Por : Avid Roman Gonzalez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Por : Avid Roman Gonzalez"

Transcripción

1 Por : Avid Roman Gonzalez

2 CONTROL DE FUNCIONAMIENTO DE UN HORNO ELECTRICO PARA COCIMIENTO DE CERAMICA Por : Avid Roman Gonzalez Ing. Electrónica 1 UNSAAC

3 CONTENIDO INTRODUCCIÓN PLANTEAMIENTO DE PROBLEMAS DESCRIPCIÓN DEL PROBLEMA FORMULACIÓN DEL PROBLEMA OBJETIVOS DEL ESTUDIO JUSTIFICACIÓN DEL ESTUDIO LIMITACIONES DE LA INVESTIGACIÓN MARCO TEÓRICO. BASES TEÓRICAS SENSORES DE TEMPERATURA AMPLIFICADORES OPERACIONALES CIRCUITOS CON AMPLIFICADORES OPERACIONALES. CIRCUITOS COMPARADORES CIRCUITOS SUMADORES CIRCUITOS CONVERSORES CORRIENTE TENSIÓN INGENIERIA DEL PROYECTO DISEÑO DEL PROYECTO CIRCUITO COMPARADOR DE TEMPERATURA CIRCUITO TEMPORIZADOR PARA ALARMA FUNCIONAMIENTO DEL CIRCUITO COMPLETO DISEÑO DE LA PLACA IMPRESA OBSERVACIONES, SUGERENCIAS Y CONCLUSIONES BIBLIOGRAFÍA ANEXOS FICHAS TÉCNICAS LM741 BC548 LM555 74LS04 74LS00 Ing. Electrónica 2 UNSAAC

4 INTRODUCCIÓN Un control para un horno de cocción de cerámica o lo que es lo mismo, automatizar el funcionamiento del horno, es muy necesario ya que no siempre se puede contar con la presencia de un operario para que este controlando al horno y la falta de alguien o lago que controle al horno nos puede ocasionar serios problemas. Es así que se ve la necesidad de diseñar un control para un horno de cocción de cerámica para que nos pueda facilitar las cosas así como también para evitar la presencia de un operario, incluso ahorrarnos el hecho de contratar a una persona para que realice dicho trabajo, ya que el control lo realizara todo automáticamente. Así mismo este diseño de control también nos puede servir para controlar diferentes cosas o diferentes procesos, solo se necesita cambiar la señal o señales a controlar con las respuestas deseadas para cada caso, es de esta manera que el circuito es bastante didáctico y adaptable para distintas aplicaciones. Ing. Electrónica 3 UNSAAC

5 PLANTEAMIENTO DEL PROBLEMA Descripción del problema: Se tiene un horno trifásico de cocimiento de cerámica. El horno debe calentarse a diferentes temperaturas para el cocimiento de diferentes tipos de cerámica, se debe considerar que el horno cuenta en su interior con un revestimiento de un material refractario y esta convenientemente sellado para evitar perdidas. Se pide un control electrónico que haga las siguientes tareas: - Fijación de la temperatura inicial To - La To debe mantenerse durante un tiempo que varia según el material y el tipo de cerámica, y bajar luego a una temperatura T1. - T1 debe mantenerse un tiempo mayor que también es variable. - Al término de la cocción debe desconectarse la energía. El sistema debe contar con: - Las señalizaciones correspondientes a cada estado. - Una señal sonora y lumínica para cuando acabe la cocción. - La señal sonora debe tener una duración que vaya de 30 segundos a 5 minutos, mientras que la lumínica permanecerá hasta que el operador la desconecte. - La señal sonora debe contar con una desconexión manual. - El sistema debe contar con una desconexión manual. - Adicionalmente para aprovechar la energía restante en el horno se coce otro tipo de cerámicos. El control electrónico debe avisar cuando la temperatura descienda por debajo de los 150ºC. La tolerancia de la temperatura debe ser de + 5%.. Formulación de problemas: Todo lo anteriormente explicado en la descripción del problema se puede solucionar con la instalación de un sensor de temperatura capas de activar sistemas según la temperatura en el que se encuentre el horno, así como utilizar temporizadores e indicadores lumínicos así como sonoros. Objetivos del estudio: Los objetivos principales del estudio son: Poder desarrollar un sistema de control de funcionamiento de un horno eléctrico para cocimiento de cerámica. Diseñar la adaptación de un sensor de temperatura a este control y poderlo aplicar no solo en el control del horno, si no también en diferentes aplicaciones mas. Poder comprender el funcionamiento de los diferentes dispositivos que intervienen en este control y principalmente el amplificador operacional ya que en este caso es el dispositivo principal del sistema de control, junto con el sensor de temperatura. Solucionar los problemas que se describieron, explicaron y formularon anteriormente. Ing. Electrónica 4 UNSAAC

6 Limitaciones de la investigación: Una de las principales limitaciones ha sido el encontrar un sensor de temperatura que aguante altas temperaturas, ya que el horno de cocción de cerámica trabaja con altas temperaturas. Otra limitación fue la falta de disponibilidad de varios elementos dentro del simulador para poder realizar las pruebas con un poco mas de aproximación a lo que vendría a ser la realidad. Otra limitación fue la de no poder contar con temporizadores electrónicos de alto rango de tiempo. Ing. Electrónica 5 UNSAAC

7 MARCO TEÓRICO Bases Teóricas: Para poder implementar este control, se utilizo como dispositivos fundamentales sensores de temperatura, el amplificador operacional 741 que se utilizo tanto como amplificador y como comparador, también se utilizo Flip Flor RS, relees temporizados por lo que presentaremos una introducción teórica de lo que son los transistores amplificadores operacionales, Flip Flor RS, sensores de temperatura. Sensores de Temperatura: 1.- Introducción: Es fácil realizar medidas de la temperatura con un sistema de adquisición de datos, pero la realización de medidas de temperatura exactas y repetibles no es tan fácil. La temperatura es un factor de medida engañoso debido a su simplicidad. A menudo pensamos en ella como un simple número, pero en realidad es una estructura estadística cuya exactitud y repetitividad pueden verse afectadas por la masa térmica, el tiempo de medida, el ruido eléctrico y los algoritmos de medida. Esta dificultad se puso claramente de manifiesto en el año 1990, cuando el comité encargado de revisar la Escala Práctica Internacional de Temperaturas ajustó la definición de una temperatura de referencia casi una décima de grado centígrado. (Imaginemos lo que ocurriría si descubriéramos que a toda medida que obtenemos normalmente le falta una décima de amperio.) Dicho de otra forma, la temperatura es difícil de medir con exactitud aún en circunstancias óptimas, y en las condiciones de prueba en entornos reales es aún más difícil. Entendiendo las ventajas y los inconvenientes de los diversos enfoques que existen para medir la temperatura, resultará más fácil evitar los problemas y obtener mejores resultados. 2.- Conceptos básicos de temperatura: Los transductores eléctricos de temperatura utilizan diversos fenómenos que son influidos por la temperatura y entre los cuales figuran: Variación de resistencia en un conductor (sondas de resistencia). Variación de resistencia de un semiconductor (termistores). f.e.m. creada en la unión de dos metales distintos (termopares). Intensidad de la radiación total emitida por el cuerpo (pirómetros de radiación). Otros fenómenos utilizados en laboratorio (velocidad del sonido en un gas, frecuencia de resonancia de un cristal, etc.). Ningún transductor es el mejor en todas las situaciones de medida, por lo que tenemos que saber cuándo debe utilizarse cada uno de ellos. Como podemos ver, en la Tabla 1 se están comparando los cuatro tipos de transductores de temperatura más utilizados, y refleja los factores que deben tenerse en cuenta: las prestaciones, el alcance efectivo, el precio y la comodidad. Ventajas RTD Termistor Sensor de IC Termopar Más estable. Más preciso. Más lineal que los Termopares. Alto rendimiento Rápido Medida de dos Hilos El más lineal El de más alto rendimiento Económico Autoalimentado Robusto Económico Amplia variedad de formas Ing. Electrónica 6 UNSAAC

8 físicas Amplia gama de temperaturas Desventajas Caro. Lento. Precisa fuente de alimentación. Pequeño cambio de resistencia. Medida de 4 hilos Autocalentable No lineal. Rango de Temperaturas limitado. Frágil. Precisa fuente de alimentación. Autocalentable Limitado a < 250 ºC Precisa fuente de alimentación Lento Autocalentable Configuraciones limitadas No lineal Baja tensión Precisa referencia El menos estable El menos sensible 3.- Tipos de sensores de temperatura: Termómetros de Resistencia.- La medida de temperatura utilizando sondas de resistencia depende de las características de resistencia en función de la temperatura que son propias del elemento de detección. El elemento consiste usualmente en un arrollamiento de hilo muy fino del conductor adecuado bobinado entre capas de material aislante y protegido con un revestimiento de vidrio o de cerámica. El material que forma el conductor se caracteriza por el llamado "coeficiente de temperatura de resistencia" que expresa, a una temperatura especificada, la variación de la resistencia en ohmios del conductor por cada grado que cambia su temperatura. La relación entre estos factores puede verse en la expresión lineal siguiente: R t = R 0 (1 + t) En la que: R 0 = Resistencia en ohmios a 0 C. R t = Resistencia en ohmios t C. = Coeficiente de temperatura de la resistencia El detector de temperatura de resistencia (RTD): Se basa en el principio según el cual la resistencia de todos los metales depende de la temperatura. La elección del platino en los RTD de la máxima calidad permite realizar medidas más exactas y estables hasta una temperatura de aproximadamente 500 ºC. Los RTD más económicos utilizan níquel o aleaciones de níquel, pero no son tan estables ni lineales como los que emplean platino. En cuanto a las desventajas, el platino encarece los RTD, y otro inconveniente es el autocalentamiento. Para medir la resistencia hay que aplicar una corriente, que, por supuesto, produce una cantidad de calor que distorsiona los resultados de la medida. Una tercera desventaja, que afecta al uso de este dispositivo para medir la temperatura, es la resistencia de los RTD. Al ser tan baja, la resistencia de los hilos conductores que conectan el RTD puede provocar errores importantes. En la denominada técnica de dos hilos (Figura 1a), la resistencia se mide en los terminales del sistema de adquisición de datos, por lo que la resistencia de los hilos forma parte de la cantidad desconocida que se pretende medir. Por el contrario, la técnica de cuatro hilos (Figura 1b) mide la resistencia en los terminales del RTD, con lo cual la resistencia de los hilos queda eliminada de la medida. La contrapartida es que se necesita el doble de cables y el doble de canales de adquisición de datos. (La técnica de tres hilos ofrece una solución intermedia que elimina un cable, pero no es tan precisa.) Ing. Electrónica 7 UNSAAC

9 Figura 1a Figura 1b 3.3.-Termistores: Los Termistores son semiconductores electrónicos con un coeficiente de temperatura de resistencia negativo de valor elevado y que presentan una curva característica lineal tensióncorriente siempre que la temperatura se mantenga constante. La relación entre la resistencia y la temperatura viene dada por la expresión. En la que: R t = Resistencia en ohmios a la temperatura absoluta T t. R 0 = Resistencia en ohmios a la temperatura absoluta de referencia T 0. = constante dentro de un intervalo moderado de temperaturas. Hay que señalar que para obtener una buena estabilidad en los termistores es necesario envejecerlos adecuadamente. Los termistores de conectan a puentes de Wheatstone convencionales o a otros circuitos de medida de resistencia. En intervalos amplios de temperatura, los termistores tienen características no lineales. Al tener un alto coeficiente de temperatura poseen una mayor sensibilidad que las sondas de resistencia estudiadas y permiten incluso intervalos de medida de 1 C (span). Son de pequeño tamaño y su tiempo de respuesta depende de la capacidad térmica y de la masa del termistor variando de fracciones variando de fracciones de segundo a minutos. La distancia entre el termistor y el instrumento de medida puede ser considerable siempre que el elemento posea una alta resistencia comparada con la de los cables de unión. La corriente que circula por el termistor a través del circuito de medida debe ser baja para garantizar que la variación de resistencia del elemento sea debida exclusivamente a los cambios de temperaturas del proceso. Los termistores encuentran su principal aplicación en la compensación de temperatura, como temporizadores y como elementos sensibles en vacuómetros. Los termistores, que son detectores resistivos fabricados normalmente de semiconductores cerámicos, ofrecen una impedancia mucho más alta que los RTD, por lo que la reducción de los errores provocados por los hilos conductores hace bastante factible el uso de la técnica de dos hilos, que es más sencilla. Su alto rendimiento (un gran cambio de resistencia con un pequeño cambio de temperatura) permite obtener medidas de alta resolución y reduce aún más el impacto Ing. Electrónica 8 UNSAAC

10 de la resistencia de los hilos conductores. Por otra parte, la bajísima masa térmica del termistor minimiza la carga térmica en el dispositivo sometido a prueba. No obstante, la baja masa térmica también plantea un inconveniente, que es la posibilidad de un mayor autocalentamiento a partir de la fuente de alimentación utilizada en la medida. Otro inconveniente del termistor es su falta de linealidad, que exige un algoritmo de linealización para obtener unos resultados aprovechables Sensores de IC.- Los sensores de circuitos integrados resuelven el problema de la linealidad y ofrecen altos niveles de rendimiento. Son, además, relativamente económicos y bastante precisos a temperatura ambiente. Sin embargo, los sensores de IC no tienen tantas opciones de configuraciones del producto o de gama de temperaturas, y además son dispositivos activos, por lo que requieren una fuente de alimentación. Los sensores de IC forman parte de la tendencia hacia los "sensores inteligentes", que son unos transductores cuya inteligencia incorporada facilita las actividades de reducción y análisis de datos que el usuario debe realizar normalmente en el sistema de adquisición de datos Termopares.- Los termopares se utilizan extensamente, ya que ofrecen una gama de temperaturas mucho más amplia y una construcción más robusta que otros tipos. Además, no precisan alimentación de ningún tipo y su reducido precio los convierte en una opción muy atractiva para grandes sistemas de adquisición de datos. Sin embargo, para superar algunos de los inconvenientes inherentes a los termopares y obtener resultados de calidad, es importante entender la naturaleza de estos dispositivos. Estudios realizados sobre el comportamiento de termopares han permitido establecer tres leyes fundamentales: 1. Ley del circuito homogéneo.- En un conductor metálico homogéneo no puede sostenerse la circulación de una corriente eléctrica por la aplicación exclusiva de calor. 2. Ley de metales intermedios.- Si en un circuito de varios conductores la temperatura es uniforme desde un punto de soldadura A a otro punto B, la suma algebraica de todas las fuerzas electromotrices es totalmente independiente de los conductores metálicos intermedios y es la misma que si se pusieran en contacto directo A y B. 3. Ley de las temperaturas sucesivas.- La f.e.m. generada por un termopar con sus uniones a las temperaturas T 1 T 3 es la suma algebraica de la f.e.m. del termopar con sus uniones a T 1 T 2 de la f.e.m. del mismo termopar con sus uniones a las temperaturas T 2 T 3. Cómo funcionan los Termopares.- El comportamiento de un termopar se basa en la teoría del gradiente, según la cual los propios hilos constituyen el sensor. La Figura 2A ilustra este concepto. Cuando se calienta uno de los extremos de un hilo, le produce una tensión que es una función de (A) el gradiente de temperatura desde uno de los extremos del hilo al otro, y (B) el coeficiente de Seebeck, una constante de proporcionalidad que varía de un metal a otro. Un termopar se compone sencillamente de dos hilos de diferentes metales unidos en un extremo y abiertos en el otro (Figura 2b). La tensión que pasa por el extremo abierto es una función tanto de la temperatura de la unión como de los metales utilizados en los dos hilos. Todos los pares de metales distintos presentan esta tensión, denominada tensión de Seebeck en honor a su descubridor, Thomas Seebeck. Ing. Electrónica 9 UNSAAC

11 Figura 2a Figura 2b En pequeñas gamas de temperaturas, los coeficientes de Seebeck de los dos hilos son constantes y la tensión de Seebeck es, por consiguiente, proporcional, pero en gamas más grandes, el propio coeficiente de Seebeck es una función de la temperatura, convirtiendo la tensión de Seebeck en no lineal. Como consecuencia, las tensiones del termopar también tienden a ser no lineales. Coeficiente de Seebeck Tipo de Termopar a 0 ºC a 100 ºC Tensión de salida a 100 ºC B -0,25 V/C 0,90 V/C 0,033 mv E 58,7 V/C 67,5 V/C 6,32 mv J 50,4 V/C 54,4 V/C 5,27 mv K 39,5 V/C 41,4 V/C 4,10 mv S 5,40 V/C 7,34 V/C 0,65 mv Tabla. Coeficientes de Seebeck y tensiones de salida para los termopares utilizados habitualmente. Las dos cifras que representan los coeficientes para cada uno de los tipos muestran la no linealidad a través de una amplia gama de temperaturas. Un asunto adicional muy importante en el uso de termopares en la industria tiene que ver con la variación de la temperatura ambiente en las uniones frías. Esta es la situación: si supiéramos de antemano la temperatura de las uniones frías, entonces en lugar de relacionar la lectura del voltímetro con la diferencia de temperatura, se podría relacionarla con la temperatura de la unión caliente misma. Esto sería posible pues podríamos construir las tablas de temperatura contra voltaje para que reflejaran el hecho de que las uniones frías están a una cierta temperatura de referencia (como se le denomina) conocida. Datos Técnicos de Referencia de las Termocuplas Thermocouple Type Names of Materials B C E J K Platinum30% Rhodium (+) Platinum 6% Rhodium (-) Useful Application Range ( F ) mv W5Re Tungsten 5% Rhenium (+) W26Re Tungsten 26% Rhenium (-) Chromel (+) Constantan (-) Iron (+) Constantan (-) Chromel (+) Alumel (-) Ing. Electrónica 10 UNSAAC

12 N R S T Nicrosil (+) Nisil (-) Platinum 13% Rhodium (+) Platinum (-) Platinum 10% Rhodium (+) Platinum (-) Copper (+) Constantan (-) Características del os medidores de temperatura: El Transistor: En un transistor se pueden combinar dos uniones para obtener amplificación. Un tipo, llamado transistor de unión npn, consiste en una capa muy fina de material tipo p entre dos secciones de material tipo n, formando un circuito como el mostrado en la figura 2. El material tipo n a la izquierda del diagrama representa el elemento emisor del transistor, que constituye la fuente de electrones. Para permitir el avance de la corriente a lo largo de la unión np, el emisor tiene un pequeño voltaje negativo con respecto a la capa tipo p, o componente base, que controla el flujo de electrones. El material tipo n en el circuito de salida sirve como elemento colector y tiene un voltaje positivo alto con respecto a la base, para evitar la inversión del flujo de corriente. Los electrones que salen del emisor entran en la base, son atraídos hacia el colector cargado positivamente y fluyen a través del circuito de salida. La impedancia de entrada (la resistencia al paso de corriente) entre el emisor y la base es reducida, mientras que la impedancia de salida entre el colector y la base es elevada. Por lo tanto, pequeños cambios en el voltaje de la base provocan grandes cambios en la caída de voltaje a lo largo de la resistencia del colector, convirtiendo a este tipo de transistor en un eficaz amplificador. Similar al tipo npn en cuanto a su funcionamiento, el transistor de unión pnp dispone también de dos uniones y es equivalente al tubo de vacío denominado triodo. Otros tipos con tres uniones, tales como el transistor de unión npnp, proporcionan mayor amplificación que los transistores de dos uniones. Ing. Electrónica 11 UNSAAC

13 Amplificadores operacionales: Un amplificador operacional es un amplificador diferencial con una ganancia muy alta, con una elevada impedancia de entrada y una impedancia de salida baja. Los usos más típicos del amplificador operacional son proporcionar cambios de amplitud de voltaje (amplitud y polaridad), osciladores, circuitos de filtro y muchos otros tipos de circuito de instrumentación. Un amplificador operacional contiene varias etapas de amplificador diferencial para lograr una ganancia de voltaje muy alta. Circuitos con amplificadores operacionales: El amplificador operacional se aplica en los siguientes circuitos: amplificadores inversos, amplificadores no inverso, circuito sumador restador amplificadores de instrumento circuito integrador, circuito comparadores, convertidores de tensión corriente y corriente tensión, filtros activos, circuitos rectificadores de presión y baja señal, etc. En esta oportunidad desarrollaremos los circuitos comparadores, sumadores y convertidor te corriente tensión. 1. Circuitos comparadores : como su nombre indica estos circuitos comparan una señal de tensión aplicada a una entrada con otra de referencia aplicada al otro terminal de entrada. Los comparadores se utilizan en diversos tipos de circuitos destacando los siguientes: a) Detector de paso por cero: que es un circuito que indica cuando y en que termina sentido para una señal por cero. b) Detector de nivel de tensión : que es un red que indica cuando la tensión de entrada alcanza un cierto valor de referencia. c) Comparador o disparador achmitt (triger achmitt): que es un circuito que conviene una onda de forma irregular en una onda cuadrada. d) Oscilador: que es un circuito que genera ondas triangulares o cuadrados. 2. Circuitos sumadores: Nos permite realizar la suma de niveles de voltaje y a la ves poder amplificar esta suma. Ing. Electrónica 12 UNSAAC

14 3. Convertidor corriente tensión: Un convertidor corriente tensión tiene una tensión de salida Vo que es proporcional a una corriente de entrada Io. Flip Flop RS: Ing. Electrónica 13 UNSAAC

15 INGENIERIA DEL PROYECTO DISEÑO DEL PROYECTO: - Circuito comparador de temperatura: Al llegar a una temperatura predeterminada este dispositivo desactivara la hornilla del horno automáticamente, así mismo cuando la temperatura baje a otra temperatura distinta con la cual se desactivo, activara la hornilla del horno, ósea que trabaja con una curva de histéresis cuyo rango es de + 5% de la temperatura fijada. En este circuito primero tomamos la temperatura de referencia expresada en voltios para que con los 2 primeros amplificadores podamos amplificarlo a 105%, luego con el divisor de tensión logramos un divisor de tensión para que tengamos 2 niveles de tensión, uno de 105% y otro de 95% del voltaje de referencia con la finalidad de conseguir la curva de histéresis con un rango de + 5% de la señal de referencia, los otros dos siguientes amplificadores trabajan específicamente como comparadores, cada uno con una tensión de referencia distinta los cuales mandan sus resultados a un flip flop RS y luego a un transistor que esta conectado a un rele para que pueda activar el dispositivo deseado según su aplicación. Circuito temporizador para alarma: Este circuito sirve para que active una alarma cuando el tiempo de cocción haya terminado, es así que activa la alarma y este dura un tiempo determinado por R y C. Como el tiempo de duración del temporizador esta dado por: T = 1. 1RC Entonces para R = 47 k y C = 1000uf tenemos: T = 51.7 segundos Ing. Electrónica 14 UNSAAC

16 Funcionamiento del circuito completo: Primer se fija las temperaturas de calentamiento y cocción, junto con el tiempo de calentamiento, luego se enciende el sistema, el comparador empieza con la referencia de la temperatura de calentamiento. Cuando el tiempo de calentamiento haya terminado se cambiara la referencia de comparación para la temperatura de cocción y mandara una señal para fijar el tiempo de cocción. Cuando termine el tiempo de cocción, la hornilla se apaga y el sistema manda una señal sonora que estará activada hasta que se le desconecte manualmente y también mandara una señal sonora que durara un tiempo de 52 segundos que esta fijado por el temporizador. Para no perder la energía mientras el horno se enfría, se pueden poner al horno otro tipo de cerámicas y el sistema manda una señal cuando la temperatura baje por 150ºC. Cada estado en el que se encuentre el sistema tiene su señalización. Ing. Electrónica 15 UNSAAC

17 OBSERVACIONES, SUGERENCIAS Y CONCLUSIONES - Este comparador de temperatura trabaja dentro de un rango de temperatura, ósea que la temperatura a la cual se activa es diferenta a la temperatura a la cual se desactiva con lo cual se logra que trabaje en histéresis y esta forma de trabajo es mejor. - Se utiliza relees temporizados, por no contar con temporizadores electrónicos de alto rango. - Este diseño de control puede ser utilizado para poder realizar otros tipos de control 7y aplicarlos en otras áreas. - Se necesita utilizar un sensor de temperatura que soporte altas temperaturas ya que el horno trabaja a altas temperaturas. - El diseño podría ser mas automático y electrónico, pero se volvería mas complicado y mas costoso BIBLIOGRAFÍA - Boylestad, Robert Naslesky. Louis. Electrónica teoría de circuitos, Edit.. prentice may Hispanoamericana, S.A. sexta edición, 149pp. - Couglin S. Driscoll, Amplificadores Operacionales. - SENSORES Y ACONDICIONADORES DE SEÑAL; PALLAS ARENY, Ramón; Tercera Edición; Editorial ALGAOMEGA; 474pp - INSTRUMENTACIÓN APLICADA ALA INGENIERIA, Acondicionamiento del a Señal - Cuaderno de apuntes Ing. Electrónica 16 UNSAAC

MEDICIÓN DE TEMPERATURA

MEDICIÓN DE TEMPERATURA MEDICIÓN DE TEMPERATURA Métodos no eléctricos: Cambio de volumen de un líquido Cambio de presión de un gas o vapor Cambio de dimensiones de un sólido Métodos eléctricos: Fem generadas por termocuplas Cambio

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica La función amplificadora consiste en elevar el nivel de una señal eléctrica que contiene una determinada información. Esta señal en forma de una tensión y una corriente es aplicada

Más detalles

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: Este articulo es sobre pruebas que se han realizado en dos tipos de sondas lambdas de banda ancha, tipo BOSCH y tipo NTK.

