UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS"

Transcripción

1 UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS Introducción Tasas d variación mdia instantána Drivada n un punto Ecuación d la rcta tangnt n un punto Función drivada. Drivadas sucsivas Tabla d drivadas y rglas d drivación INTRODUCCIÓN La istoria dl Cálculo difrncial s fund con la dl Cálculo intgral, dando lugar a lo qu s dnomina Cálculo infinitsimal. CÁLCULO INFINITESIMAL (basado n l paso al límit) CÁLCULO DIFERENCIAL (Drivadas) CÁLCULO INTEGRAL (Intgrals) Los dos problmas istóricos qu condujron al stablciminto dl concpto d drivada, furon: - Vlocidad d un móvil - Tangnt a una curva Ambos problmas furon rsultos por l inglés Isaac Nwton (matmático y físico) y por l almán Gottfrid Willm Libniz (matmático y filósofo). Nwton labora su toría acia 666, pro no la publica asta 69, n su obra D Analysi. Sin mbargo, Libniz, qu ac sus dscubrimintos más tard, publica su toría ants, n la rvista Acta Eruditorum, n 684. La polémica n torno a la autoría d las drivadas supuso una d las grands disputas d la Historia d la Cincia. NOTACIÓN MÁS USUAL Función Drivada n = a y (a), f (a) y = f() Dy(a), Df(a) dy d (a), df d (a) Página d

2 TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA Actividad. Djamos car un objto dsd una altura d 5 mtros. El spacio rcorrido (mtros), n función dl timpo (sgundos), vin dado por la prsión: (t) gt 5 t. 5 (mtros) (t) 5t t (sgundos) º) Calcula la vlocidad mdia n todo l rcorrido dl objto asta llgar al sulo, y la vlocidad mdia n l intrvalo [t =, t = 4] º) Calcula la vlocidad mdia n intrvalos cada vz más pquños cuyo orign s t =. º) Calcula la pndint d la rcta tangnt n t = y rlaciónala con la vlocidad instantána n dico punto. 5 º) Vlocidad mdia n [,5] 5 t 5 t v m,5 spacio rcorrido timpo mplado 5 5 t 5 5 m/s 5 Página d

3 Vlocidad mdia n [,4] 8 45 t 4 t v m,4 spacio rcorrido timpo mplado 4 4 t m/s En gnral: Y TASA DE VARIACIÓN MEDIA (TVM) EN UN INTERVALO y = f() f(b) f(a) a b y X TVM a,b Δy f(b) f(a) Δ b a La TVM s la variación d una función, por unidad d la variabl indpndint, n un cirto intrvalo. º) v m v m v m t ;,5 ;,5 t ;, ;, t ;,5 ;,5,5,5,,,5,5,5,5 m/s,5,5,5 m/s,,5,5 m/s,5 v i vlocidad instantána n t = (si l objto llvara cuntakilómtros, marcaría m/s n l instant t = ) lím v, t m/s t 5t (t) () 5 t m lím lím lím t t t t t t t Ruffini m/s Página d

4 En gnral: TASA DE VARIACIÓN INSTANTÁNEA (TVI) EN UN PUNTO Y y = f() TVI a lím TVMa, a lím a Δy Δ f() f(a) lím a a f() f(a) a y X Si acmos TVI a a : f(a Δ) f(a) lím Δ Δ La TVI n un punto s l límit d la TVM cuando l intrvalo s ac infinitamnt pquño. Rprsnta la variación instantána d una función por unidad d la variabl indpndint. º) rcta tangnt n t = La pndint d la rcta tangnt n t =, srá: t instantána n t =, qu coincid con la vlocidad En gnral: f() Y y = f() Q Dfinimos la rcta tangnt n P como l límit d las scants cuando l punto Q s aproima al P (cuando ): tgtg rcta tangnt n P rcta scant PQ f(a) P a y X Es dcir, la pndint d la rcta tangnt n P, srá: y tg α lím tg lím TVI a Por tanto, podmos intrprtar la TVI n un punto como la pndint d la rcta tangnt a la curva n dico punto. Página 4 d

5 DERIVADA EN UN PUNTO La tasa d variación instantána d una función n un punto, vista n l pígraf antrior, s conoc abitualmnt como drivada n dico punto, y la rprsntarmos con la notación d Lagrang: f a. Por tanto: f (a) f() f(a) a a f(a Δ) f(a) Δ f(a ) f(a) Por comodidad, s utiliza n lugar d Δ Rcordmos qu tnmos dos intrprtacions para la drivada: Intrprtación física, como variación instantána d una magnitud (función) por unidad d la variabl indpndint: TVI Intrprtación gométrica, como pndint d la rcta tangnt a la función n l punto considrado: tg α Ejrcicios. º) Dada la función: f(), calcula la drivada n l punto = utilizando las dos fórmulas. f () f () ( ) 6 f lím lím lím lím f ( ) f () ( ) ( ) f lím lím lím lím Página 5 d 6 6 º) Un país dsa nviar un satélit artificial al spacio. El cot qu lo transportará rspond a la cuación d moviminto (t) t 8t, sindo l spacio rcorrido n km dsd la suprfici trrstr y t, l timpo n minutos. Calcula la vlocidad dl cot a los 5 minutos dl lanzaminto. (t) (5) t Vlocidad instantána n l instant t = 5: 5 lím lím t 5 t 5 t5 t 8t 5 (t 5) (t ) lím lím 8 km/min t 5 t 5 t5 t 5 8t ( 5 t 5 º) Halla la pndint d la rcta tangnt a la parábola f() 8 7, n = 4 f f (4 ) f (4) 8 (4 ) (4 ) ) 4 lím lím lím lím 7 pdt =

6 4º) Dada la función f(), calcula las pndints d las rctas tangnt n los puntos = y =5. Por qué obtnmos l mismo valor? f f f () f () ( ) ( ) lím lím lím lím f () f (5) 5 ( 5 ) lím lím lím lím ( 5) Al tratars d una rcta, la tangnt n cualquir punto s la misma rcta y la pndint, por tanto, s mantin constant. ECUACIÓN DE LA RECTA TANGENTE EN UN PUNTO S pud dmostrar qu la cuación d una rcta t qu pasa por l punto P(a,b) y cuya pndint val m, s: y b = m( a) Como sabmos qu la pndint d la rcta tangnt n un punto s la drivada n dico punto y qu b = f(a), podmos scribir: y = f() Rcta tangnt a f() n l punto P(a,b): y f(a) f a a f(a) P t a Ej:) Hallmos la cuación d la rcta tangnt a la curva f 9 f lím f 9 lím lím f() n l punto d abscisa = 9: lím Rcta tangnt: y 9 f 9 9 y 9 6 f() 9 FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS punto: La función drivada asocia a cada punto n l qu la función s drivabl, la drivada n dico Página 6 d

7 f : Dom f R f( ) f() f () A partir d la función drivada (drivada ª) s pud dfinir, si ist, su función drivada, qu rcib l nombr d drivada ª. Y así sucsivamnt: Drivada ª: Drivada ª:... Drivada nésima: Ej.) f() = f () f () tc. f( ) f() f ( ) f () ( ) 6 ( ) 6 6 En la práctica, las funcions drivadas s obtinn a partir d la tabla d drivadas y d las rglas d drivación. Página 7 d

8 TABLA DE DERIVADAS Y REGLAS DE DERIVACIÓN Tabla d drivadas (notación d Lagrang) FORMA SIMPLE y Ct y y y FORMA COMPUESTA n y y y ln y n y y n n y f () y f () y ln f() y n f () y f() f () y f () f () f() y log a y log a y log a f () y log a f () y y y a y a ln a y f () g() y g() f () g() n f () f () y y f() f a f() () f () y y a ln a f() f () f () g() ln f () g() y sn y cos y sn f() y cosf() f() y cos y sn y cosf () y sn f() f() y tg y sc y tgf() y sc f () f() y cotg y cosc y cotgf() y cosc f() f() y sc y tgsc y sc f() y tgf() scf () f() y cosc y cotg cosc y cosc f() y cotg f() cosc f() f () y arc sn y arc cos y arc tg y arc cotg y y arc sn f() y y arc cos f() y y arc tgf() y y arc cotg f() f() y f() y f () y f () f() y f () f () f () Página 8 d

9 Opracions con funcions drivabls y f() g() y f() g() y f() g() y Ctf() y f () g () y f () g() f() g () f () g() f() g () y g() y Ctf () Ejmplos. y log y log log log y sn sn sn cos sn cos sn cos cos cos sn y cos cos y sn sn y cos y 6 y 6 cos sn cos cos 6 Composición d funcions (rgla d la cadna) f g f() y = g[f()] sn Obsrvamos qu la drivada sc coincid, como ra d sprar, con la d la función tangnt y = (g o f) () = g[f()] Notación d Lagrang: y g f() f () Notación d Libniz: d y d d g f() d f() d f() d sc sc Ej.) y lnsc y sc sc tg tg, sisc Drivamos l logaritmo npriano tomando como variabl sc La rgla d cadna justifica la utilización d la columna FORMA COMPUESTA Página 9 d

10 Drivación logarítmica Sa y = f(). Hmos d sguir pasos: º. Tomamos logaritmos n los dos mimbros. º. Drivamos ambos mimbros. º. Dspjamos y Ej.) y. Sigamos los pasos antdicos: º. Tomamos logaritmos y bajamos l ponnt: ln y ln ln y º. Drivamos n los dos mimbros: y º. Dspjamos y: y y y y Obsrvamos qu l rsultado s l qu ubiésmos obtnido al drivar dirctamnt la función y = La técnica d la drivación logarítmica s aplica, fundamntalmnt, cuando qurmos drivar una función lvada a otra. y cos sn Ej.) º. ln y ln cos sn sn lncos y y y cos ln y º. sn lncos sn lncos sn cos cos sn y sn cos lncos y cos º. y y cos lncos sn cos y sn cos cos lncos sn cos Página d

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2. MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN

UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN. Abl Martín. Dpto. Matmáticas IES La Ería d Ovido.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

PROBLEMAS RESUELTOS DE CÁLCULO DE DERIVADAS

PROBLEMAS RESUELTOS DE CÁLCULO DE DERIVADAS PROBLEMAS RESUELTOS DE CÁLCULO DE DERIVADAS ) Calcular las drivadas d: a) f( ) cos 0 cos sn f '( ) cos b) g( ) ln 7 Simplificamos ants d drivar, aplicando propidads d logaritmos 7 nprianos: g() ln 7 ln

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad.

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad. TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y f() una función que relaciona la variable dependiente (y)

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

TEMA 5: INTEGRAL INDEFINIDA

TEMA 5: INTEGRAL INDEFINIDA MATEMÁTIAS II TEMA : INTEGRAL INDEFINIDA. Primitiva d una función El objtivo d st tma s l studio dl procso contrario al d drivación. Si drivamos la función partimos d f tnmos y dirmos qu s una primitiva

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Derivada de una función MATEMÁTICAS II 1

Derivada de una función MATEMÁTICAS II 1 Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que

Más detalles

Tema 13. Aplicaciones de las derivadas

Tema 13. Aplicaciones de las derivadas Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,

Más detalles

al siguiente límite si existe: . Se suele representar por ( x )

al siguiente límite si existe: . Se suele representar por ( x ) UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

Ejercicios para aprender a integrar Propiedades de las integrales:

Ejercicios para aprender a integrar Propiedades de las integrales: Julián Morno Mstr www.juliwb.s Ejrcicios para aprndr a intgrar Propidads d las intgrals: af d = a f d f ± g( ) d = f d ± g( ) d b a b f d = f d = [ F( ) ] a = F( b) F( a) a b Rglas d intgración: ad = a

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA.

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA. Unidad. Funcions.Aplicacions d la drivada TEMA. APICACIONES DE A DERIVA ERIVADA DA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

GUÍA METODOLÓGICA PARA ARQUITECTURA

GUÍA METODOLÓGICA PARA ARQUITECTURA Dpartamnto d Cincias Eactas GUÍA METODOLÓGICA DE MATEMÁTICA APLICADA II PARA ARQUITECTURA Marzo0-Julio 0 Campus Matriz Quito: Burgois N-0 y Rumipamba Tléfonos 6 /58/59 Et. 68/66 Quito Ecuador Dpartamnto

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio. Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,

Más detalles

Introducción a las derivadas

Introducción a las derivadas Introducción a las derivadas Esquema Tasa de variación media en un intervalo Para una función f(x) se define la tasa de variación media de f en un intervalo [a, b], contenido en el dominio f(x), mediante

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

Tema 6: Derivada de una función

Tema 6: Derivada de una función Tema 6: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Idea Calcular la pendiente de una recta es relativamente sencillo, basta con aumenta la y entre lo que

Idea Calcular la pendiente de una recta es relativamente sencillo, basta con aumenta la y entre lo que http://matmaticas-tic.wikispacs.com m Lambrto Cortázar Vinusa 07 DERIVADAS. CCSS EJERCICIOS WIKI Ida Calcular la pndint d una rcta s rlativamnt sncillo, basta con dividir lo qu aumnta la ntr lo qu aumnta

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t IES Frnando d Hrrra Curso 016 / 17 Sgundo trimstr Obsrvación valuabl scrita nº 1 º Bach CCSS NOMBRE: Instruccions: 1) Todos los folios dbn tnr l nombr y star numrados n la part suprior. ) Todas las rspustas

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como:

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como: Derivadas Antes de dar la definición de derivada de una función en un punto, vamos a introducir el concepto de tasa de variación media y dos ejemplos o motivaciones iniciales que nos van a dar la medida

Más detalles