Tema 5: Sistemas secuenciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5: Sistemas secuenciales"

Transcripción

1 Tema 5: Circuitos secuenciales 5.1 Introducción: tablas de transición, cronogramas. Hemos visto como en los circuitos combinacionales, las salidas sólo dependen de las entradas en el mismo instante de tiempo. Existe otro tipo de circuitos digitales en los cuales esto no es así. Son los llamados circuitos o sistemas secuenciales. Circuitos secuenciales Son aquellos en los cuales las salidas en un instante de tiempo determinado dependen de las entradas en ese instante y en instantes anteriores de tiempo. Como consecuencia de la definición anterior podemos llegar a la conclusión de que este tipo de circuitos son capaces de memorizar información y que esta información en un momento dado depende de las entradas ocurridas en el circuito hasta ese momento. El circuito no es capaz de memorizar todas las entradas ocurridas hasta un instante de tiempo determinado, sino solo una cierta parte. A la información almacenada se le denomina estado del sistema, y el número máximo de informaciones almacenables es el número de estados posibles del sistema. El diagrama de bloques de un circuito secuencial es: E (t) Circuito combinacional (t+1) S Elementos de almacenamiento El circuito secuencial recibe información binaria de su ambiente a través de las entradas E, las cuales, en combinación con el estado actual (t) (almacenado en los elementos de almacenamiento), determinan el valor binario de las salidas S y el siguiente estado (t+1). Las salidas de un circuito secuencial son las salidas del circuito combinacional. 1

2 5.1.1 Funciones de transición Un circuito o sistema secuencial queda definido por dos funciones lógicas, llamadas funciones de transición: 1. Función de salida: nos indica cómo depende la salida o salidas, de las entradas actuales y del estado actual. 2. Función de transición de estado: nos indica como depende el nuevo estado del estado anterior y de las entradas al sistema Función de salida Si designamos por: S(t) = salidas en el mismo instante de tiempo t E(t) = entradas en el mismo instante de tiempo t (t) = estado en el instante de tiempo t La función de salida puede expresarse: S (t) = F [ E (t), (t) ] Función de transición de estado Nos indica si unas determinadas entradas producen un cambio en el estado y a qué estado se cambia. La función puede expresarse: (t+1) = G [ E(t), (t) ] Tanto F como G son funciones lógicas, exactamente iguales a las estudiadas hasta ahora. La única novedad, que confiere a los circuitos secuenciales propiedades totalmente distintas a los combinacionales, es el hecho de que existe realimentación. La función G nos da los valores en función de los propios valores anteriores. Las mismas variables son variables de entrada y salida de la función. Las funciones F y G pueden expresarse mediante tablas de verdad. como cualquier otra función. Por el hecho de existir realimentación, se les denomina tablas de transición del circuito secuencial Cronogramas Hemos visto que los circuitos secuenciales tienen una estructura tal que las salidas dependen del tiempo, ya que el estado depende de las entradas y éstas son función del tiempo. Aunque las tablas de transición permiten definir un circuito secuencial, cuando éste es complejo, es más cómodo manejar una representación gráfica de las variables en función del tiempo. A esta representación se le llama cronograma. Más adelante veremos los cronogramas de los distintos biestables. 2

3 5.2 Biestables Los biestables son circuitos lógicos capaces de permanecer en uno de entre dos estados estables, aún después de desaparecer la causa que provocó el paso al estado alcanzado. Son, pues, capaces de almacenar una información binaria (1 bit) Tipos de biestables. Deben distinguirse tres aspectos en las señales de entrada que producen la transición de un estado a otro: 1. La lógica de disparo, que determinará que el biestable cambie de estado cuando en sus entradas se dé una cierta combinación de señales. Es el modo de funcionamiento. Puede haber tantos biestables como lógicas de cambio nos imaginemos. En la práctica sólo se usan 4 tipos de biestables. 2. El tipo de disparo, que determinará la forma en que las excitaciones de entrada afectan al estado del biestable. 3. El sincronismo en el disparo, que determinará si el funcionamiento del biestable se hará de acuerdo con la presencia de una señal adicional a las entradas, y que se denomina señal de reloj. Combinando estos tres aspectos, los fabricantes han comercializado una gran variedad de biestables, que son suficientes para las necesidades de diseño. Podemos clasificar los biestables según estos criterios. 1. Atendiendo a la lógica de disparo (modo de funcionamiento): Biestables -S Biestables J-K Biestables D Biestables T 2. Atendiendo al sincronismo en el disparo y tipo de disparo: Asíncronos (latches): funcionan sin señal de reloj. Síncronos (flip-flops): funcionan con señal de reloj. Disparo por nivel de tensión: alto ("1") o bajo ("0") Nivel alto ("1"): El biestable podrá cambiar de estado cuando la señal de reloj esté a "1". Nivel bajo ("0"): El biestable podrá cambiar de estado cuando la señal de reloj esté a "0". Disparo por flanco: de subida o bajada Flanco de subida: El biestable podrá cambiar de estado en el instante en que la señal de reloj pase de "0" a "1". Flanco de bajada: El biestable podrá cambiar de estado en el instante en que la señal de reloj pase de "1" a "0". 3

4 Biestables asíncronos (latches) Asíncronos quiere decir que funcionan sin señal de reloj; cualquier cambio en las entradas produce un cambio en las salidas, en cualquier momento. En el caso de tener varios biestables asíncronos en un circuito, cada uno actuaría de forma independiente a los otros Biestables síncronos (flip-flops) Son los que funcionan en sincronismo con una señal de reloj. A estos también se les llama circuitos secuenciales sincronizados, y son el tipo de circuito más utilizados en la práctica, ya que son relativamente sencillos de diseñar. Un circuito secuencial síncrono emplea señales que afectan los elementos de almacenamiento sólo a instantes discretos de tiempo. La sincronización se logra por medio de un dispositivo de sincronía, llamado generador de reloj, que produce un tren periódico de pulsos de reloj, a intervalos fijos. Esto significa que en los biestables síncronos, la tabla de transición solo se cumple cuando se activa la señal de reloj. Si la señal de reloj no se activa, no se produce ninguna transición. Por tanto, aunque en las entradas haya una combinación de señales que conduzcan a una transición de estado, ésta no se producirá hasta que se active la señal de reloj, y no volverá a producirse una nueva transición hasta que se active de nuevo la señal de reloj. La señal de reloj puede activarse de dos formas: por nivel o por flanco Biestables activados por nivel (de tensión): Un biestable activado por nivel podrá cambiar de estado cuando la señal de reloj esté a un determinado nivel de tensión: "1" (nivel alto) o "0" (nivel bajo). Nivel alto Biestables activados por flanco: Nivel bajo Un biestable activado por flanco ignora el pulso de reloj mientras está en un nivel constante y se dispara sólo durante una transición de la señal de reloj, de "0" a "1" (flanco de subida) o de "1" a "0" (flanco de bajada). Flanco de subida t Flanco de bajada t 4

5 El diseño de circuitos asíncronos complejos es más difícil que el de circuitos síncronos, puesto que su comportamiento depende en gran medida de los retardos de propagación de las puertas lógicas y de la sincronía de los cambios de las entradas. De todas formas, siempre se necesita algo de diseño asíncrono, ya que: 1. los latches (elementos de almacenamiento en circuitos asíncronos) se utilizan como bloques de construcción de los flip-flops (elementos de almacenamiento en circuitos síncronos). 2. Los biestables (flip-flops) que vamos a estudiar decimos que tienen entradas síncronas, ya que los datos se transfieren sincronizados con la señal de reloj, sólo durante el flanco de disparo del pulso de reloj. Pero la mayoría de los IC disponibles en el mercado presentan también entradas asíncronas, las cuales pueden cambiar el estado del flip-flop independientemente del reloj. Estas entradas pueden ser por nivel alto ("1") o por nivel bajo ("0") y son prioritaras sobre las otras señales de entrada. Podemos tener las siguientes: Inicialización o Preset (PE): pone al biestable en estado SET ("1"). Borrado o Clear (CL): pone al biestable en estado ESET ("0"). En su forma más elemental, un biestable consiste en dos inversores interacoplados (realimentados), la salida de uno conectada a la entrada del otro y viceversa, como se ve en la figura: Este circuito es capaz de estar en dos estados estables, pero para cambiar de estado, hay que actuar sobre las salidas, por lo que no es útil. Se requiere un circuito de entrada, separado del de salida. Además, se necesita que el biestable responda a una lógica de disparo, es decir, cambie de estado según un criterio preestablecido fijo. Ahora vamos a estudiar los 4 tipos básicos de biestables: -S, J-K, D y T, estudiando su tabla de de transición, circuito y cronograma, tanto para el caso de que funcionen asíncronamente (sin señal de reloj) como síncronamente (con señal de reloj). Veremos los casos en que la señal de reloj se activa por nivel (alto/bajo) o por flanco (subida/bajada). 5

6 5.2.2 Biestable -S (latch) El único biestable que tiene sentido como asíncrono es el -S. Los demás requieren reloj para un correcto funcionamiento. Este biestable tiene dos entradas: (eset): permite poner a 0 el estado del biestable. S (Set): permite ponerlo a 1. Tiene dos salidas complementarias: y '. Para analizar la tabla de transición basta con que nos fijemos en. La tabla de transición es la siguiente, en forma normal y forma compacta: S (t) (t+1) S (t+1) Comentario (t) No cambia Se activa Set Se activa eset ND No Definido ND ND ND = No definido En el último caso, el hecho de que el nuevo estado no está definido no quiere decir que el biestable se deteriore si =S=1. Lo que significa es que no podemos predecir en qué estado quedará. El símbolo como bloque del biestable -S es el siguiente: ' S ' S' ' y el circuito puede ser implementado con sólo dos puertas NO con acoplamiento cruzado y con entrada activa a nivel alto o con dos puertas NAND con entrada activa a nivel bajo: ' S ' S' ' En el caso de utilizar puertas NAND, las órdenes eset y Set suceden para entradas a nivel bajo (0); en este caso, el biestable se llama biestable 'S', y su tabla de verdad es todo invertido (=S=0 no permitido, etc.) 6

7 Vamos a explicar el funcionamiento del biestable -S (latch) con el primer circuito (con puertas NO). Lo que hacemos es cambiar los valores de las dos entradas y S y observaremos las señales de salida y '. 1 S 2 ' Suponemos que =S==0 (nivel bajo). Dado que la salida se realimenta a una entrada de la puerta 2 y su otra entrada es S=0, la salida de la puerta 2 tiene que ser '=1. Pero esta salida está acoplada de nuevo a una entrada de la puerta 1, asegurando así que su salida sea =0, es decir, el biestable no cambia de estado. Cuando la salida esté a nivel bajo (=0), el latch se encuentra en estado ESET ("0") y permanecerá indefinidamente en él hasta que se le aplique un nivel alto en la entrada S (S=1). Al tener S=1, la salida de la puerta 2 se pone a nivel bajo ('=0). Como tenemos que =0 y '=0, la salida de la puerta 1 se pone a nivel alto (=1). Este nivel alto en la salida se realimenta a una de las entradas de la puerta 2, asegurando que su salida ' permanece a nivel bajo ('=0) incluso cuando se elimine el nivel alto de la entrada S (S=0). Cuando la salida esté a nivel alto (=1), el latch se encuentra en estado SET ("1"), y permanecerá indefinidamente en él hasta que se le aplique un nivel alto en la entrada (=1). Si estando en este estado SET (=1), eliminamos simultánemente los niveles altos de las dos entradas (=S=0), como la salida se realimenta en una entrada de la puerta 2, y la otra entrada es S=0, su salida estará a nivel bajo ('=0). Como esta salida está acoplada de nuevo a una entrada de la puerta 1, y la otra entrada es =0, su salida estará a nivel alto (=1). Vemos que el biestable no cambia de estado. En operación normal, las salidas de un latch ( y ') son siempre complementarias una de la otra. Sin embargo, se produce una condición de funcionamiento no válida en un biestable -S cuando se aplican simultáneamente niveles altos a las dos entradas y S (=S=1). En esta situación, las dos salidas deberían estar forzósamente a nivel bajo (='=0), lo que viola la condición de complementariedad de las salidas. Además, si se eliminan simultánemente los niveles altos de las dos entradas (=S=0), las dos salidas van a tender al nivel alto y, dado que siempre va a existir un cierto retraso de propagación de la señal eléctrica a través de las puertas, una de las puertas dominará en la transición a nivel alto (una de las puertas siempre será más lenta que la otra). Esto hará que la salida de la puerta más lenta permanezca a nivel bajo. Cuando se produce esta situación, no se puede predecir el siguiente estado del latch. Si los tiempos de propagación de las dos puertas fueran exactamente iguales se producirían oscilaciones 0,1,0,1,... 7

8 Los cronogramas correspondientes a un biestable -S con puertas NO y NAND son los siguientes. Como estamos analizando el biestable como asíncrono, no dependerá de una señal de reloj, sino de cómo cambiemos las entradas y S y del estado anterior. Igual que hemos hecho antes, lo que hacemos ahora es cambiar los valores de las dos entradas y S y observaremos las señales de salida y '. Los estados de las entradas y S los hemos elegido arbitrariamente para realizar los cronogramas, partiendo en ambos casos de que se encuentra a nivel bajo (=0). S ' Cronograma biestable -S (puertas NO) t Mantiene el estado anterior Estados no definidos NOTA: La condición =S=1 origina un modo de funcionamiento no válido del biestable, lo que es un gran inconveniente en cualquier latch de tipo ESET-SET. NOTA: Mientras no se diga lo contrario, de ahora en adelante supondremos que los tiempos de propagación de las puertas lógicas que componen los biestables son nulos, con lo cual la respuesta del biestable será inmediata. ' S' ' Cronograma biestable -S (puertas NAND) t Mantiene el estado anterior NOTA: en este caso, la condición =S=0 tiene el mismo problema que antes. 8

9 Este tipo de biestable, y todos los que vamos a ver, pueden tener una entrada adicional de habilitación (STOBE o ENABLE), que puede activarse en estado alto ("1") o bajo ("0"). Cuando esta señal está activa, el biestable funciona (puede cambiar de estado); cuando está inactiva, no funciona. En el caso del biestable -S, debemos añadir la siguiente lógica al circuito para tener dicha entrada de habilitación. El símbolo lógico o de bloques es el mismo que antes pero añadimos esta entrada de habilitación. EN S ' El biestable -S puede funcionar de forma asíncrona (tal como hemos visto hasta ahora), pero también de forma síncrona, es decir, utilizando una señal de reloj como entrada de habilitación. Cuando enumeramos los distintos tipos de biestables, dentro de los síncronos (flip-flops) vimos que la señal de reloj se podía activar por "nivel" o por "flanco". Los símbolos lógicos o de bloques de los biestables -S síncronos son los siguientes. Todos tienen una entrada adicional de reloj (). En el caso de los flip-flops disparados por flanco colocamos un triángulo dentro del bloque en la entrada del reloj. Este triángulo se denomina "indicador de entrada dinámica". Para distinguir si se activa por flanco de subida o por flanco de bajada, colocamos un círculo (como los de negación) en la entrada del reloj. Activados por nivel: S ' S ' Activado por nivel alto ("1") Activado por nivel bajo ("0") Activados por flanco: S ' S ' Activado por flanco de subida Activado por flanco de bajada NOTA: Esta misma nomenclatura se utiliza en el resto de biestables. 9

10 Vamos a analizar ahora los cronogramas correspondientes a estos cuatro casos. Al tratarse de biestables síncronos, ahora dependerán de una señal de reloj. Igual que antes, cambiamos las entradas y S y comprobamos las señales de salida y '. Podemos poner los cuatro casos en un sólo cronograma. S na nb fs fb Cronograma biestables -S (síncronos) Donde: na = Salida biestable activado por nivel alto ("1") nb = Salida biestable activado por nivel bajo ("0") fs = Salida biestable activado por flanco de subida fb = Salida biestable activado por flanco de bajada t Nota: Las salidas ' las ignoramos, puesto que su señal simplemente es la inversa de. ecuerda: Un flip-flop activado por nivel sólo puede cambiar mientras la señal de reloj esté en un determinado nivel: nivel alto ("1") o nivel bajo ("0"). Un flip-flop activado por flanco no puede cambiar de estado excepto en el flanco de disparo de un pulso de reloj. Las entradas y S se pueden cambiar en cualquier momento sin que varíe la salida, salvo en esos instantes. Para detectar los flancos, se utiliza un circuito "detector de transición de impulsos", que se conecta a la entrada ENABLE. Ejemplo de IC: el 74LS279 tiene 4 latches 'S'. 10

11 5.2.3 Biestable J-K El flip-flop J-K es uno de los más ampliamente utilizados. Las denominaciones J y K de sus entradas no tienen ningún significado conocido, excepto el hecho de que son dos letras consecutivas del alfabeto. Es similar al -S, pero elimina la indeterminación que se presenta cuando las dos entradas son "1". En este caso, para esa combinación el estado cambia de valor, es decir, si tenía el valor "0" pasa a valor "1" y viceversa. La razón de utilizar el biestable -S es porque es mucho más simple y económico que el biestable J-K. Hay muchos casos en que tenemos la certeza de que el circuito conectado al biestable no podrá activar simultánemente las dos entradas a la vez ("1"). La tabla de transición es la siguiente, en forma normal y forma compacta: J K (t) (t+1) J K (t+1) Comentario (t) No cambia Se activa eset Se activa Set (t)' Invierte (t) ND = No definido El símbolo como bloque es: J J K ' K ' Activado por flanco de subida Activado por flanco de bajada Ejemplo de IC: el 74HC112 tiene 2 flip-flops J-K (flanco de bajada), con entradas asíncronas de inicialización y borrado. 11

12 Ejemplo de cronograma: se aplican las siguientes formas de onda a las entradas J, K y de reloj. Determinar la salida para un biestable activado por flanco de subida y para otro activado por flanco de bajada, suponiendo que se encuentran inicialmente en estado ESET ("0"). J K fs fb Cronograma biestables J-K (flanco de subida y flanco de bajada) t Donde: fs = Salida biestable activado por flanco de subida fb = Salida biestable activado por flanco de bajada El biestable J-K no tiene sentido como asíncrono: Supongamos que el estado inicial es (0)=0 y que J=K=1. Mirando la tabla de transición vemos que, para las entradas indicadas, el estado cambia al estado (1)=1. Ahora bien, apenas ha cambiado, como las señales de entrada siguen indicando que cambie, volverá a cambiar a un estado (2)=0, y así sucesivamente. Vemos que el funcionamiento es inestable, pues el estado estaría cambiando continuamente. Si por el contrario, dotamos al biestable J-K de una entrada de reloj que sincronice las transiciones, el problema puede solucionarse. Para que efectivamente se solucione, es necesario que la señal de reloj se active durante un periodo de tiempo muy breve, de tal modo que en este periodo no pueda haber más que una transición. Es conveniente pues, que la señal de reloj actúe por flanco, reduciendo así al mínimo el período de tiempo en el cual está activa. Para que las señales de entrada puedan ser tenidas en cuenta cuando se producen flancos de la señal de reloj, deberán estar en unos niveles claramente definidos. Por tanto, las restantes señales de entrada deben actuar siempre por nivel. 12

13 Finalmente, como ya hemos comentado, hay biestables síncronos con entradas asíncronas. El más utilizado es el J-K síncrono, con dos entradas asíncronas adicionales, llamadas Preset (puesta a "1") y Clear (puesta a "0"), análogas a las Set y eset de un biestable -S. Estas entradas PE' y CL' (asíncronas) son prioritarias sobre las entradas síncronas, y se activan por nivel bajo (las complementamos), por lo que deben mantenerse en estado alto para el funcionamiento síncrono. El símbolo de este biestable es: Preset Set (Biestable -S) J PE' K ' CL' Clear eset (Biestable -S) Ejemplo de cronograma para el biestable anterior, teniendo en cuenta que está inicialmente a nivel bajo: J K PE' CL' fs fb Cronograma biestables J-K (síncronos y con 2 entradas asíncronas) t Debería seguir a "1" hasta el siguiente flanco de subida pero la entrada CL' se ha activado. Debería cambiar a "0", pero la entrada PE' se ha activado; ya no podrá cambiar hasta el próximo flanco. Donde: PE' = Entrada asíncrona PESET (se ignora cuando es "1") CL' = Entrada asíncrona CLEA (se ignora cuando es "1") fs = Salida biestable activado por flanco de subida fb = Salida biestable activado por flanco de bajada 13

14 5.2.4 Biestable D (Datos) Sólo tiene una entrada D, y su funcionamiento es tal, que el estado siguiente (t+1) es la entrada D, independientemente del estado actual del biestable (t). Su tabla de transición es: D (t) (t+1) D (t+1) Comentario No depende de (t) No depende de (t) Puede observarse que el nuevo estado coincide siempre con la entrada D. Si lo definimos así, esto no es un biestable, ya que no almacena ninguna información. Lo que ocurre es que este biestable no tiene sentido como asíncrono. El biestable D síncrono es un elemento típico de almacenamiento gobernado por la señal de reloj. La señal lógica que haya en la entrada D, no modificará el estado hasta que se active la señal de reloj. Esto constituye una memoria elemental de 1 bit, ya que el valor presente en la entrada D, queda almacenado al llegar la señal de reloj. Para cambiar el contenido de esta celdilla de memoria, no hay más que colocar el nuevo valor en la entrada D y activar la señal de reloj, momento en el cual el nuevo valor queda almacenado en el biestable. Su símbolo como bloque es: D D ' ' Activado por flanco de subida Activado por flanco de bajada Puede obtenerse también a partir de un biestable J-K y un inversor, según podemos observar en el esquema siguiente: D J K ' Biestable D a partir de un J-K J K (t+1) 0 0 (t) (t)' 14

15 Ejemplo de IC: el 74AHC74 tiene 2 flip-flops D (flanco de subida), con entradas asíncronas de inicialización y borrado. Vamos a analizar ahora los cronogramas. D na nb fs fb Cronograma biestables D (síncronos) t Donde: na = Salida biestable activado por nivel alto ("1") nb = Salida biestable activado por nivel bajo ("0") fs = Salida biestable activado por flanco de subida fb = Salida biestable activado por flanco de bajada Nota: Las salidas ' las ignoramos, puesto que su señal simplemente es la inversa de. ecuerda: Un flip-flop activado por nivel sólo puede cambiar mientras la señal de reloj esté en un determinado nivel: nivel alto ("1") o nivel bajo ("0"). Un flip-flop activado por flanco no puede cambiar de estado excepto en el flanco de disparo de un pulso de reloj. Las entradas y S se pueden cambiar en cualquier momento sin que varíe la salida, salvo en esos instantes. 15

16 5.2.5 Biestable T Tiene una única entrada T. Si esta entrada está inactiva ("0"), el estado no cambia. Si T está activa ("1"), el estado cambia. Su tabla de transición es: T (t) (t+1) T (t+1) Comentario (t) No cambia el estado (t)' Invierte el estado Su símbolo como bloque es: T T ' ' Activado por flanco de subida Activado por flanco de bajada Puede comprobarse que un biestable J-K con las dos entradas unidas actúa como un biestable T, razón por la cual éste no existe comercialmente, sólo existe a nivel teórico. T J K ' Biestable T a partir de un J-K J K (t+1) 0 0 (t) (t)' Por tanto, todo lo dicho para el biestable J-K es aplicable para el biestable T. T fs fb Cronograma biestables T (flanco de subida y bajada) NOTA: Si lo hacemos por nivel (alto o bajo), el biestable estará oscilando continuamente entre 0 y 1, cuando T=1 en el nivel correspondiente, y después no sabremos en que estado se ha quedado. t 16

17 5.2.6 Flip-flops Maestro-Esclavo Otra clase de flip-flops son los maestro-esclavo disparados por nivel, que han sido reemplazados progresivamente por los dispositivos disparados por flanco. Consiste en dos latches -S con una entrada de habilitación (reloj), un inversor y algún circuito adicional. Al latch de la izquierda lo llamaremos "maestro", y al de la derecha lo llamaremos "esclavo". La diferencia es que el "maestro" está sincronizado con una señal de reloj, y el "esclavo" lo está por una señal de reloj invertida y se controla mediante las salidas del "maestro" en lugar de por las entradas externas. El "maestro" podrá cambiar de estado durante los flancos de subida, y este estado se transfiere al "esclavo" durante el siguiente flanco de bajada. El estado del "esclavo" depende únicamente del estado del "maestro" en el momento que se produce el flanco de bajada, y aparece en sus salidas y ' Biestable -S maestro-esclavo S S S ' ' ' La tabla de verdad es la misma que la estudiada para biestables -S. J K (t+1) Comentario S (t+1) Comentario 0 0 (t) No cambia 0 0 (t) No cambia eset Set Set eset 1 1 (t)' Invierte (t) 1 1 ND No Definido Podemos ver un ejemplo de funcionamiento en el siguiente cronograma: S = S m = m m = S e = e Cronograma biestable J-K Maestro-Esclavo t 17

18 Biestable J-K maestro-esclavo J S S K ' ' ' La tabla de verdad es la misma que la estudiada para biestables J-K. J K (t+1) Comentario S (t+1) Comentario 0 0 (t) No cambia 0 0 (t) No cambia eset Set Set eset 1 1 (t)' Invierte (t) 1 1 ND No Definido 18

19 5.3 egistros y Contadores Hasta ahora hemos estudiado circuitos combinacionales y circuitos secuenciales por separado. En este apartado vamos a unir ambos conceptos, para poder analizar los bloques funcionales secuenciales básicos, como son los registros y los contadores. Los registros y los contadores son bloques funcionales secuenciales que se utilizan extensamente en el diseño de sistemas digitales. Los registros son útiles para almacenar y manipular información; los contadores se emplean en los circuitos que secuencian y controlan las operaciones de los sistemas digitales egistros Un registro no es más que una agrupación de biestables del mismo tipo. Puesto que un biestable es capaz de almacenar 1 bit de información, si tenemos "n" biestables, el registro será capaz de almacenar "n" bits de información binaria (de forma temporal). El registro más sencillo consta tan sólo de flip-flops sin puertas lógicas externas. Estas puertas son las que determinan los nuevos datos a almacenar egistros de almacenamiento (tipo D) El registro tipo D es un conjunto de biestables D y es el más utilizado como almacén temporal de información. Cada entrada D se conecta a una línea de entrada de información y cada salida se conecta a una línea de salida de información. Por otro lado, todas las señales de reloj van unidas entre sí, activando todos los flip-flops por flanco (de subida o bajada) o por nivel para que la información se almacene en todos los biestables al mismo tiempo. El esquema es el de la figura (para n=4 bits): D D D D Clear D 3 D 2 D 1 D 0 19

20 En este caso, la señal de reloj es con flanco de subida. Además, podemos observar como estos flip-flops tienen una entrada asíncrona de eset activada por 0 (Clear') para la inicialización del registro con ceros antes de su operación, aunque esto es opcional (depende del uso que vayamos a darle al registro en el sistema). Lo que haremos será tener la entrada Clear' a un valor de "1" durante la operación normal sincronizada, haremos que sea "0" sólo cuando queramos inicializar el registro. La transferencia de información nueva a un registro se conoce como carga del registro. Como estamos utilizando una señal de reloj por flanco para la sincronización de todos los flip-flops, todos los bits del registro se cargan de manera simultánea. Por ello decimos que la carga se hace en paralelo. La entrada de reloj en los biestables tipo D puede ser por flanco o por nivel. La actuación por flanco requiere un circuito mucho más caro que por nivel y no presenta ventajas salvo en casos muy particulares. Por esta razón, en los computadores se utilizan casi siempre registros D activados por nivel, pero con una señal de reloj, realmente se trata de actuación por nivel con señal de reloj de corta duración egistros de desplazamiento Son registros en los cuales la información contenida en un biestable puede ser transferida al biestable adyacente. La transferencia se realiza en todos los biestables simultáneamente, es decir, la información contenida en el biestable 1 pasa al 2, al mismo tiempo que la información que había antes en el 2 pasa al 3, y así sucesivamente. Están conectados en cascada. La nueva información en el primer biestable se toma de una entrada, y la información del último biestable se pierde. Hay varios tipos de registros de desplazamiento: 1. Atendiendo a la entrada de información en el registro: 1.1. Entrada paralelo: se puede modificar el valor de todos los biestables a la vez (igual que en un registro tipo D) Entrada serie: sólo hay una entrada conectada a un biestable (como hemos descrito anteriormente). 2. Atendiendo a la salida de información: 2.1. Salida paralelo: todos los biestables son accesibles (sus salidas) Salida serie: sólo el último biestable (su salida) es accesible. Los datos van saliendo uno detrás de otro, mediante desplazamientos sucesivos. 3. Atendiendo al sentido del desplazamiento: 3.1. Desplazamiento sólo hacia la derecha / izquierda Desplazamiento en ambos sentidos, no simultáneo otación hacia la izquierda / derecha. 20

21 Para caracterizar o designar un registro de desplazamiento hay que indicar todas sus características: tipo de entrada, tipo de salida y sentido del desplazamiento. Por ejemplo, la designación: "SG8" indica que es un registro de desplazamiento (SG, Shift egister) con una capacidad de 8 bits. Suponiendo registros de 4 bits, los posibles movimientos de datos en los registros de desplazamiento son: Caso 1 Entrada: Serie Salida : Serie Desplazamiento: Hacia la derecha Caso 2 Entrada: Serie Salida : Serie Desplazamiento: Hacia la izquierda Entrada Salida Salida Entrada Caso 3 Entrada: Paralelo Salida : Serie Entradas Caso 4 Entrada: Serie Salida : Paralelo Caso 5 Entrada: Paralelo Salida : Paralelo Entradas Salida Entrada Salidas Salidas Caso 6 Desplazamiento: otación a la derecha Caso 7 Desplazamiento: otación a la izquierda Sus aplicaciones son muy numerosas. Entre ellas podemos citar: Conversión paralelo-serie y viceversa otaciones de los datos (multiplicar y dividir por 2 n ) egistros de memoria transitorios (buffers) Sistemas para unidades aritméticas (+,,/) Como retardo de línea digital Como generadores de secuencias 21

22 El circuito puede implementarse con biestables -S, J-K o D síncronos, con señal de reloj activa por flanco. Veamos unos ejemplos de circuitos (esquemas). Caso 1: Un registro de desplazamiento de 4 bits con entrada y salida serie, desplazamiento a derecha. Biestables -S: Entrada S 1 1 S 2 2 S 3 3 S 4 4 Salida 1 1 ' 2 2 ' 3 3 ' 4 ' Vamos a construir un cronograma para comprobar el funcionamiento del registro. Suponemos que el registro se activa por flanco de subida. E' = 1 E = S S = 4 Cronograma del registro con biestables -S (síncronos con flanco de subida) t 22

23 Biestables D: Entrada D 1 1 D 2 2 D 3 3 D 4 4 Salida 1 ' 2 ' 3 ' 4 ' Vamos a ver dos ejemplos de cronogramas, para comprobar el funcionamiento, uno con flanco de subida y otro con flanco de bajada. E = D S = 4 Cronograma del registro con biestables D (síncronos con flanco de subida) t E = D S = 4 Cronograma del registro con biestables D (síncronos con flanco de bajada) t 23

24 Caso 4: Un registro de desplazamiento de 4 bits con entrada serie y salida paralelo. Biestables D: Entrada D 1 1 D 2 2 D 3 3 D ' 2 ' 3 ' 4 ' S 1 S 2 S 3 S 4 Salidas de datos en paralelo Caso 5: Un registro de desplazamiento de 4 bits con entrada paralelo y salida paralelo. Biestables D: Entradas de datos en paralelo E 1 E 2 E 3 E 4 D 1 1 D 2 2 D 3 3 D ' 2 ' 3 ' 4 ' S 1 S 2 S 3 S 4 Salidas de datos en paralelo Como podemos observar, en este tipo de registros no se realiza ningún desplazamiento, por lo que no se puede considerar como registro de desplazamiento. 24

25 5.3.2 Contadores Un contador es un registro que pasa por una secuencia predeterminada de estados al aplicársele pulsos de reloj. Básicamente, son circuitos capaces de contar los impulsos que llegan por una línea. El valor de la cuenta se expresa mediante un código, que en la mayoría de los casos es binario natural, y a veces, BCD. Los impulsos de entrada que son capaces de detectar son los flancos de la señal de entrada. Dado que el estado del contador debe cambiar cuando llega un flanco de la señal de entrada, se utilizan biestables T para construir los contadores, conectando la línea con los impulsos a contar a la entrada de reloj. También podemos utilizar biestables J-K Tipos de contadores 1. Atendiendo al código que cuentan 1.1. Binario (natural) 1.2. BCD 1.3. En anillo 1.4. En Gray 1.5. Johnson 2. Atendiendo al sentido de conteo 2.1. Contador hacia arriba (ascendentes) 2.2. Contador hacia abajo (descenentes) 2.3. Contador en ambos sentidos, no simultáneos 3. Atendiendo a la posibilidad de preselección 3.1. Contador con carga en paralelo 3.2. Contador con puesta a cero inicial solamente 4. Atendiendo a la forma de propagarse la señal de reloj internamente 4.1. Contador asíncrono (contadores con propagación) 4.2. Contador síncrono con acarreo serie 4.3. Contador síncrono con acarreo paralelo Para caracterizar un contador se indican todas las posibilidades. Por ejemplo, un contador BCD Aiken ascendente asíncrono. Un contador es asíncrono cuando la salida del biestable es la entrada de reloj del biestable siguiente. Estos contadores llevan una secuencia (ascendente o descencente) que se repite indefinidamente. Un contador es síncrono cuando la señal de reloj se conecta a la entrada de reloj de cada uno de los biestables. Se utiliza cuando los estados por los que pasa (secuencia) no son correlativos. Por ejemplo: 1,8,7,4, etc. 25

26 Diseño de contadores asíncronos Supongamos un contador de módulo N, siendo (N-1) el mayor número representable que contamos. Seguiremos los siguientes pasos: 1. Calcular el número de biestables (flip-flops) necesarios: n. Deberemos cumplir que: 2 n-1 < N 2 n Donde: N = Número de estados (0..N-1) n = Número de biestables (T o J-K). 2. Conectar las entradas de reloj de todos los biestables. Activación del reloj Flanco de bajada Flanco de subida Tipo contador Ascendente Descendente Ascendente Descendente Salida a conectar a la entrada de reloj del siguiente biestable ' ' 3. Conectar las entradas de todos los biestables a "1" lógico. Biestables T: conectando T="1" Biestables J-K: conectando J=K="1" Ambos tipos podrán tener o no entradas asíncronas de PESET Y CLEA. Sólo si nuestros biestables tienen una entrada asíncrona PESET seguimos con los siguientes pasos: 4. Escribir el número N-1 en binario. 5. Para todos los biestables que tienen un 1 en dicho valor binario, conectar su salida junto con la señal de reloj en una puerta NAND. 6. Conectar la salida de la puerta NAND a las entradas PESET del resto de biestables, los que su valor binario era 0 en el valor N-1. Por otro lado, sólo si nuestros biestables tienen una entrada asíncrona CLEA seguimos con los siguientes pasos: 4. Escribir el número N-1 en binario. 5. Para todos los biestables que tienen un 0 en dicho valor binario, conectar su salida junto con la señal de reloj en una puerta NAND. 6. Conectar la salida de la puerta NAND a las entradas CLEA del resto de biestables, los que su valor binario era 1 en el valor N-1. Lógicamente, si tenemos biestables con las dos entradas asíncronas PESET y CLEA podemos utilizar cualquiera de los dos métodos descritos. Si estas entradas se activan a nivel bajo lo hacemos como hemos descrito; si se activan por nivel alto, utilizaremos una puerta AND en lugar de la NAND. 26

27 Un contador asíncrono es de módulo N cuando cuenta todos los estados desde el 0 hasta el N-1 correlativamente. Si nos piden diseñar un contador asíncrono módulo 5, éste contará 0,1,2,3,4. Lo que hacemos utilizar biestables con entrada CLEA, detectamos la última combinación (N-1) y procedemos como hemos explicado para biestables CLEA, para que se reinicie la cuenta al llegar a N-1. Esto no es necesario si fuera módulo potencia de 2, ya que se reinicia sólo. Por ejemplo, módulo 8. Ejemplo Vamos a ver como ejemplo, el circuito y cronograma de un contador asíncrono de 3 bits, binario, con cuenta hacia arriba, sin preselección (PESET) ni puesta a cero (CL). Utilizamos biestables T para realizar el circuito. ecordemos la tabla de transición del biestable T: T (t) (t+1) T (t+1) Comentario (t) No cambia el estado (t)' Invierte el estado Necesitaremos "n" biestables. Tenemos que N = 8 estados. Se debe cumplir: 2 n-1 < N 2 n 2 n-1 < 8 2 n n 3 Con cuenta hacia arriba: 1 (LSB) 2 3 (MSB) "1" T 1 1 "1" T 2 2 "1" Pulsos de reloj T ' 2 ' 3 ' El funcionamiento se puede analizar en el siguiente cronograma: Cronograma reloj asíncrono 3 bits (cuenta hacia arriba) 27 t

28 Con cuenta hacia abajo: Lo único que tenemos que cambiar en el circuito anterior es la señal de reloj, para que se active por flanco de subida. 1 (LSB) 2 3 (MSB) "1" T 1 1 "1" T 2 2 "1" Pulsos de reloj T ' 2 ' 3 ' El funcionamiento se puede analizar en el siguiente cronograma: Cronograma reloj asíncrono 3 bits (cuenta hacia abajo) t Otra posibilidad hubiera sido conectar la salida ' de cada biestable a la entrada de reloj del siguiente, en vez de, manteniendo el flanco de bajada. 1 (LSB) 2 3 (MSB) "1" T 1 1 "1" T 2 2 "1" Pulsos de reloj T ' 2 ' 3 ' La mayor parte de los contadores asíncronos no funciona bien para frecuencias elevadas, sobre todo cuando implementamos contadores con módulo que no son potencia de 2. Cuando utilizamos contadores que si son potencia de 2 (2,4,8,...), estos funcionan bastante bien, tanto en modo ascendente como en modo descendente. Sin embargo, en los otros casos conviene utilizar contadores síncronos. 28

29 Diseño de contadores síncronos Para los contadores síncronos podemos utilizar cualquier tipo de biestables: -S, J-K, D y T. El procedimiento de diseño de contadores síncronos es: 1. Calcular el número de biestables (flip-flops) necesarios: n. Deberemos cumplir que: 2 n-1 < N 2 n Donde: N = Número de estados n = Número de biestables (-S, J-K, D ó T). 2. Escribimos la tabla de funcionamiento del biestable. 3. Construimos una tabla de transiciones y excitaciones correspondientes a las entradas del biestable utilizado. En esta tabla, averiguamos el valor que deben de tener las entradas del biestable para que en la salida se produzca cualquier transición (0-0, 0-1, 1-0, 1-1). 4. Utilizando esta última tabla, construimos la tabla de transiciones y excitaciones del contador. En esta tabla averiguamos el valor que debemos tener en las entradas para producir la secuencia de estados pedida. Lo que conocemos son las salidas de los biestables, puesto que son las combinaciones que queremos que cuente. Por tanto, ponemos como posibles combinaciones de entrada los distintos valores que va a contar en binario, y se trata de calcular las funciones lógicas correspondientes a cada una de las entradas de los biestables en función de las salidas. 5. Simplificar por Karnaugh las funciones lógicas obtenidas. Las tablas de Karnaugh se pueden obtener directamente de la tabla anterior. 6. ealización del circuito a partir de las funciones simplificadas. 7. Comprobar el funcionamiento realizando un cronograma. 29

30 Ejemplo Vamos a diseñar un contador que siga la siguiente secuencia con biestables J-K: 0, 4, 6, 1, 14, 7 y vuelvan a repetirse. Utilizamos biestables J-K, sin preselección (PESET) ni puesta a cero (CL). 1. Número de biestables: Tenemos 6 posibles estados (N=6), por tanto: 2 n-1 < N 2 n 2 n-1 < 16 2 n n 3 En este ejemplo vamos a utilizar n=4. 2. Tabla de funcionamiento del biestable: J K (t+1) Comentario 0 0 (t) No cambia eset Set 1 1 (t)' Invierte (t) 3. Tabla de transiciones y excitaciones de las entradas del biestable: Transición (t) (t+1) J K X X 1 0 X X 0 ué valores pueden tomar las entradas J-K para conseguir dicha transición en la salida? 4. Tabla de transiciones y excitaciones del contador: J1 K1 J2 K2 J3 K3 J4 K X 1 X 0 X 0 X X X 0 1 X 0 X X X 1 X 1 1 X X 1 X 1 X X X 1 X 0 X 0 1 X X X 1 X 1 X 1 Para cada biestable x, rellenamos las columnas de J x y K x con los valores que deben tomar las entradas para que en el siguiente estado cambie su correspondiente x al valor del siguiente valor de la secuencia; si fuese el último, entonces consideramos de nuevo el primero para que comience de nuevo el ciclo. 30

31 5. Simplificamos por Karnaugh las funciones de las entradas. J1 = 2' J3 = X X X 0 0 X X X X X X X X X X X X X X X X X X X X X K1 = 1 K3 = 1' No es necesario construir un mapa de Karnaugh pues todas las casillas serán X menos un "1". Como podremos hacer un grupo de 16 casillas (todas), la función lógica será "1" X X X X X X 1 1 X X X 0 X X X X J2 = 1 J4 = 3 K2 = 1' X X X X X X 1 1 X X X 0 X X X X X X X K4 = 1 0 X X 1 X X X 1 X X X X 31

32 6. Circuito a partir de las funciones simplificadas. 1 (MSB) (LSB) J 1 1 J 2 2 J 3 3 J 4 4 CLK1 CLK2 CLK3 CLK3 K 1 1 ' K 2 2 ' K 3 3 ' K 4 4 ' "1" 7. Cronograma: (MSB) (LSB) Cronograma reloj síncrono (Secuencia: 0, 4, 6, 1, 14, 7) t NOTA: Para construir el cronograma, como ahora cambian todos los biestables al mismo tiempo, tendremos que mirar la entrada de cada uno en el estado anterior. Ejemplos de IC: 74LS93: Asíncrono binario 4 bits 74LS163: Síncrono binario de 4 bits 74LS160: Décadas BCD síncrono 74LS190: Décadas ascendente / descendente 32

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción.

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción. T-3 Lógica ecuencial. egistros de Desplazamiento y Contadores TEMA - 3 LÓGICA ECUENCIAL. EGITO DE DEPLAZAMIENTO Y CONTADOE..- Introducción. Hemos visto que en la lógica combinacional las salidas están

Más detalles

TEMA 3: Control secuencial

TEMA 3: Control secuencial TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con

Más detalles

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS Fundamentos de Computadores. Sistemas Secuenciales. T7-1 INDICE: Tema 7. SISTEMAS SECUENCIALES INTRODUCCIÓN SISTEMAS SECUENCIALES SÍNCRONOS TIPOS DE BIESTABLES o TABLAS DE ECITACIÓN DE LOS BIESTABLES o

Más detalles

TEMA7. SISTEMAS SECUENCIALES

TEMA7. SISTEMAS SECUENCIALES Sistemas Secuenciales 1 TEMA7. SISTEMAS SECUENCIALES Los circuitos lógicos se clasifican en dos tipos: Combinacionales, aquellos cuyas salidas sólo dependen de las entradas actuales. Secuenciales, aquellos

Más detalles

Figura 1: Símbolo lógico de un flip-flop SR

Figura 1: Símbolo lógico de un flip-flop SR FLIP-FLOPS Los circuitos lógicos se clasifican en dos categorías. Los grupos de puertas descritos hasta ahora, y los que se denominan circuitos lógicos secuenciales. Los bloques básicos para construir

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

REGISTROS DE DESPLAZAMIENTO

REGISTROS DE DESPLAZAMIENTO REGISTROS DE DESPLAZAMIENTO Es un circuito digital que acepta datos binarios de una fuente de entrada y luego los desplaza, un bit a la vez, a través de una cadena de flip-flops. Este sistema secuencial

Más detalles

CONTADORES Y REGISTROS

CONTADORES Y REGISTROS Capítulo 7 CONTADORES Y REGISTROS 7.. CONTADORES Un contador es un circuito secuencial cuya función es seguir una cuenta o conjunto predeterminado de estados como consecuencia de la aplicación de un tren

Más detalles

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0 Clase 5 Un registro es un conjunto de n latch o Flip-Flops asociados que permiten almacenar temporalmente una palabra o grupo de n bit. Hay dos clases de registros típicos sincrónicos 1. el registro de

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

CIRCUITOS SECUENCIALES

CIRCUITOS SECUENCIALES LABORATORIO # 7 Realización: 16-06-2011 CIRCUITOS SECUENCIALES 1. OBJETIVOS Diseñar e implementar circuitos utilizando circuitos multivibradores. Comprender los circuitos el funcionamiento de los circuitos

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de CONTADORES Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de sus biestables. Los contadores son circuitos

Más detalles

Sube Selector Canales. Canal. Baja. Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción.

Sube Selector Canales. Canal. Baja. Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción. Bases Matemáticas II - ágina 1 de 11 Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción. Hasta ahora hemos tratados con dispositivos lógicos cuyas salidas dependían

Más detalles

EJERCICIOS RESUELTOS DE SECUENCIALES

EJERCICIOS RESUELTOS DE SECUENCIALES EJERCICIOS RESUELTOS DE SECUENCIALES 1) El sistema de apertura de una caja fuerte está compuesto por dos teclas A y B, un circuito secuencial a diseñar y un temporizador que mantiene la caja fuerte abierta

Más detalles

CONTADORES. Definición. Diseño y analisis de un contador binario hacia arriba de 3 bits con flip-flops JK. Otros contadores típicos.

CONTADORES. Definición. Diseño y analisis de un contador binario hacia arriba de 3 bits con flip-flops JK. Otros contadores típicos. CONTADORES Definición Diseño y analisis de un contador binario hacia arriba de 3 bits con flip-flops JK. Otros contadores típicos Descripción VHDL Ejercicios Definición Un contador es un circuito digital

Más detalles

18. Camino de datos y unidad de control

18. Camino de datos y unidad de control Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 18. Camino de datos y unidad de control Un La versatilidad una característica deseable los Los

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

Tema 11: Sistemas combinacionales

Tema 11: Sistemas combinacionales Tema 11: Sistemas combinacionales Objetivo: Introducción Generador Comprobador de paridad Comparadores Semisumador (HA) Sumador Completo (FA) Expansión de sumadores Sumador paralelo con arrastre serie

Más detalles

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 27/8. PROBLEMA DEL PRIMER PARCIAL Se desea diseñar un sistema para jugar a Piedra, papel o tijera. Como se sabe, en este juego cada uno de los dos

Más detalles

Tema 8. Circuitos secuenciales de Propósito general: REGISTROS Y CONTADORES

Tema 8. Circuitos secuenciales de Propósito general: REGISTROS Y CONTADORES Registros y ontadores 1 Tema 8. ircuitos secuenciales de Propósito general: REGISTROS Y ONTORES Una colección de dos o más biestables con una entrada común se conoce como un registro. Los registros se

Más detalles

UNIDADES FUNCIONALES DEL ORDENADOR TEMA 3

UNIDADES FUNCIONALES DEL ORDENADOR TEMA 3 UNIDADES FUNCIONALES DEL ORDENADOR TEMA 3 INTRODUCCIÓN El elemento hardware de un sistema básico de proceso de datos se puede estructurar en tres partes claramente diferenciadas en cuanto a sus funciones:

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com SISTEMA DECIMAL El sistema decimal, como su nombre indica, tiene diez cifras o dígitos distintos, que son 4 5 Por lo tanto, diremos que la BASE del sistema de numeración DECIMAL es (base ). 6 7 8 9 Pongamos

Más detalles

Unidad Didáctica. Códigos Binarios

Unidad Didáctica. Códigos Binarios Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

GUIAS ÚNICAS DE LABORATORIO CIRCUITOS CONTADORES AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO CIRCUITOS CONTADORES AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIS ÚNIS DE LORTORIO IRUITOS ONTDORES UTOR: LERTO UERVO SNTIGO DE LI UNIVERSIDD SNTIGO DE LI DEPRTMENTO DE LORTORIOS IRUITOS ONTDORES Introducción El contador es un circuito específico de circuito secuencial,

Más detalles

Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial

Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial Se pretende realizar el circuito lógico interno de una máquina tragaperras de tres ruletas. El sistema completo tiene un esquema como el

Más detalles

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informática de Sistemas

Más detalles

5.1.1 Sumadores con anticipación de Acarreo. g i = a i b i. c i = c i-1 p i + g i s i = p i + c i-1. c 0 = g 0 + c -1 p 0

5.1.1 Sumadores con anticipación de Acarreo. g i = a i b i. c i = c i-1 p i + g i s i = p i + c i-1. c 0 = g 0 + c -1 p 0 5.1.1 Sumadores con anticipación de Acarreo. El sumador paralelo de n bits que se ha mostrado hasta ahora, tiene un nivel de retardo de 2*n puertas, pues necesita 2*n etapas de puertas lógicas para que

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales Capítulo Módulos basados en circuitos en circuitos Módulos basados Introducción Así como en el Capítulo 5 analizamos módulos basados en puertas, ahora toca referirnos a módulos construidos con biestables

Más detalles

Registros y Contadores

Registros y Contadores Registros y Contadores Mario Medina C. mariomedina@udec.cl Registros Grupos de flip-flops con reloj común Almacenamiento de datos Desplazamiento de datos Construcción de contadores simples Como cada FF

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

INTRODUCCION A LA PROGRAMACION DE PLC

INTRODUCCION A LA PROGRAMACION DE PLC INTRODUCCION A LA PROGRAMACION DE PLC Esta guía se utilizará para estudiar la estructura general de programación de um PLC Instrucciones y Programas Una instrucción u orden de trabajo consta de dos partes

Más detalles

DISCOS RAID. Se considera que todos los discos físicos tienen la misma capacidad, y de no ser así, en el que sea mayor se desperdicia la diferencia.

DISCOS RAID. Se considera que todos los discos físicos tienen la misma capacidad, y de no ser así, en el que sea mayor se desperdicia la diferencia. DISCOS RAID Raid: redundant array of independent disks, quiere decir conjunto redundante de discos independientes. Es un sistema de almacenamiento de datos que utiliza varias unidades físicas para guardar

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Este curso de larga duración tiene la intención de introducir a los lectores más jovenes o con poca experiencia a la Electrónica Digital, base para otras ramas

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

* En una computadora el microprocesador se comunica con uno de los siguientes dispositivos:

* En una computadora el microprocesador se comunica con uno de los siguientes dispositivos: Funciones incompletas Son funciones cuyo valor puede ser indistintamente 0 ó 1 para algunas combinaciones de las variables de entrada, bien porque dichas combinaciones no vayan a darse nunca en la práctica

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA. Perfil Entidad Proveedora

MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA. Perfil Entidad Proveedora MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA Perfil Entidad Proveedora El objetivo del módulo de Gestión de Solicitudes vía Internet es facilitar el trabajo

Más detalles

Práctica 4 Diseño de circuitos con puertas lógicas.

Práctica 4 Diseño de circuitos con puertas lógicas. Práctica 4 Diseño de circuitos con puertas lógicas. Descripción de la práctica: -Esta práctica servirá para afianzar los conocimientos adquiridos hasta ahora de simplificación, e implementación de funciones,

Más detalles

... Formas alternativas de escribir un texto. Columnas. anfora CAPÍTULO 4

... Formas alternativas de escribir un texto. Columnas. anfora CAPÍTULO 4 CAPÍTULO 4. Formas alternativas de escribir un texto........ Columnas Para fijar columnas se posiciona el Punto de Inserción donde se desee que comiencen las columnas, o bien se selecciona el texto que

Más detalles

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS ESTRUCTURA DE COMPUTADORES Pag. 8.1 LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS 1. Circuitos de multiplicación La operación de multiplicar es mas compleja que la suma y por tanto se

Más detalles

EJERCICIOS DEL TEMA 1

EJERCICIOS DEL TEMA 1 EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,

Más detalles

Control, Instrumentación e Instalaciones Ingeniería Ambiental

Control, Instrumentación e Instalaciones Ingeniería Ambiental Control, Instrumentación e Instalaciones Ingeniería Ambiental TEMA 3. LABORATORIO. El Autómata Siemens S7-300. Programación Básica Alfredo Rosado Curso Académico 2010-2011 Control, Instrumentación e Instalaciones.

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

Programa diseñado y creado por 2014 - Art-Tronic Promotora Audiovisual, S.L.

Programa diseñado y creado por 2014 - Art-Tronic Promotora Audiovisual, S.L. Manual de Usuario Programa diseñado y creado por Contenido 1. Acceso al programa... 3 2. Opciones del programa... 3 3. Inicio... 4 4. Empresa... 4 4.2. Impuestos... 5 4.3. Series de facturación... 5 4.4.

Más detalles

01 Índice. GESTOR DE CONTENIDOS Manual de uso 01 ÍNDICE... 1 02 OBJETO DEL DOCUMENTO... 2 03 ESTRUCTURA GRÁFICA DEL SISTEMA... 3

01 Índice. GESTOR DE CONTENIDOS Manual de uso 01 ÍNDICE... 1 02 OBJETO DEL DOCUMENTO... 2 03 ESTRUCTURA GRÁFICA DEL SISTEMA... 3 01 Índice 01 ÍNDICE..... 1 02 OBJETO DEL DOCUMENTO..... 2 03 ESTRUCTURA GRÁFICA DEL SISTEMA..... 3 04 GESTIÓN DE TABLAS..... 5 05 USO DE TABLAS EN ENVIDUR..... 15 06 GESTIÓN DE FUNCIONALIDAD ADICIONAL.

Más detalles

Puertas Lógicas. Contenidos. Objetivos

Puertas Lógicas. Contenidos. Objetivos Contenidos Objetivos En esta quincena aprenderás a: Implementar funciones mediante puertas lógicas. Conocer y manejar la simbología de las puertas lógicas. Construir circuitos lógicos en el programa simulador

Más detalles

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información TEMA 1: SISTEMAS INFORMÁTICOS Parte 2: representación de la información Qué vamos a ver? Cómo se representa y almacena la información en un ordenador Cómo podemos relacionar la información que entendemos

Más detalles

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente:

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente: Departamento de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Antioquia Arquitectura de Computadores y Laboratorio ISI355 (2011 2) Práctica No. 1 Diseño e implementación de una unidad aritmético

Más detalles

15 CORREO WEB CORREO WEB

15 CORREO WEB CORREO WEB CORREO WEB Anteriormente Hemos visto cómo funciona el correo electrónico, y cómo necesitábamos tener un programa cliente (Outlook Express) para gestionar los mensajes de correo electrónico. Sin embargo,

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Sumadores En este documento se describe el funcionamiento del circuito integrado 7483, el cual implementa un sumador binario de 4 bits. Adicionalmente, se muestra la manera de conectarlo con otros dispositivos

Más detalles

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.

Más detalles

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES TEM. CIRCUITOS RITMÉTICOS TICOS DIGITLES http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 niversary: http://www.flickr.com/photos/ieee25/with/2809342254/ TEM. CIRCUITOS

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

EL LOGRO DE SU FORMACIÓN DEPENDE TAMBIÉN DE USTED INSTRUCTOR: ING. JULIO CÉSAR BEDOYA PINO ELECTRÓNICA DIGITAL 2014

EL LOGRO DE SU FORMACIÓN DEPENDE TAMBIÉN DE USTED INSTRUCTOR: ING. JULIO CÉSAR BEDOYA PINO ELECTRÓNICA DIGITAL 2014 EL LOGRO DE SU FORMACIÓN DEPENDE TAMBIÉN DE USTED INSTRUCTOR: ING. JULIO CÉSAR BEDOYA PINO ELECTRÓNICA DIGITAL 2014 CONTENIDO ELECTRÓNICA DIGITAL SISTEMA DE REPRESENTACIÓN TABLA DE CONVERSIÓN EJERCICIOS

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

Curso sobre Controladores Lógicos Programables (PLC).

Curso sobre Controladores Lógicos Programables (PLC). CURSO Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 9. Introducción a la Programación. Consideraciones previas sobre programación ladder Antes de empezar

Más detalles

153 = 1x100 + 5x10 + 3x1

153 = 1x100 + 5x10 + 3x1 ELECTRÓNICA DIGITAL Introducción Hemos visto hasta ahora algunos componentes muy utilizados en los circuitos de electrónica analógica. Esta tecnología se caracteriza porque las señales físicas (temperatura,

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

Modelo de examen tipo resuelto 1

Modelo de examen tipo resuelto 1 Modelo de examen tipo resuelto. Diseñar un sistema combinacional que tenga cinco entradas y dos salidas y que actúe de la siguiente forma: las cinco entradas (x 4 x 3 x 2 x x 0 ) representan una palabra

Más detalles

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo SISTEMAS NUMERICOS SISTEMAS NUMERICOS Si bien el sistema de numeración binario es el más importante de los sistemas digitales, hay otros que también lo son. El sistema decimal es importante porque se usa

Más detalles

Módulo I - Word. Iniciar Word... 2. Finalizar Word... 3. Definición de elementos de pantalla... 4. Escribir texto en un documento... 5. El cursor...

Módulo I - Word. Iniciar Word... 2. Finalizar Word... 3. Definición de elementos de pantalla... 4. Escribir texto en un documento... 5. El cursor... Módulo I - Word Índice Iniciar Word... 2 Finalizar Word... 3 Definición de elementos de pantalla... 4 Escribir texto en un documento... 5 El cursor... 5 Control de párrafos... 5 Nuevos párrafos... 5 Abrir

Más detalles

Circuitos Electrónicos. Primer parcial curso 2006-07

Circuitos Electrónicos. Primer parcial curso 2006-07 Circuitos Electrónicos. Primer parcial curso 2006-07 Ante el creciente interés por las apuestas deportivas, el Departamento Técnico de las Loterías y Apuestas del Estado os ha encargado la actualización

Más detalles

Práctica GESTIÓN Y UTILIZACIÓN DE REDES LOCALES. Curso 2001/2002. TCP/IP: protocolo TCP

Práctica GESTIÓN Y UTILIZACIÓN DE REDES LOCALES. Curso 2001/2002. TCP/IP: protocolo TCP Práctica 9 GESTIÓN Y UTILIZACIÓN DE REDES LOCALES Curso 2001/2002 TCP/IP: protocolo TCP Introducción Como se ha comentado en la práctica anterior, el protocolo UDP es muy sencillo de implementar, pero

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Sistema binario 0,1 Sistema octal 0, 1, 2, 3, 4, 5, 6, 7 Sistema decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Sistema hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Una señal

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Componentes básicos de memorización

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Componentes básicos de memorización Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 17. Componentes básicos b de memorización Existe La necesidad de memorizar información obliga

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0

Más detalles

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I TEMA 5 Introducción n a los Sistemas Digitales TEMA 5. Introducción n a los Sistemas Digitales 5.1 Sistemas Digitales 5.2 Sistemas Combinacionales 5.3 Sistemas

Más detalles