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

Fundamentos de medición de temperatura

Fundamentos de medición de temperatura Fundamentos de medición de temperatura Termistores Termopares David Márquez Jesús Calderón Termistores Resistencia variable con la temperatura Construidos con semiconductores NTC: Coeficiente de temperatura

Más detalles

S & C Instrumentación de proceso y analítica. Capitulo II

S & C Instrumentación de proceso y analítica. Capitulo II S & C Instrumentación de proceso y analítica Capitulo II Gabriel Asaa Siemens Austral-Andina / Argentina / Sector Industria Cómo Viaja el Calor? 1-Conducción (en sólidos) 2-Convección:(En líquidos y gases)

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

CONTROL AUTOMATICO DE TEMPERATURA

CONTROL AUTOMATICO DE TEMPERATURA CONTROL AUTOMATICO DE TEMPERATURA Oscar Montoya y Alberto Franco En este artículo presentamos un circuito de control automático de temperatura, el cual, como es obvio, permite controlar la temperatura

Más detalles

Aceleración Temperatura Presión Humedad Fuerza Intensidad de luz. Introducción a la Electrónica

Aceleración Temperatura Presión Humedad Fuerza Intensidad de luz. Introducción a la Electrónica Elementos de Sensado Son dispositivos que se utilizan para transformar variables de cualquier tipo en señales eléctricas, de manera de poder procesarlas. Sensores: Posición Distancia Angulo Aceleración

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electrónica página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA Índice de contenido 1 Electrónica...2 2 Pilas en los circuitos electrónicos...2 3 DIODO...2 4 LED (diodo emisor de

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

Transductores TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN. GUIA No. 2 TRANSDUCTORES

Transductores TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN. GUIA No. 2 TRANSDUCTORES TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN GUIA No. 2 TRANSDUCTORES Prof. Ander J. Miranda. Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía de entrada, en

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

1. SENSORES DE TEMPERATURA

1. SENSORES DE TEMPERATURA 1. SENSORES DE TEMPERATURA 1.1. INTRODUCCIÓN. El objetivo de esta práctica es conocer, caracterizar y aplicar uno de los sensores de temperatura más conocidos, una NTC (Negative Temperature Coefficient).

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

Comparadores de tensión

Comparadores de tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014 Transistores Transistores Bipolares. PNP y NPN Los transistores son componentes electrónicos formados por semiconductores como los diodos, que en un circuito cumplen funciones de conmutador, amplificador

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Diseño electrónico de relés de protección para minicentrales hidroeléctricas

Diseño electrónico de relés de protección para minicentrales hidroeléctricas Luminotecnia ENTREGA 1 Diseño electrónico de relés de protección para minicentrales hidroeléctricas Elaborado por: Ing. Avid Román González (IEEE) Sabiendo que en la región del Cusco (Perú) existen muchas

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

DESARROLLO DE UN DIVISOR RESISTIVO PARA CALIBRACIÓN DE VÓLTMETROS Y NANOVÓLTMETROS EN LOS INTERVALOS DE mv

DESARROLLO DE UN DIVISOR RESISTIVO PARA CALIBRACIÓN DE VÓLTMETROS Y NANOVÓLTMETROS EN LOS INTERVALOS DE mv DESARROLLO DE UN DIISOR RESISTIO PARA CALIBRACIÓN DE ÓLTMETROS Y NANOÓLTMETROS EN LOS INTERALOS DE m David Avilés, Dionisio Hernández, Enrique Navarrete Centro Nacional de Metrología, División de Mediciones

Más detalles

CONVERTIDORES DIGITAL ANALÓGICO Y ANALÓGICO - DIGITAL

CONVERTIDORES DIGITAL ANALÓGICO Y ANALÓGICO - DIGITAL CONVERTIDORES DIGITAL ANALÓGICO Y ANALÓGICO - DIGITAL CONVERTIDORES DIGITAL ANALÓGICO Las dos operaciones E/S relativas al proceso de mayor importancia son la conversión de digital a analógico D/A y la

Más detalles

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01,

Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01, CONVOCATORIA ORDINARIA CURSO 2000 2001 SENSORES, TRANSDUCTORES Y ACONDICIONADORES DE SEÑAL Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01, El examen

Más detalles

Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031

Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031 Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031 GENARO CALDERÓN RODRÍGUEZ HÉCTOR HORACIO OCHOA NARANJO FACULTAD DE INGENIERÍA MECANICA Y ELÉCTRICA

Más detalles

cuando el dispositivo está en funcionamiento activo.

cuando el dispositivo está en funcionamiento activo. Transistores Muchos materiales, como los metales, permiten que la corriente eléctrica fluya a través de ellos. Se conocen como conductores. Los materiales que no permiten el paso de la corriente eléctrica

Más detalles

CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES. Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los

CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES. Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los hipoacúsicos escuchen perfectamente, sino que todos los afectados por

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Por Ing. José Luís Ola García ( 1 ) RESUMEN El elevado consumo de la Potencia Reactiva (aumento de la necesidad de magnetizar

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

Diagrama y Nomenclatura del sistema de lazo cerrado

Diagrama y Nomenclatura del sistema de lazo cerrado Diagrama y Nomenclatura del sistema de lazo cerrado En la figura 1 se muestra un diagrama de bloques general más detallado, el cual describe de forma adecuada a la mayoría de los sistemas de lazo cerrado.

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

Termistores NTC (Coeficiente Temperatura Negativo):

Termistores NTC (Coeficiente Temperatura Negativo): a) Señala las analogías y las diferencias entre ambos ciclos de funcionamiento. Analogías: los dos transductores basan su funcionamiento en la detección de la proximidad de un objeto. Diferencias: el transductor

Más detalles

Termostato electrónico con el PIC16F872

Termostato electrónico con el PIC16F872 Termostato electrónico con el PIC16F872 La temperatura es una de las variables físicas que más le ha preocupado a la humanidad. El termómetro de mercurio es quizás el instrumento más conocido para medir

Más detalles

Unidad Orientativa (Electrónica) Amplificadores Operacionales

Unidad Orientativa (Electrónica) Amplificadores Operacionales Unidad Orientativa (Electrónica) 1 Amplificadores Operacionales Índice Temático 2 1. Que son los amplificadores operacionales? 2. Conociendo a los Amp. Op. 3. Parámetros Principales. 4. Circuitos Básicos

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para

Más detalles

Esp. Duby Castellanos dubycastellanos@gmail.com

Esp. Duby Castellanos dubycastellanos@gmail.com 1 Lamedición de nivelpermite conocer y controlar la cantidad de líquido o sólidos almacenada en un recipiente, por lo que es una medición indirecta de masa o volumen. A nivel industrial la medición de

Más detalles

PRÁCTICAS DE ELECTRÓNICA TECNOLOGÍA 4º - Ejemplos -

PRÁCTICAS DE ELECTRÓNICA TECNOLOGÍA 4º - Ejemplos - Página 1 de 5 Estas hojas pueden servir de ejemplo en cuanto a lo que se espera de unos informes adecuados de las prácticas de tecnología de 4º ESO. La idea principal es que cualquier persona (aunque no

Más detalles

Tema: Dispositivos de control de motores.

Tema: Dispositivos de control de motores. Tema: Dispositivos de control de motores. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Control Industrial. I. Objetivos. Que el estudiante: Conozca las diferentes partes de un contactor. Desarrolle

Más detalles

Comparador de tensión. Diseño y construcción de un circuito Schmitt Trigger con histéresis. TECSOL24H.

Comparador de tensión. Diseño y construcción de un circuito Schmitt Trigger con histéresis. TECSOL24H. 2012 Comparador de tensión. Diseño y construcción de un circuito Schmitt Trigger con histéresis. TECSOL24H. 0 Contenido 1 MEMÓRIA... 1 1.1 OBJETIVO... 1 2 DISEÑO... 1 2.1 SCHMITT TRIGGER CON HISTERESIS...

Más detalles

Componentes: RESISTENCIAS FIJAS

Componentes: RESISTENCIAS FIJAS ELECTRÓNICA ELECTRÓNICA Componentes: RESISTENCIAS FIJAS Componentes: RESISTENCIAS VARIABLES Componentes: RESISTENCIAS DEPENDIENTES Componentes: RESISTENCIAS DEPENDIENTES Componentes: CONDENSADORES Componentes:

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Unidad 7: Sensores 7.1 Introducción 7.2 Sensado de Temperatura 7.3 Sensado de deformación, fuerza, presión y peso 7.4 Sensado de posición, velocidad y aceleración 7.5 Conexionado de los sistemas de sensado

Más detalles

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga. Página 1 de 9 REGULADOR DE VOLTAJE DE cc La mayor parte de los circuitos electrónicos requieren voltajes de cd para operar. Una forma de proporcionar este voltaje es mediante baterías en donde se requieren

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

Acondicionadores de aire

Acondicionadores de aire Acondicionadores de aire 1. Tipos de Equipos Existen equipos acondicionadores condensados por aire y condensados por agua. En esta descripción se incluyen únicamente los condensados por aire, dada su fácil

Más detalles

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

MODULO Nº6 TIRISTORES UNIDIRECCIONALES MODULO Nº6 TIRISTORES UNIDIRECCIONLES UNIDD: CONVERTIDORES C - CC TEMS: Tiristores. Rectificador Controlado de Silicio. Parámetros del SCR. Circuitos de Encendido y pagado del SCR. Controlador de Ángulo

Más detalles

UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE

UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE AÑO: 2010 Qué es un servidor Blade? Blade Server es una arquitectura que ha conseguido integrar en

Más detalles

Resistencia y resistividad

Resistencia y resistividad Resistencia y resistividad 2 Conductancia y conductividad Variación de la resistencia con la temperatura EE10Medicioneseléctricas Unidadeseléctricas Culombio(C,unidaddecargaeléctrica) Conexióndeunamperímetroenuncircuito.

Más detalles

Instalación eléctrica para un Centro de Procesamiento de Datos

Instalación eléctrica para un Centro de Procesamiento de Datos Instalación eléctrica para un Centro de Procesamiento de Datos Teoría y Serie de Trabajo Práctico 12 Redes de Altas Prestaciones Curso 2010 Conceptos sobre energía eléctrica Corriente Alterna (AC) Distribución

Más detalles

PLACAS FERTIRIEGO ELECTRÓNICA NUEVA

PLACAS FERTIRIEGO ELECTRÓNICA NUEVA PLACAS FERTIRIEGO ELECTRÓNICA NUEVA AVERÍAS FUENTE INTERCONEXIÓN INTERFACE C.E. INTERFACE ph LLAVE HARD RELÉS TARJETA DE 32 SALIDAS 7520 Página 1 de 20 # PLACA DE AVERÍAS 12V # AVERÍAS Página 2 de 20 CONEXIONES

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

Figura 1. Tipos de capacitores 1

Figura 1. Tipos de capacitores 1 CAPACITOR EN CIRCUITO RC OBJETIVO: REGISTRAR GRÁFICAMENTE LA DESCARGA DE UN CAPACITOR Y DETERMINAR EXPERIMENTALMENTE LA CONSTANTE DE TIEMPO RC DEL CAPACITOR. Ficha 12 Figura 1. Tipos de capacitores 1 Se

Más detalles

Manómetros electromecánicos - Complemento al Tema 1

Manómetros electromecánicos - Complemento al Tema 1 Manómetros electromecánicos - Complemento al Tema 1 *Utilizan un elemento mecánico elástico, que puede ser un tubo Bourdon, espiral, hélice, diafragma, etc. *Un juego de palancas convierte la presión en

Más detalles

CAPITULO 3. SENSOR DE TEMPERATURA

CAPITULO 3. SENSOR DE TEMPERATURA CAPITULO 3. SENSOR DE TEMPERATURA Este sensor deberá detectar los cambios de temperatura como función de la altitud, y fricción con el aire. Al igual que en los acelerómetros, poco se dispone de datos

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 1 de 12 Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 3 Bienvenida. 4 Objetivos. 5 Interacciones de Negocios

Más detalles

CALIDAD EN TUBOS T8 LED

CALIDAD EN TUBOS T8 LED CALIDAD EN TUBOS T8 LED Realizamos una comparación entre tres tipos de tubo LED, cada uno con diferente calidad; en este documento se explican sus diferencias. T8 120cm -18W Alta Calidad YAPI LED s Para

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES Son sistemas que funcionan automáticamente, sin necesidad de

Más detalles

Y ACONDICIONADORES TEMA

Y ACONDICIONADORES TEMA SENSORES Y ACONDICIONADORES TEMA 6 SENSORES CAPACITIVOS Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 6-1 SENSORES CAPACITIVOS Sensores basados en la variación de

Más detalles

CATEDRA de PROYECTO FINAL

CATEDRA de PROYECTO FINAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA CATEDRA de PROYECTO FINAL TITULO DEL PROYECTO: CONTROL DE CAMARAS FRIGORIFICAS TITULO DEL INFORME: MANUAL TÉCNICO PROFESOR(ES): ING. LOPEZ

Más detalles

ANTENAS: Teledistribución y televisión por cable

ANTENAS: Teledistribución y televisión por cable 5.1 INTRODUCCIÓN A LA TELEDISTRIBUCIÓN La teledistribución o CATV, podemos considerarla como una gran instalación colectiva, con algunos servicios adicionales que puede soportar y que conectará por cable

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Aplicación Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Por Viditec La utilización de variadores de velocidad o "inversores de frecuencia"

Más detalles

Acondicionamiento de Señal. Unidad 3

Acondicionamiento de Señal. Unidad 3 Acondicionamiento de Señal Unidad 3 Contenido Puentes de resistencias e impedancias Amplificadores Circuitos de salida Muestreadores Retentores Multiplexores Convertidores digital analógico Convertidores

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

TEMA 9 Cicloconvertidores

TEMA 9 Cicloconvertidores TEMA 9 Cicloconvertidores 9.1.- Introducción.... 1 9.2.- Principio de Funcionamiento... 1 9.3.- Montajes utilizados.... 4 9.4.- Estudio de la tensión de salida.... 6 9.5.- Modos de funcionamiento... 7

Más detalles

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos.

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos. SECADO DE EMBUTIDOS Imtech DryGenic ayuda a los fabricantes con procesos de secado de embutidos a obtener embutidos de mayor calidad, en un entorno libre de bacterias, limpio y a una temperatura y humedad

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS Diana Reina, Frank Mendoza, Nelson Forero 1 Universidad Distrital Francisco José de Caldas RESUMEN Se ha diseñado y

Más detalles

Practica 01: Sensores de luz y temperatura

Practica 01: Sensores de luz y temperatura Entrega vía Web: Viernes 07 de Marzo de 2014 M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com @efranco_escom edfrancom@ipn.mx 1 Contenido Introducción Objetivos Actividades Observaciones

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

SENSOR DE OXIGENO Sensor de Oxígeno

SENSOR DE OXIGENO Sensor de Oxígeno SENSOR DE OXIGENO Otro sensor especial utilizado solamente en los Sistemas de Control de Motores es el Sensor de Oxígeno. Este componente se monta en el tubo de escape de gases residuales de la combustión

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems BIPOLARES. Fundamentos de Ingeniería Eléctrica

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems BIPOLARES. Fundamentos de Ingeniería Eléctrica Máster en Mecatrónica U4M Master in Mechatronic and MicroMechatronic Systems IOLARS Fundamentos de Ingeniería léctrica Contenidos Funcionamiento Tipos de transistores Curvas características Resolución

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

3 CONDUCTORES ELÉCTRICOS

3 CONDUCTORES ELÉCTRICOS 3 CONDUCTORES ELÉCTRICOS 3.1 CONDUCTORES ELÉCTRICOS METALES MÁS EMPLEADOS Los metales más empleados como conductores en los cables eléctricos son el COBRE y el ALUMINIO. 3.1.1 EL COBRE El COBRE se obtiene

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles