Tema III. Lección 1ª. Lección 2º. Lección 3ª. De la triboelectricidad al pararrayos. La corriente eléctrica. El campo magnético

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema III. Lección 1ª. Lección 2º. Lección 3ª. De la triboelectricidad al pararrayos. La corriente eléctrica. El campo magnético"

Transcripción

1 Tema III Lección 1ª De la triboelectricidad al pararrayos Lección 2º La corriente eléctrica Lección 3ª El campo magnético 1

2 De la triboelectricidad al pararrayos Primeras experiencias eléctricas La Ley de Coulomb Campo y potencial eléctrico Efectos y aplicaciones del potencial electrostático 2

3 3

4 Así quedó 4

5 Consejos para poner gasolina EN SU VEHICULO: Frene, ponga el freno de mano, apague el motor, radio y luces NUNCA regrese a su vehículo mientras está cargando combustible. POR PRECAUCIÓN: Acostúmbrese a cerrar la puerta del coche al salir o entrar en él, así se descargará de electricidad estática al tocar algo metálico. Después de cerrar la puerta TOQUE LA PARTE METÁLICA DE LA CARROCERÍA, antes de tocar la pistola de combustible. De esta manera la electricidad estática de su cuerpo se descargará en el metal y no en la pistola. EXTREME LAS PRECAUCIONES si la gasolina se ha derramado o salpicado en el piso. ANTES de poner en marcha nuevamente el motor, la gasolina derramada debe ser recogida 5

6 CONCLUSIONES Existe carga Cómo es? cómo aparece? Se puede almacenar generando cuerpos cargados Puede pasar de un cuerpo a otro Cómo? en qué condiciones? 6

7 Cómo es la carga? Existen dos tipos de carga Resinosa (positiva) Vítrea (negativa) 7

8 Cómo se produce I La electrización por frotamiento o TRIBOELECTRICIDAD es la primera forma de contacto con las cargas eléctricas que hemos tenido. 8

9 Materiales más positivos Materiales más negativos Escala triboeléctrica aire vidrio pulido fibra sintética piel de conejo mica lana piel de gato plomo aluminio papel algodón papel ebonita acero madera caucho resina cobre níquel plata azufre vidrio sin pulir acetato (celuloide) poliéster poliuretano polipropileno vinilo (PVC) silicona teflón Los materiales que están más próximos al extremo más negativo, tienen propensión a adquirir carga eléctrica negativa al rozar con materiales situados encima de ellos. Los materiales más próximos al extremo más positivo tienen tendencia adquirir carga eléctrica positiva al rozar con los situados debajo de ellos. Para adquirir una carga máxima los materiales puestos en contacto debe estar lo más apartados posible el uno del otro en esta lista 9

10 Generador de van der Graaff Este generador es capaz de almacenar en su parte superior una gran cantidad de carga Por frotamiento, que se realiza en la base, se desprende carga y se transporta hasta la cabeza 10

11 Efectos electrostáticos 11

12 Como se produce II Hemos visto que la carga se produce por frotamiento También se produce por: contacto e inducción 12

13 Contacto Si mantenemos la varilla, la bola del péndulo se separa de su posición de equilibrio La bola del péndulo se ha cargado 13

14 Carga por inducción La barra cargada induce cargas en las dos bolas, que están en contacto Al separar las bolas cada una mantiene su carga Se mantienen así las dos bolas? 14

15 Fuerza entre dos cargas El módulo es proporcional al valor de ambas cargas. Puede ser atractiva o repulsiva según el signo de las cargas. Siendo atractiva para cargas de distinto signo y de repulsión para cargas del mismo signo. Es del tipo acción-reacción Varia con la distancia de forma inversamente proporcional a su cuadrado. Tiene la dirección de la línea que une las cargas. 15

16 La Ley de Coulomb F q q ' d 2 r F K q q ' e d 2 El valor de la constante depende del sistema de medida utilizado y del medio en el que estén las cargas. La fuerza sobre cada uno de los péndulos aparece aunque estos no estén en contacto. Estamos ante una acción a distancia = r u r 16

17 Problema Cuál será la fuerza que actuará sobre un electrón colocado en el segmento que une dos cargas de y c, separadas 2 m y que dista 0.5 m de la negativa? La situación será como se indica en la figura, el electrón se verá repelido por la carga negativa (Q b ), y atraído por la positiva (Q a ), lo que nos da siempre una fuerza siempre dirigida hacia la izquierda y contenida en la línea que las une. Para la carga A 19 Para la carga B El módulo de la resultante: r F K Q e a a = e = d r FB = 9 10 a , 16, 10 2 ( 2 05, ) 19 = 46, 10 = 32, 10 r r r F = F + F = 3, , 6 10 = 4, 9 10 N a b 10 N 11 N 17

18 Acciones a distancia Cuando dejamos un cuerpo en el aire se cae solo. Si estuviera en la Luna caería igual que en la Tierra? y si está en una nave espacial, también cae? Ni en la Luna ni en la Tierra nadie lo toca, pero cae En estos dos casos estamos en un campo gravitatorio 18

19 El campo eléctrico El trocito de papel sube hacia la mano por qué? El trocito de papel se ha cargado por inducción y es atraído por la mano, aunque no esté en contacto con ella. EL campo se pone de manifiesto por la aparición de una fuerza 19

20 Campo Es la región del espacio en la que, cuando colocamos el cuerpo adecuado en uno cualquiera de sus puntos, aparece sobre él una fuerza. El campo existe ya pero sólo se pone de manifiesto al colocar el cuerpo adecuado Un campo no es una fuerza, se manifiesta por la aparición de una fuerza. r r r r F= q E E= K Q d u ; e 2 20

21 Representación del campo El campo eléctrico en cada punto, lo representamos por la trayectoria que seguiría una carga positiva colocada en el punto (línea de campo) El módulo nos lo da el valor de la fuerza que actúa sobre una carga unitaria positiva, lo medimos en V/m Entendemos que sale de las cargas positivas y termina en las cargas negativas 21

22 Problema Cuál será el campo creado por una carga de +0,05 C en un punto que dista 3m de ella? El módulo del campo eléctrico será = = V/ m r E K Q e d = 2 Como la carga que genera el campo es positiva, la dirección del campo será la línea que une la carga con P y distanciándose de ella. Como de P sólo nos dicen que dista 3 m de la carga, podrá estar en cualquier punto de la superficie esférica de radio 3 m centrada en la carga 22

23 Otra descripción del campo eléctrico Para describir el campo eléctrico empleamos: Líneas de campo Superficies equipotenciales Qué son las líneas equipotenciales? o mejor qué es el potencial eléctrico? 23

24 Potencial eléctrico Si la carga se mueve espontáneamente pierde energía, si la pierde la tenía. Para que la gane se la tenemos que dar nosotros. Necesitaremos dar más o menos energía según en que punto se encuentre y a donde vaya. A la energía por unidad de carga, que se gasta o que tenemos que darle, para ir de un punto a otro la llamamos diferencia de potencial entre esos dos puntos ( W/q) = V B -V A = V 24

25 Formulación del potencial La energía para mover una carga q entre A y B será W = q V Matemáticamente eso lo escribimos como: r r r r r r W = F dl = ( q E) dl = q E dl 25

26 Relación potencial campo Si el trabajo lo realizamos nosotros, la energía aumenta pues se acerca a la carga que crea el campo. Cuando nosotros realizamos trabajo decimos que es un trabajo negativo B V V = r r E dl B A A 26

27 Campo y medios materiales Los medios materiales se clasificaron en eléctricos (hoy aislantes) y anaeléctricos (hoy conductores) según se electrizaran por frotamiento o no. Realmente según se advirtiera o no su electrización Hoy hablamos de conductores y dieléctricos. 27

28 Conductores Los conductores se caracterizan por tener cargas libres en su volumen Al aplicarles un campo eléctrico sus electrones se ven sometidos a una fuerza que los lleva a la superficie. El movimiento de los electrones sólo puede terminar cuando el campo en el interior del conductor es nulo. 28

29 Conductores II Se caracterizan por que el potencial es único en todo el conductor El campo en el interior es nulo El campo en su superficie es perpendicular a ella y más intenso cuanto menor es su radio (efecto punta) Fuego de san Telmo 29

30 Dieléctricos Los dieléctricos no tienen en su interior cargas libres Los centros de las cargas positivas y negativas coinciden El campo eléctrico deforma sus moléculas, los dieléctricos se polarizan 30

31 Efectos del potencial También las tormentas 31

32 La atmósfera En condiciones de buen tiempo, en todas las capas de la atmósfera existe un campo eléctrico muy pequeño y normal a la superficie de la tierra. La ionosfera como tiene una alta densidad de iones, se la puede considerar como un conductor. Su conductividad es alta. La troposfera tiene una baja conductividad, que aumenta mucho con la altura. El campo eléctrico disminuye rápidamente con la altura. 32

33 Troposfera y Campo eléctrico En la troposfera existen cargas procedentes de: Rayos cósmicos Radiación ultravioleta Se produce un campo La pequeña conductividad del aire permite: El almacenamiento de las cargas en regiones en las que el campo eléctrico es muy pequeño Un cierto grado de movilidad de las cargas en las regiones en las que el campo es mayor El valor del campo eléctrico en una cierta región de ella, depende también de la composición de la atmósfera, un valor típico en buenas condiciones es 130 V/m. La contaminación por partículas cargadas, como las procedentes de los aerosoles, aumenta el campo eléctrico en esa región (un valor típico 500 V/m). 33

34 Alguna nube 34

35 Formación de tormentas Los elementos sólidos provocan que se aglutinen en ellos partículas de vapor formando una gota de mayor tamaño En su caída y por frotamiento con otras gotas de vapor de menor tamaño se electrizan negativamente Se provoca una redistribución de cargas y un aumento en el valor del campo eléctrico. 35

36 Formación de rayos El aumento del campo supone una mayor diferencia de potencial A partir de un valor crítico (de 10 a 45 kv) salta la chispa y aparece el rayo. El rayo supone una transformación de la energía eléctrica en: Energía electromagnética (relámpago) Energía acústica (trueno) Energía calorífica 36

37 La energía se transforma en Electromagnética produciéndose fogonazos de luz, los relámpagos, dentro de la nube, entre nubes o tierra-nube Calorífica, que no la visualizamos y origina aumento de temperatura Acústica de fácil apreciación 37

38 Rayos 38

39 Cómo son los rayos? Presentan trayectorias irregulares, pues siguen caminos ionizados que presentan menos resistencia eléctrica. Pueden compararse a corrientes eléctricas de alta intensidad ( Amperios) 39

40 Rayos 40

41 Más rayos 41

42 Cómo viajan los rayos? La tierra está cargada positivamente por inducción Desde la nube se produce una guía que viaja a 2 x 10 5 m/s y en zigzag hasta las cercanías de la Tierra. Desde la Tierra se produce una corriente de iones positivos en busca de la guía negativa (efecto corona). Si se produce la unión una corriente de iones positivos circula hacia la nube y se produce el RAYO 42

43 Efectos de los rayos Un rayo es equivalente a una corriente eléctrica de entre 5 y 300 ka ( en casa 25 A) debida a una tensión entre y un millón de voltios. Un rayo directo puede suponer una potencia de unos diez mil millones de vatios. Un horno o una lavadora consumen del orden de tres o cuatro mil vatios. De forma directa pueden producir: Quemaduras en la piel, lesiones en retina, lesiones pulmonares y óseas, muerte por paro cardíaco, paro respiratorio, lesiones cerebrales. 43

44 Efectos indirectos Potenciales desfasados, peligrosos en las zonas de aire libre Las corrientes inducidas y las variaciones bruscas del potencial en las cercanías del punto de impacto, pueden afectar a conducciones metálicas de gas, agua, telefonía o red eléctrica. 44

45 Prevención del rayo Para prevenir los efectos de los rayos se emplean los pararrayos. Los primeros fueron atraparrayos o pararrayos ionizantes. 45

46 Pararrayos ionizantes Ionizan el aire y crean un camino para captar la descarga del rayo Ionización pasiva (Franklin). El campo eléctrico es mayor en las zonas terminadas en punta (efecto punta) Ionización activa emiten descargas eléctricas de polaridad inversa al rayo, lo atraen y elevan el punto de impacto por encima de la estructura a proteger. Se crea mayor radio de cobertura en la base que un pararrayos convencional 46

47 Pararrayos desionizantes Los pararrayos desionizantes constan de dos electrodos de aluminio separados por un aislante dieléctrico El pararrayos CTS se encarga de disipar todas las cargas a la toma de tierra en forma de corriente eléctrica, el efecto de generar una fuga progresiva de corrientes eléctricas de baja intensidad a la toma de tierra, causa la eliminación del efecto corona y evita la formación de los caminos trazadores y en consecuencia, la formación e impacto del rayo queda anulado en toda la zona de protección. 47

48 Aplicaciones Pulverizadores Filtros Desionizadores del aire Electroforesis Pinturas electrostáticas Impresora Fotocopiadora 48

49 La fotocopiadora I Consta de: Un sustrato metálico sobre el que se encuentra un material fotoconductor en el que se induce carga electrostática desde un ánodo a un alto potencial 49

50 La fotocopiadora II La luz procedente de la imagen que queremos copiar genera carga libre en el material fotoconductor que neutraliza la carga estática en algunos puntos 50

51 La fotocopiadora III Las partículas de toner, negativas, son atraídas por la carga electrostática positiva del material fotoconductor, que las fija sobre él. 51

52 La fotocopiadora IV El paso del papel, que se ha electrizado positivamente, sobre el material fotoconductor hace que se adhiera el toner en los puntos adecuados, reproduciendo la imagen. 52

53 Resumen La materia está formada por cargas positivas y negativas La electricidad estática puede producir grandes diferencias de potencial. El campo eléctrico se pone de manifiesto por la fuerza ejercida sobre cargas. En el interior de los conductores el campo es nulo y perpendicular a su superficie. Los dieléctricos se polarizan. 53

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS EXPERIMENTO 1: Electrostática EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS Objetivos Obtener cargas de distinto signo mediante varios métodos y sus características Uso del electroscopio como detector

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Tema 2: Electrostática en medios conductores

Tema 2: Electrostática en medios conductores Tema : Electrostática en medios conductores. onductores y aislantes. arga por inducción.3 ondiciones de borde para el campo y para el potencial.4 ampo, densidad de carga y potencial en el interior de un

Más detalles

PROTECCION EN GASOLINERAS

PROTECCION EN GASOLINERAS 0 PROTECCION EN GASOLINERAS PRESENTACION TÉCNICA IV 2012 . PARARRAYOS PDCE. PROTECCIÓN REAL EN GASOLINERAS SI HAY UNA INSTALACIÓN QUE ES SENSIBLE DE SER AFECTADA POR LOS IMPACTOS DEL RAYO ESTAS SON,JUNTO

Más detalles

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO ELÉCTRICO

FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO ELÉCTRICO FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO 1. INTRODUCCIÓN ELÉCTRICO Desde la antigüedad, Tales de Mileto, 600 a. C., se conocían fenómenos electrostáticos, sin embargo sólo hasta comienzos del

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

LINEAS EQUIPOTENCIALES

LINEAS EQUIPOTENCIALES LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.

Más detalles

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev. MECANISMOS DE CONDUCCION ELECTRICA EN GASES Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla de vidrio, la cual está ocupada únicamente

Más detalles

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

PROTECCION EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA

PROTECCION EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA 0 PROTECCION EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA PRESENTACION TÉCNICA IV 2012 . PARARRAYOS PDCE. PROTECCIÓN REAL EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA SI HAY UNA INSTALACIÓN

Más detalles

Manual para el Laboratorio de Física II. Electrostática. Generador de Van Der Graff

Manual para el Laboratorio de Física II. Electrostática. Generador de Van Der Graff Universidad de los Andes Núcleo Dr. Pedro Rincón Gutiérrez Departamento de Ciencias Manual para el Laboratorio de Física II. Electrostática. Generador de Van Der Graff Realizado por: Chacón Contreras,

Más detalles

ELECTROSTÁTICA. 2.- Suponiendo que los signos de las cargas del electrón y del protón se invirtiesen, sería este mundo diferente? Explicar.

ELECTROSTÁTICA. 2.- Suponiendo que los signos de las cargas del electrón y del protón se invirtiesen, sería este mundo diferente? Explicar. ELECTROSTÁTICA 1.- Suponiendo que el valor de la carga del protón fuera un poco diferente de la carga del electrón, por ejemplo un 0,1%, sería este mundo muy diferente?. Explicar. Si, pues todos los cuerpos

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Especial 20/02/09: Protecciones electrostáticas ESD Carlos MARIN

Especial 20/02/09: Protecciones electrostáticas ESD Carlos MARIN Grado Superior Especial 20/02/09: Protecciones electrostáticas ESD Carlos MARIN Qué significa ESD? E S D Electro Static Discharge Fenómenos ESD Tocar la manilla o el pomo de una puerta después de haber

Más detalles

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor 1El fuego y el calor S u m a r i o 1.1. El tetraedro del fuego 1.2. Reacciones químicas 1.3. Transmisión del calor INVESTIGACIÓN DE INCENDIOS EN VEHÍCULOS 5 Capítulo 1 Desde el punto de vista de la investigación

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

Lección 2: Electrostática. 29/04/16 U. de Mayores -Física aplicada-

Lección 2: Electrostática. 29/04/16 U. de Mayores -Física aplicada- Lección 2: Electrostática 1 Qué pasó en 150 casos como este? En la mayoría de los casos las personas habían entrado de nuevo en sus coches cuando la manguera todavía estaba surtiendo combustible. Cuando

Más detalles

Energía eléctrica. Elementos activos I

Energía eléctrica. Elementos activos I La corriente eléctrica con mucha chispa Elementos activos y pasivos Circuitos eléctricos Corriente continua y alterna, las chispas de nuestras casas Almacenamiento y producción de energía eléctrica ehículos

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

TEMA 4 CONDENSADORES

TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES CONDENSADORES Un condensador es un componente que tiene la capacidad de almacenar cargas eléctricas y suministrarlas en un momento apropiado durante un espacio de tiempo muy corto.

Más detalles

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Guerrero Velázquez Dioney Martín Miguel flores Cristofer Alejandro

Guerrero Velázquez Dioney Martín Miguel flores Cristofer Alejandro Guerrero Velázquez Dioney Martín Miguel flores Cristofer Alejandro QUÉ ES EL GENERADOR DE VAN DE GRAFF? El generador de Van De Graff es una máquina que almacena carga eléctrica en una gran esfera conductora

Más detalles

Objetivo.- Al finalizar el tema, el estudiante será capaz de clasificar a los materiales según sus propiedades eléctricas.

Objetivo.- Al finalizar el tema, el estudiante será capaz de clasificar a los materiales según sus propiedades eléctricas. Contenido PROPIEDADES ELÉCTRICAS DE LOS MATERIALES 1.- Clasificación de los materiales. 2.- Electrización de conductores. 3.- Permitividad dieléctrica. Objetivo.- Al finalizar el tema, el estudiante será

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente. 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Fuerzas entre cargas. - Palabras claves: fuerza eléctrica, cargas eléctricas, electrones,

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 1 Apunte N o 1 Pág. 1 a 7 INTRODUCCION MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier

Más detalles

CURSO RÁPIDO DE PHOTOSHOP APLICADO AL SLOT

CURSO RÁPIDO DE PHOTOSHOP APLICADO AL SLOT CURSO RÁPIDO DE PHOTOSHOP APLICADO AL SLOT Ricard Garrós http://elartedelphotoshop.blogspot.com/ & http://www.fusky.es CURSO RÁPIDO DE PHOTOSHOP APLICADO AL SLOT Como os adelanté en el anterior capítulo

Más detalles

Diseño y Construcción de un Generador de Van de Graaff

Diseño y Construcción de un Generador de Van de Graaff Diseño y Construcción de un Generador de Van de Graaff ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática OBJETIVOS Afianzar los conceptos de la fuerza eléctrica a nivel de la interacción

Más detalles

La energía y sus transformaciones

La energía y sus transformaciones La energía y sus transformaciones Índice 1 Definición de energía 2 Energías renovables y no renovables 2.1 Energías no renovables 2.2 Energías renovables 3 Transformaciones energéticas 4 Conservación de

Más detalles

Instituto Nacional Física Prof.: Aldo Scapini

Instituto Nacional Física Prof.: Aldo Scapini Nombre: Curso: ELECTROESTÁTICA En este capitulo se dará inicio al estudio de la Electricidad, es decir, vamos a tratar de entender una gran variedad de efectos, muy ligados a nuestra vida diaria, denominados

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

GUÍA Nº 1 ELECTROSTATICA

GUÍA Nº 1 ELECTROSTATICA GUÍA Nº 1 ELECTROSTATICA 1.- Introducción Los fenómenos eléctricos son conocidos desde la Antigüedad. Los griegos sabían que frotando un trozo de ámbar ( ελεκτρυ en griego) éste se electrificaba y atraía

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

CAMPO LEY DE COULOMB Y ELÉCTRICO I

CAMPO LEY DE COULOMB Y ELÉCTRICO I CAMPO LEY DE COULOMB Y ELÉCTRICO I 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. BIBLIOGRAFÍA: -Tipler-Mosca. "Física".

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

CODIGO DE COLORES DE RESISTENCIAS

CODIGO DE COLORES DE RESISTENCIAS Componentes electrónicos Resistencias Las resistencias son de los componentes electrónicos pasivos. Las mismas cumplen infinidad de funciones en diferentes tipos de circuitos. Entre las funciones que cumple

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

Introducción. Marco Teórico.

Introducción. Marco Teórico. Introducción. Este proyecto lleva las ideas de la construcción y funcionamiento de una cinta transportadora, mediante una maqueta experimental, que a través de ella es posible deducir la transformación

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

Esp. Duby Castellanos dubycastellanos@gmail.com

Esp. Duby Castellanos dubycastellanos@gmail.com 1 Lamedición de nivelpermite conocer y controlar la cantidad de líquido o sólidos almacenada en un recipiente, por lo que es una medición indirecta de masa o volumen. A nivel industrial la medición de

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

TEMA 4: ELECTRICIDAD

TEMA 4: ELECTRICIDAD TEMA 4: ELECTRICIDAD 1. Origen de los fenómenos eléctricos 2. La corriente eléctrica a. Corriente continua b. Corriente alterna 3. Elementos de un circuito a. Generadores b. Receptores c. Conductores d.

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO TRASISTORES DE EFECTO DE CAMO Oscar Montoya Figueroa Los FET s En el presente artículo hablaremos de las principales características de operación y construcción de los transistores de efecto de campo (FET

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

SISTEMA DE TIERRA Conceptos

SISTEMA DE TIERRA Conceptos SISTEMA DE TIERRA Conceptos Un sistema de tierra debe entenderse como un sistema Referencial como una superficie equipotencial, como el punto común para equipos y sistemas de protección, es decir debe

Más detalles

Anexo II. Resultados del ACV para sistema cerramientos de un edificio

Anexo II. Resultados del ACV para sistema cerramientos de un edificio II.1 Anexo II. Resultados del ACV para sistema cerramientos de un edificio industrial En el presente anexo se muestran los resultados obtenidos del ACV para las tipologías de fachadas y cubiertas estudiadas

Más detalles

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica.

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica. ELECTROQUÍMICA La electroquímica estudia los cambios químicos que producen una corriente eléctrica y la generación de electricidad mediante reacciones químicas. Es por ello, que el campo de la electroquímica

Más detalles

Roberto Quejido Cañamero

Roberto Quejido Cañamero Crear un documento de texto con todas las preguntas y respuestas del tema. Tiene que aparecer en él todos los contenidos del tema. 1. Explica qué son los modos de presentación en Writer, cuáles hay y cómo

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

NOM-022-STPS-1999, ELECTRICIDAD ESTÁTICA EN LOS CENTROS DE TRABAJO - CONDICIONES DE SEGURIDAD E HIGIENE. Introducción

NOM-022-STPS-1999, ELECTRICIDAD ESTÁTICA EN LOS CENTROS DE TRABAJO - CONDICIONES DE SEGURIDAD E HIGIENE. Introducción NOM-022-STPS-1999, ELECTRICIDAD ESTÁTICA EN LOS CENTROS DE TRABAJO - CONDICIONES DE SEGURIDAD E HIGIENE La seguridad en el trabajo implica sumar esfuerzos entre todos los miembros de una organización.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

SISTEMA DE PUESTA A TIERRA ELECTROMAGNÉTICO TERRAGAUSS.

SISTEMA DE PUESTA A TIERRA ELECTROMAGNÉTICO TERRAGAUSS. SISTEMA DE PUESTA A TIERRA ELECTROMAGNÉTICO TERRAGAUSS. En toda instalación eléctrica se pueden producir fallas que pongan en peligro la integridad física de las personas así como dañar los equipos eléctricos

Más detalles

CICLO CERRADO DEL MOTOR DE HIDRÓGENO

CICLO CERRADO DEL MOTOR DE HIDRÓGENO CICLO CERRADO DEL MOTOR DE HIDRÓGENO 19 de abril 2013 Antonio Arenas Vargas Rafael González López Marta Navas Camacho Coordinado por Ángel Hernando García Colegio Colón Huelva Lise Meitner ESCUELA TÉCNICA

Más detalles

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial. Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2008 AÑO 2008 1).. a) Principio de conservación de la energía mecánica b) Desde el borde de un acantilado de altura h se deja caer libremente

Más detalles

Aísla tu hogar del frío

Aísla tu hogar del frío Aísla tu hogar del frío La mayor parte del consumo energético en España se produce en los hogares. Es mayor en los meses de invierno e implica un gran consumo en calefacción para mantener una temperatura

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual Concepto de campo Energía potencial Concepto de potencial Relaciones entre fuerzas y campos Relaciones entre campo y diferencia de potencial Trabajo realizado

Más detalles

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller CODIGO: LABPR-005 FECHA: / / INSTRUCTOR: Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller I. Objetivo: Determinacion de las características de un tubo Geiger Muller (GM) y determinacion

Más detalles

Disco de Maxwel. Disco de Maxwel

Disco de Maxwel. Disco de Maxwel M E C Á N I C A Disco de Maxwel Disco de Maxwel M E C Á N I C A Desde el comienzo de su existencia, el ser humano ha utilizado la energía para subsistir. El descubrimiento del fuego proporcionó al hombre

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Fabricación de un panel solar casero

Fabricación de un panel solar casero Fabricación de un panel solar casero Qué es un panel solar? Es básicamente una caja que contiene un conjunto de células solares. Las células solares son las que hacen el trabajo real de convertir la luz

Más detalles

FIBRA ÓPTICA Perfil de Indice de Refracción

FIBRA ÓPTICA Perfil de Indice de Refracción FIBRA ÓPTICA Perfil de Indice de Refracción Fibra Optica Fibra Optica Ventajas de la tecnología de la fibra óptica Baja Atenuación Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto

Más detalles

VIDRIO TEMPLADO. Suministro de vidrio templado

VIDRIO TEMPLADO. Suministro de vidrio templado VIDRIO TEMPLADO. Suministro de vidrio templado VIDRIO TEMPLADO. Definición. El proceso de templado se consigue calentando el vidrio en hornos hasta una temperatura de 706º C, que hace desaparecer las tensiones

Más detalles

ELECTRICIDAD TIPOS DE ELECTRICIDAD. Corriente continua: Tensión, intensidad de corriente y resistencia no varían. Ejemplo: batería.

ELECTRICIDAD TIPOS DE ELECTRICIDAD. Corriente continua: Tensión, intensidad de corriente y resistencia no varían. Ejemplo: batería. Prevención de riesgo eléctrico ELECTRICIDAD Es un agente físico presente en todo tipo de materia que bajo ciertas condiciones especiales se manifiesta como una diferencia de potencial entre dos puntos

Más detalles