Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5"

Transcripción

1 LECCIÓN : FRACCIONES.- QUÉ ES UNA FRACCIÓN? UNA FRACCIÓN ES L epresión un prte un cntidd enter. Términos un frcción: DENOMINADOR: Es el número que se coloc bjo l r frcción e indic el número totl prtes en que se divi un todo entero. NUMERADOR: Es el número que se coloc encim l r frcción e indic el número prtes consirds. Cálculo l frcción un número Pr hllr l frcción un número entero se divi dicho número entre el nomindor el resultdo se multiplic por el numerdor. (Como no h prioridd entre l multiplicción l división se pue multiplicr ntes el número por el numerdor spués dividir el resultdo entre el nomindor) 0 (0 : ) (0 ) : 0 : Cálculo un cntidd conociendo l prte su frcción correspondiente Pr hllr un cntidd totl conociendo un prte l frcción l totl correspondiente es prte se divi l prte entre el numerdor l frcción el resultdo se multiplic por el nomindor N ( : ) 0 ( ) : 0 : L epresión un cociente indicdo (un división) en l que el numerdor es el divindo el nomindor es el divisor. EL cociente l división es el vlor ciml l frcción. Cálculo l vlor ciml un frcción Pr obtener el vlor un frcción se divi el numerdor entre el nomindor. : 0' Deciml ecto : Entero : '... Deciml periódico... L epresión un cntidd, es cir, un número con el que se pue operr (operdor). A ls frcciones se le llmn NÚMEROS FRACCIONARIOS. Y todo número que se pue epresr en form frcción se le llm NÜMERO RACIONAL. Así pues, ls frcciones constituen los números rcionles.

2 Lectur los números frccionrios: - Form generl: Se lee: NUMERADOR prtido por DENOMINADOR se lee dos prtido por cinco se lee cutro prtido por tres - Forms especifics: Distints según el nomindor. Si el nomindor es se lee: NUMERADOR medios se lee un medio se Si el nomindor es se lee: NUMERADOR tercios lee cutro tercios se lee un tercio lee tres medios Si el nomindor es,,,,, o se lee: NUMERADOR el ordinl l DENOMINADOR se lee un curto se lee dos quintos se lee siete décimos Si el numerdor es mor que se lee: Numerdor DENOMINADOR con el sufijo AVOS se lee un oncevo se lee nueve veinticincovos Es cir un número con el que se puen hcer operciones. A ls frcciones se les llm NÚMEROS FRACCIONARIOS. Lee tenidmente en ls págins 0 l libro, el epígrfe Concepto frcción, refleion estudi lo stcdo. Complet el estudio con los puntes nteriores cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd

3 .- Represent sombrendo los cinco octvos l rectángulo los tres curtos l círculo..- Escribe, en cd cso, l frcción l totl que correspon l prte indicd: Qué frcción 0 es 0? En un rebño curent ovejs h cinco negrs. Qué frcción l totl l rebño son negrs? Qué frcción 0 es 0? d) Qué frcción mes son 0 dís? e) Qué frcción 0 es? f) Qué frcción ño son ocho meses? g) Qué frcción hor son 0 minutos? i) Qué frcción semn son cinco dís?.- Clcul el vlor ciml ls siguientes frcciones. Tres curtos. Diecisiete quintos Doce tercios d) Curent dos setos e) Cinco medios f) Cutro treint cincovos.- Trnsform cd un ests frcciones en un número ciml. - d) - e) - - f) Cuáles tienen un vlor negtivo, es cir, menor que cero? Cuáles son positivs, es cir, mores que cero? De ls frcciones positivs, cuáles son propis? Cuáles son igul? Cuáles son impropis?

4 .- págin, ctividd..- Clcul, como en el ejemplo, el número N en cd cso. N N (: ) N N N N d) N 0 f) N g) N 0.- FRACCIONES EQUIVALENTES Frcciones equivlentes son quells que siendo distints (distinto numerdor distinto nomindor) tienen el mismo vlor ciml. Ej. : 0 : 0 son frcciones equivlentes. Se epres: PROPIEDAD DE LAS FRACCIONES EQUIVALENTES Dos frcciones son equivlentes si sus productos cruzdos dn lo mismo. Se llmn productos cruzdos dos frcciones l producto l numerdor un por el nomindor l otr. Entre dos frcciones se puen formr siempre dos productos cruzdos. Ejemplos (son equivlentes) (No son equivlentes) : 0 0 No tienen el mismo vlor ciml. Aplicciones l propiedd L plicción est propiedd permite: - Sber un form rápid sencill si dos frcciones son equivlentes o no. - Hllr el término sconocido dos frcciones equivlentes. Ejemplos: : 0 0

5 PROPIEDAD FUNDAMENTAL DE LA EQUIVALENCIA Al multiplicr (ó dividir) el numerdor el nomindor un frcción por un mismo número se obtiene otr frcción equivlente ell. L plicción est propiedd permite obtener distints frcciones equivlentes un dd por AMPLIFICACIÓN, multiplicndo el numerdor el nomindor por un mismo número. Así se puen obtener infinits frcciones equivlentes un dd pero con el numerdor el nomindor mores que en l dd.... SIMPLIFICACIÓN, dividiendo el numerdor el nomindor entre un mismo número que tiene que ser un divisor común mbos. Así se pue obtener un cntidd termind frcciones equivlentes l dd, pero no infinits, con un numerdor un nomindor menores que en l frcción dd : 0 : 0 0 : : : : L frcción no se pue simplificr porque no h ningún divisor común l numerdor l nomindor (son primos entre sí). Se dice que es un frcción irreducible. Cundo el numerdor nomindor cbn mbos en ceros se pue hcer un simplificción inmedit dividiendo el numerdor el nomindor entre l unidd seguid ceros. Pr ello se eliminn tntos ceros en el numerdor como en el nomindor. L frcción irreducible se pue obtener directmente dividiendo el numerdor el nomindor entre su máimo común divisor (M.C.D.). M.C.D.(0, 0) Lee tenidmente en l págin l libro, el epígrfe Frcciones equivlentes, refleion estudi lo stcdo. Complet el estudio con los puntes nteriores cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd..- Comprueb, plicndo l propiedd ls frcciones equivlentes, si ls siguientes frcciones son equivlentes.

6 d) e) f) 0.- Clcul el vlor cd frcción comprueb cules ests frcciones son equivlentes. 0.- Clcul, en cd cso plicndo l propiedd ls frcciones equivlentes, el término sconocido. 0 d) e) 0 f).- Págin, ctividd..- Págin, ctividd..- Págin, ctividd..- REDUCCIÓN A COMÚN DENOMINADOR Consiste en obtener frcciones equivlentes uns dds mner que tods tengn el mismo nomindor. Pr ello, se siguen los siguientes psos: º Se clcul el M.C.M los nomindores ls frcciones dds se pone como nomindor común ls frcciones equivlentes. º Se divi el nomindor común entre el nomindor cd frcción, el resultdo se multiplic por el numerdor correspondiente se pone como numerdor l frcción equivlente. Ejemplo resuelto: M.C.M.(,, ) 0

7 Lee tenidmente en l págin l libro, el epígrfe Reducción común nomindor, refleion estudi lo stcdo. Complet el estudio con los puntes nteriores cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd..- Págin, ctividd..- CRITERIOS PARA COMPARAR Y ORDENAR FRACCIONES.- Tod frcción que tiene como numerdor cero es igul cero. No eisten frcciones con nomindor cero n 0 siendo n N n no eiste 0.- Tod frcción que tiene el mismo signo en el numerdor en el nomindor es positiv, es cir, es mor que cero. 0' > 0 b b > 0 siendo, b N.- Tod frcción que tiene distinto signo en el numerdor en el nomindor es negtiv, es cir, es menor que cero. 0' < 0 b < 0 b siendo, b N Pr comprr frcciones conviene que tengn el nomindor positivo. Si no es sí h que trnsformrls en frcciones equivlentes con nomindor positivo. Pr trnsformr un frcción con nomindor negtivo en otr equivlente con nomindor positivo se le cmbi el signo l numerdor l nomindor, los dos términos..- Tod frcción que tiene el numerdor igul l nomindor es igul Tod frcción que tiene el numerdor mor que el nomindor es mor que. > si > b b > >.- Tod frcción que tiene el numerdor menor que el nomindor es menor que. < si < b b < <

8 .- Cundo tods ls frcciones tienen el mismo nomindor es mor l que tiene mor numerdor. c > si > c b b > > >.- Cundo tods ls frcciones tienen el mismo numerdor es mor l que tiene menor nomindor. > si b < c b c > >.- Cundo ls frcciones no cumplen ninguno los criterios nteriores, pr por comprrls ornrls h que reducirls primero un común nomindor. Ls que tengn un nomindor negtivo ntes h que trnsformrls en otrs equivlentes con nomindor positivo cmbiándole el signo l numerdor l nomindor. >, m. c. m.( e ) > > > Lee tenidmente los puntes nteriores, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Compr sin hcer ningún cálculo coloc los signos >, <, don correspond: d)... e)... f)... g)... h)....- Sin hcer ningún cálculo compr e orn mor menor ls siguientes frcciones:,,,,.- Sin hcer ningún cálculo compr orn menor mor ls siguientes frcciones:

9 0.- Compr, reduciendo común nomindor, e orn mor menor ls siguientes frcciones:.- Compr, reduciendo común nomindor, orn menor mor ls siguientes frcciones..- SUMA Y RESTA DE FRACCIONES Lee tenidmente en ls págins l libro, el epígrfe. Sum, el epígrfe. Rest el epígrfe. Sums rests combinds, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd..- Págin, ctividd..- Págin, ctividd..- Págin, ctividd..- MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES Lee tenidmente en ls págins, el epígrfe. Multiplicción l libro el epígrfe. División el epígrfe. Sums rests combinds, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Resuelve ls siguientes multiplicciones simplific los resultdos d) - - e)

10 .- Págin, ctividd..- Págin, ctividd..- POTENCIA Y RAÍZ CUADRADA DE FRACCIONES Lee tenidmente en l págin 0, el epígrfe Potencis ríz cudrd, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin 0, ctividd. 0.- Págin 0, ctividd..- OPERACIONES COMBINADAS CON FRACCIONES Lee tenidmente en ls págins el epígrfe Operciones combinds, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd..- Págin, ctividd..- RESOLUCIÓN DE PROBLEMAS Lee tenidmente en l págin, el epígrfe Resolución problems, refleion estudi lo stcdo. Cundo cres que lo sbes, hz ls siguientes ctivids. Consult tus duds con el profesor..- Págin, ctividd..- Págin, ctividd..- Págin, ctividd 0.

11

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

TEMA 1. LOS NÚMEROS REALES

TEMA 1. LOS NÚMEROS REALES TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest

Más detalles

Son todos aquellos números que se pueden expresar en forma de fracción.

Son todos aquellos números que se pueden expresar en forma de fracción. Lección : NÚMEROS RACIONALES..- NÚMEROS RACIONALES Son todos quellos números que se puen epresr en form frcción. Se puen epresr en form frcción, y por lo tnto son números rcionles: - los números enteros

Más detalles

El grado de un polinomio es el grado del monomio de mayor grado de los que lo forman.

El grado de un polinomio es el grado del monomio de mayor grado de los que lo forman. Lección 7:POLINOMIOS 7.- POLINOMIOS TÉRMINOS DE UN POLINOMIO Son cd uno de los monomios que formn un polinomio. Se identificn con l epresión término en (l prte literl que lo form). -6 se llmn términos

Más detalles

NÚMEROS REALES 1º Bachillerato CC. SS.

NÚMEROS REALES 1º Bachillerato CC. SS. Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

OPERACIONES CON FRACIONES

OPERACIONES CON FRACIONES LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

En general, si. son números racionales, la suma es un número racional.

En general, si. son números racionales, la suma es un número racional. ... SUMA DE FRACCIONES. Al relizr sums con números rcionles encontrmos csos muy específicos, como son los siguientes: Sum de números rcionles con el mismo denomindor. Pr resolver este tipo de ejercicios

Más detalles

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b) Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

3.- Página 10, actividad Página 10, actividad Página 10, actividad Página 10, actividad 27.

3.- Página 10, actividad Página 10, actividad Página 10, actividad Página 10, actividad 27. Lección : LOS NÚMEROS.- NÚMEROS ENTEROS ===================================================================== ACTIVIDADES Lee detenidmente ls págins y 0 del liro de teto l cuestión, Números enteros, refleion

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE

Más detalles

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR FRACCIONES..- INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES...- COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR..- OPERACIONES CON FRACCIONES (I)..- OPERACIONES CON FRACCIONES (II)..-

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Sistema de los Números Reales

Sistema de los Números Reales Sistem de los Números Reles El Conjunto de los Números Rcionles Ysel Ocho Tpi Ysel Ocho Tpi Sistem de los Números Reles /2 Introducción Los rcionles: Q Los números rcionles permiten expresr medids. Cundo

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.-

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- REPASO DE LAS RAZONES ALGEBRAICAS (º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- Ddos dos o más polinomios P Q form nálog l cálculo del M.C.D. el m.c.m. con números º) Se fctorizn los polinomios

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

Fracciones algebraicas

Fracciones algebraicas Frcciones lgerics L histori del número irrcionl "" = 3.459653589793... Los ntiguos le dn un vlor de 3 con lo que errn en un 5 %; Arquímedes le dio el vlor, los chinos en el 7 siglo I le signron el vlor

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

TEMA 1. NÚMEROS (REPASO)

TEMA 1. NÚMEROS (REPASO) TEMA. NÚMEROS (REPASO).. FACTORIZACIÓN MÚLTIPLOS: Sn múltipls de un númer tds quells que se btienen l multiplicrl pr cer pr culquier númer nturl. DIVISORES: Se dice que un númer b es divisr de tr númer,

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

Módulo 16 Simplificación de fracciones

Módulo 16 Simplificación de fracciones Módulo 6 Simplificción de frcciones OBJETIVO: Mnejrá ls cutro operciones fundmentles con epresiones lgebrics frccionris, simplificrls hst trnsformrls en irreductibles y epresrá proposiciones en lenguje

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]

Más detalles

CÁLCULO DE ÁREAS. Dados los siguientes paralelógramos ( cuadrados o rectángulos), calcula las áreas de cada figura : a

CÁLCULO DE ÁREAS. Dados los siguientes paralelógramos ( cuadrados o rectángulos), calcula las áreas de cada figura : a NOCION :. CÁLCULO DE ÁREAS CÁLCULO DE ÁREAS. Ddos los siguientes prlelógrmos ( cudrdos o rectángulos), clcul ls áres de cd figur : k m y y A = = A = k m = mk A = 4. p m g s g t A = A = A = 4. 8p 5p m 7m

Más detalles

Ejercicios. Números enteros, fraccionarios e irracionales.

Ejercicios. Números enteros, fraccionarios e irracionales. CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES Como consecuenci de ls fórmuls fundmentles de rdicles, se pueden relizr ls siguientes operciones. Se requiere que en los rdicles sólo h productos o cocientes. Si huier sumndos

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es págin 8 págin 8 DIVISIÓN DE FRACCIONES Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 4 8 4 4 8 De donde

Más detalles

2 cuando a y b toman los valores 2 y -1,

2 cuando a y b toman los valores 2 y -1, COLEGIO PEDAGÓGICO DE LOS ANDES TALLER DE NIVELACIÓN DE MATEMÁTICAS SEGUNDO PERIODO GRADO OCTAVO ALGEBRA...- - LLeenngguuj jjee l llggee ri r iiccoo El lenguje numérico sirve pr epresr operciones en ls

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Introducción. Objetivos de aprendizaje. Determinar las propiedades de las operaciones de números racionales

Introducción. Objetivos de aprendizaje. Determinar las propiedades de las operaciones de números racionales L rect numéric, un cmino l estudio de los números reles Deducción de propieddes en ls operciones de números rcionles Introducción 0,1 1/ / 0,0 Multiplic por Rest 0, 1/ /7 1/ Figur 1. Rulet Objetivos de

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº

Más detalles

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10:

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10: Potencis Potenci Qué es un potenci? Relizr el siguiente cálculo : 7 Utilizndo solmente tres doses escribe tods ls epresiones numérics que se pueden formr con ellos. No vle usr otros signos. Cuál es el

Más detalles

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales Versión01. Divisiónlgeric Por:SndrElviPérezMárquez De l mism form que en l multiplicción, pr efectur l división de epresioneslgerics,deemosdetenerenconsiderciónenelorden. Primerolossignos,luegoloscoeficienteporúltimolsliterles

Más detalles

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un

Más detalles

Multiplicación y división con expresiones racionales

Multiplicación y división con expresiones racionales Versión0 Multipliccióndivisiónconepresionesrcionles Por:SndrElviPérezMárquez. Pr relizr operciones con epresiones rcionles, plicmoslsmismspropieddestécnicsqueseutilizn conlsfrccionesnumérics. Recuerdscómohcerlssiguientesoperciones?

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

LOS CONJUNTOS NUMÉRICOS

LOS CONJUNTOS NUMÉRICOS Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,

Más detalles

El conjunto de los números enteros está formado por los números enteros positivos, negativos y el 0 y se representa con la letra Z

El conjunto de los números enteros está formado por los números enteros positivos, negativos y el 0 y se representa con la letra Z 1.- UTILIZACIÓN DE LOS NÚMEROS Concepto de número entero Los números +1, +2, +,., se llmn números enteros positivos y se suelen escribir sin el signo + sí: 1, 2,,. Es decir, los enteros positivos son los

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA C u r s o : Mtemátic Mteril N 7 UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA GUÍA TEÓRICO PRÁCTICA Nº DEFINICIÓN : Si n es un entero pr positivo es un rel no negtivo, entonces n es el único

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA EJERCICIOS DE LA ASIGNATURA DE ALGEBRA 1 INTRODUCCION Estimdo estudinte, el prendizje de est rm de l mtemátic, requiere que se dominen completmente los siguientes conocimientos y procedimientos prendidos

Más detalles

EXPONENTES. se abrevia n k, es decir que. Por ejemplo, para no escribir , se abrevia 3 6, que visto a la inversa 4 5 significa

EXPONENTES. se abrevia n k, es decir que. Por ejemplo, para no escribir , se abrevia 3 6, que visto a la inversa 4 5 significa págin 1 págin 16 EXPONENTES L ide de los exponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic un cntidd n por sí mism k veces, o se n nn... n k veces se revi

Más detalles

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a.

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a. CÁLCULO DE ÁREAS. Ddos los siguientes prlelogrmos (cudrdos o rectángulos), clcul ls áres de cd figur: 1. k m y y A = = A = k m = mk A = 141. p m g s g t. 8p 5p m 7m 5k p. 4,5m 8p 7,m 1 k 5m 1 k Ddos los

Más detalles