBRACIÓN DE COLUMNAS DE LÍQUIDO MANO Y BAROMÉTRICAS 0 Edcón dgtal Este procedmento ha sdo revsado, corregdo y actualzado, s ha sdo necesaro. La presente edcón se emte en

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Simposio de Metrología 25 al 27 de Octubre de 2006

Simposio de Metrología 25 al 27 de Octubre de 2006 Smposo de Metrología 25 al 27 de Octubre de 2006 ESTIMACIÓN DE INCERTIDUMBRE EN LA MEDICIÓN DE ABSORCIÓN DE HUMEDAD EN AISLAMIENTOS Y CUBIERTAS PROTECTORAS DE CONDUCTORES ELÉCTRICOS POR EL MÉTODO ELÉCTRICO

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Boletín Científico Técnico INIMET ISSN: Instituto Nacional de Investigaciones en Metrología. Cuba

Boletín Científico Técnico INIMET ISSN: Instituto Nacional de Investigaciones en Metrología. Cuba Boletín Centífco Técnco INIMET ISSN: 0138-8576 normateca@nmet.cu Insttuto Naconal de Investgacones en Metrología Cuba Perdomo Morales, A. J.; Rodríguez López, J.; Fernández Álvarez, F.; Rodríguez Mambuca,

Más detalles

UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN

UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN Scenta et Technca Año XV, No 43, Dcembre de 2009. Unversdad Tecnológca de Perera ISSN 0122-1701 288 UTILIZACIÓN DEL TEOREMA DEL LÍMITE CENTRAL EN EL CÁLCULO DE LA INCERTIDUMBRE DE MEDICIÓN Use of the central

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF)

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF) ÓPTICA PURA Y APLICADA. www.sedoptca.es Gono espectrofotómetro para medr la funcón de dstrbucón bdrecconal de dspersón (BSDF) Gono spectrophotometer for bdrectonal scatterng dstrbuton functon (BSDF) measurements

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 49 MODELO

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE

CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE OTDRs EN LA ESCALA DE LONGITUD A 550 nm J. C. Bermúdez, M. A. López, W. Schmd Centro Naconal

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Sobreeducación, Educación no formal y Salarios: Evidencia para España 1

Sobreeducación, Educación no formal y Salarios: Evidencia para España 1 XIV ENCUENTRO DE ECONOMÍA APLICADA Huelva, 2 y 3 de Juno de 2011 Sobreeducacón, Educacón no formal y Salaros: Evdenca para España 1 Sandra Neto AQR-IREA, Unverstat de Barcelona Dpt. Econometra, Estadístca

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

CUADRIENIO 2011 2014

CUADRIENIO 2011 2014 INFORME TÉCNICO PEAJE POR USO DE INSTALACIONES DE TRANSMISIÓN ADICIONAL POR PARTE DE USUARIOS SOMETIDOS REGULACIÓN DE PRECIOS QUE SE CONECTAN DIRECTAMENTE DESDE INSTALACIONES ADICIONALES CUADRIENIO 2011

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

Deducción de parámetros y comportamiento

Deducción de parámetros y comportamiento Captulo 7. Deduccón de paráetros y coportaento presto por el odelo 287 Capítulo 7: presto por el odelo Deduccón de paráetros y coportaento S ben la utlzacón del odelo consttuto planteado requere la deternacón

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

1 Que a través de la Ley N 23.753 se regulan las medidas necesarias para la

1 Que a través de la Ley N 23.753 se regulan las medidas necesarias para la ./f;;;.roym/24 r O O f. V2-Tft},94/vr/0:7. J4v,dromzrx) BUENOS ARES, 2 6 FEB 9.06 VSTO la Ley N 23.753, el Decreto N 286/204, la Resolucón N 56/204 del Mnstero de Salud y la Dsposcón GPM N 2903/205, el

Más detalles

Obtención de mapas de similitud sísmica 2D mediante redes neuronales Oscar Rondón*, PDVSA-Intevep, y Rafael Banchs, PDVSA -Intevep

Obtención de mapas de similitud sísmica 2D mediante redes neuronales Oscar Rondón*, PDVSA-Intevep, y Rafael Banchs, PDVSA -Intevep Obtencón de mapas de smltud sísmca 2D medante redes neuronales Oscar Rondón, PDVSA-Intevep, y Rafael Banchs, PDVSA -Intevep Resumen El desarrollo de metodologías para obtener e ntegrar nformacón de múltples

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles