MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González"

Transcripción

1 Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints problmas utilizando tus conocimintos sobr progrsions. 1. Una compañía manufacturra instala una maquina a un costo d psos. Al cabo d 9 años la máquina tin un valor d 4 00 psos. Suponindo qu la dprciación anual s constant, calcula la dprciación anual.. Una mprsa instala una máquina con un costo d dólars. El valor d la máquina s dprcia anualmnt n 00 dólars y su valor d dscho s d 00 dólars, Cuál s la vida útil d la máquina?. Los pagos mnsuals qu Ricardo fctúa al banco por un préstamo forman una progrsión aritmética, si sus pagos cuarto y octavo son d 51 y 59 psos rspctivamnt, D cuánto srá su décimo quinto pago? 4. Supongas qu l sñor Pérz db al banco la cantidad d psos a un intrés d 1% mnsual. El sta d acurdo n pagar 400 psos al capital cada ms, más l intrés n l balanc. Cuánto dbrá pagar n total n l timpo qu sta pagando l préstamo? 5. Un individuo sta d acurdo n pagar una duda libr d intrés d dólars n cirto númro d pagos, cada uno d llos dbindo cdr al antrior por 40 dólars. Si l primr pago s d 00 dólars, calcula Cuántos pagos dbrá fctuar con objto d finiquitar la duda? 6, Los términos cuarto y novno d una progrsión gométrica son 1/ y 16/4 rspctivamnt, dtrmina l sto término. 7. Una máquina s dprcia anualmnt a una tasa dl 10% d su valor, l costo original fu d dólars y l valor d dscho s d dólars. Encuntra la vida fctiva d la máquina, sto s, l númro d años hasta qu l valor dprciado sa mnor qu l valor d dscho. 8. Los términos quinto, octavo y undécimo d una progrsión gométrica son,y z rspctivamnt, dmus tra qu y = z 9. Calcula la suma d los primros vint términos d la sucsión 1, -, 4, -8, 16, -, 10. Si 000 dólars s invirtn cada año, n una cunta d ahorros a un intrés dl 8% capitalizabl anualmnt, calcula su valor dspués d 5 años. Función y La Drivada. Rsulv las siguints opracions y problmas aplicando los métodos corrspondints sgún s prsnt la función y los lmntos a difrnciar. Evalúa los siguints límits: 1. lím lím / -. lím

2 Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz 4. lím lím lím (+) 1/ lím Calcula dy si: d 8. y = y = y = ( + )( ) 11. y = ( + 1)( 1)( ) 1. y = y = ½ + 1 ½ y = + 1 X y + y = y y = y + y = y + y = -y y = - 0. y = y = 6. y = ln. y = ln( + 5) 4. y = (ln ) 5

3 Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz 5. y = y = 5 7 y = 5 8. y = y = ln 1 0. Dtrmina númros cuya suma sa 10 y tals qu su producto sa máimo. 1. Dtrmina númros positivos cuya suma sa 75, tals qu l producto d uno por l cuadrado dl otro sa máimo.. Dtrmina númros positivos con suma igual a 1 d modo qu la suma d sus cubos sa un mínimo.. Una pquña mprsa manufacturra pud vndr todos los artículos qu produc a un prcio d 6 dólars cada uno. El costo d producir artículos a la smana s C(X) = X 0.00X X Qué valor d dbmos slccionar con objto d maimizar las utilidads? 4. El costo d producir artículos por smana s C() = En l caso dl artículo n custión, l prcio n qu artículos pudn vndrs por smana sta dado por la cuación d dmanda p = Dtrmin l prcio y l volumn d vntas n qu la utilidad s máima. 5. S construirá una cistrna con capacidad d 4 pis cúbicos d agua. Dbrá tnr una bas cuadrada con cuatro lados vrticals, todos fabricados con concrto, y una tapa suprior d acro. Si la unidad d acro custa l dobl qu la corrspondint al concrto, dtrmina las dimnsions d la cistrna qu minimizan l costo total d construcción El costo promdio d fabricar cirto artículo s C = 5 + mínimo dl costo promdio. + n dond s l númro d artículos producidos. Encuntra l valor 7. El costo d producir artículos d cirto producto s C() = n dólars. Dtrmina l valor d qu hac l costo promdio por artículo un mínimo. 8. Una mprsa vnd todas las unidads qu produc a 4 dólars cada una. El costo total d la mprsa C por producir unidads sta dado n dólars por C = a) Escrib la prsión para la utilidad P como una función d. b) Dtrmina l valor d producción d modo qu la utilidad P sa máima c) Cuál s l valor d la utilidad máima? 9. Dtrmina los valors máimos y mínimos rlativos d las funcións y = y = Dtrmina los valors máimos y mínimos rlativos d la función f() = ( ) 4/ Unidad IV. La intgral. Por l método convnint, rsulv las siguints intgrals y problmas. 1. ( ) 8 ( + 7) d. d 1

4 Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz. d ln 4. d ln 5. d ln 6. d 7. d 1 8. d 9. ln () d 10. ln d 11. ln d 1. ( + 1) ln( + 1) d 1. ln() d d d

5 Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz d 17. n ln d d 18. ln d 0. ln 1. log d. log d d 4. d d 16. Dtrmina l ára acotada por la curva y = + + 5, l j y las línas =1 y =6 17. La función d costo marginal d una mprsa a un nivl d producción s C () = Calcula l incrmnto n l costo total cuando l nivl d producción s incrmnta d a 500 unidads. 18. La función d ingrso marginal d una mprsa sta dada por R () = Dtrmina l incrmnto n l ingrso total d la mprsa cuando l nivl d vntas s incrmnta d 100 a 00 unidads. 19. El costo marginal d cirta mprsa stá dado por C (X) = X, mintras qu su ingrso marginal s R () = Dtrmin l incrmnto n las utilidads d la mprsa si las vntas s incrmntan d 500 a 600 unidads. Unidad V. Matrics y dtrminants Dfin y scrib un jmplo d las siguints matrics: 1. Matriz transpusta. Matriz cuadrada. Matriz unitaria 4. Matriz invrsa 5. Matrics iguals 6. Eplica l método sobr la multiplicación d dos matrics y scrib un jmplo. 7. Eplica como s obtin la invrsa multiplicativa d una matriz y scrib un jmplo.

MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x

MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x http://www.damasorojas.com.v/ damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com MÉTODOS DE INTEGRACIÓN.-Sustitución Simpl. d d d d d d d d d d d d d d d d d d d d d d d d a d d d

Más detalles

5) dx. 9) x. dx 11) 4x dx. x e 27)

5) dx. 9) x. dx 11) 4x dx. x e 27) .. Antidrrivadas: Evalú las intgrals siguints: Wilfrdo Saravia Maradiaga UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS,

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

GUÍA METODOLÓGICA PARA ARQUITECTURA

GUÍA METODOLÓGICA PARA ARQUITECTURA Dpartamnto d Cincias Eactas GUÍA METODOLÓGICA DE MATEMÁTICA APLICADA II PARA ARQUITECTURA Marzo0-Julio 0 Campus Matriz Quito: Burgois N-0 y Rumipamba Tléfonos 6 /58/59 Et. 68/66 Quito Ecuador Dpartamnto

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones 8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x.

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x. º Bacillrato d CCNN. Halla l dominio d continuidad y claica las discontinuidads d las guintss uncions: a b c ln d g i j 7 k l 8 m 6 n 6 o p q r s t u v w y z ln. Halla l dominio d continuidad y claica

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1 Solucions modlo 6 d 009 Sa f:r R la función dfinida por f =+ -. Opción A Ejrcicio 1 [0 7 puntos] Dtrmina los intrvalos d crciminto y dcrciminto d f, así como los trmos rlativos o locals d f [0 puntos]

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio. Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

Taller 3 cálculo diferencial cdx24: Preparación tercer parcial

Taller 3 cálculo diferencial cdx24: Preparación tercer parcial Tallr cálculo difrncial cd: Prparación trcr parcial Profsor Jaim Andrés Jaramillo Gonzálz jaimaj@concptocomputadors.com. ITM 07- Drivada. Encuntr la drivada d la función usando la dfinición d drivada:

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

1. Presentación Inecuaciones (Desigualdades) Funciones y Límites Interpretación Geométrica de la Derivada. 6

1. Presentación Inecuaciones (Desigualdades) Funciones y Límites Interpretación Geométrica de la Derivada. 6 GUÍA DE: CÁLCULO DIFERENCIAL. Índic. Prsntación.. Incuacions (Dsigualdads).. Funcions y Límits.. Intrprtación Gométrica d la Drivada. 6 5. Drivadas d Funcions Algbraicas por Fórmulas. 6 6. Técnicas d Drivación.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

Trabajador por cuenta ajena y autónomo a la vez. Es posible?

Trabajador por cuenta ajena y autónomo a la vez. Es posible? Trabajador por cunta ajna y autónomo a la vz. Es posibl? ES POSIBLE SER TRABAJADOR POR CUENTA AJENA Y AUTÓNOMO A LA VEZ? MERECE LA PENA ESPERAR A ENERO 2018? QUÉ OPCIONES TENGO? PUEDO ACOGERME A LA TARIFA

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos página 1/5 Problmas Tma 9 Solución a problmas d drivadas - Hoja 1 - Todos rsultos Hoja 1. Problma 1 1. a) Driva y simplifica f (x)= 7 cos 7 ( x+1) b) Driva y simplifica f (x)= x +cos(x) + sn( x) c) Estudia

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

Representación esquemática de un sistema con tres fases

Representación esquemática de un sistema con tres fases 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t IES Frnando d Hrrra Curso 016 / 17 Sgundo trimstr Obsrvación valuabl scrita nº 1 º Bach CCSS NOMBRE: Instruccions: 1) Todos los folios dbn tnr l nombr y star numrados n la part suprior. ) Todas las rspustas

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles

x. Determina las asíntotas de la gráfica de f.

x. Determina las asíntotas de la gráfica de f. Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20 GUIA DE TRABAJO PRACTICO º PAGIA º OBJETIVOS: GUIA DE ACTIVIDADES Y TRABAJO PRACTICO º Lograr qu l Alumno: Distinga tipos d cuacions difrncials ordinarias Rsulva Ecuacions difrncials ordinarias Rsulva

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles