FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA"

Transcripción

1 Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales

2 Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación de la luz. El oigen de este compotamiento se halla en el poceso de calentamiento del aie po el Sol. Duante el día la luz sola calienta las masas teestes. Po la noche la supeficie de la Tiea se enfía gadualmente y se disipa calo hacia la atmósfea. Estos pocesos poducen movimientos de aie a gan escala, que alcanzan el égimen tubulento, y se convieten pogesivamente en movimientos a escalas menoes. Como esultado se cean en la atmósfea egiones de aie a distintas tempeatuas, cuyo tamaño y distibución son aleatoios. El índice de efacción del aie depende de la densidad, y po tanto de la tempeatua, con lo que también el índice de efacción de la atmósfea es aleatoio. Po 17

3 18 Fomación de imágenes en óptica adaptativa tanto, las ondas que se popagan po ella encuentan un medio inhomogéneo y se distosionan. Este es uno de los pincipales poblemas de la astonomía. Las ondas luminosas que povienen de los objetos astonómicos llegan distosionadas a los telescopios que se hallan sobe la supeficie teeste, po los efectos de la tubulencia atmosféica, lo que limita la esolución de los telescopios. Si la atmósfea fuea un medio ideal, pefectamente homogéneo, la esolución de un telescopio con óptica pefecta seía invesamente popocional a su abetua. Este es el límite de esolución que impone la difacción. Sin embago, las abeaciones aleatoias que la atmósfea intoduce en el fente de onda imponen un nuevo límite de esolución. En función de las condiciones atmosféicas, el diámeto mínimo de la imagen de una fuente puntual (disco de seeing) puede vaia ente 0.3 y 10 (segundos de aco) apoximadamente. Un valo típico en los obsevatoios astonómicos es 2, que coesponde al límite de esolución difaccional de una abetua de 6 cm en el visible. En telescopios de meno tamaño el único efecto de la atmósfea sobe la imagen es que esta pesenta un movimiento aleatoio. Sin embago, a pati del límite impuesto po la atmósfea, el aumento de la abetua del telescopio, aun con elementos ópticos pefectos, no conlleva una mejoa de la esolución. En este capítulo esumiemos las caacteísticas de la tubulencia atmosféica, en especial aquellos aspectos que posteiomente seán de utilidad paa el análisis de la fomación de imágenes pacialmente compensadas. Una descipción detallada de la tubulencia atmosféica se halla en Tennekes y Lumley (1972) o Lumley y Panofsky (1964). Los esultados más elacionados con la popagación de señales ópticas se encuentan en Tataski (1967) y Roddie (1981). 1.1 Estuctua de la tubulencia Un flujo alcanza el égimen tubulento cuando el númeo de Reynolds R e excede un valo cítico que depende sólo de la estuctua geomética del flujo. El númeo de Reynolds se define como:

4 Capítulo 1 La tubulencia atmosféica 19 V0 L0 R e = (1.1) ν 0 donde V 0 es una velocidad caacteística y L 0 un tamaño caacteístico del flujo; ν 0 es la viscosidad cinemática del fluido. La viscosidad cinemática del aie es del oden de m 2 s -1 ; si se toma paa la atmósfea V 0 = 1 ms -1 y L 0 = 15 m se obtiene R e = 10 6 que en geneal coesponde a tubulencia plenamente desaollada. Según la teoía de Kolmogoov (1961), paa este gado de tubulencia, la enegía cinética de los movimientos a gandes escalas se tansfiee a movimientos de escalas cada vez menoes. En cada escala L los movimientos tienen una velocidad caacteística V. El poceso de tansfeencia de enegía a escalas menoes finaliza en una escala en la que el númeo de Reynolds R e = VL/ν 0 es suficientemente pequeño paa que la enegía cinética se disipe en calo po ficción. En un estado estacionaio la tasa de disipación de enegía ε 0 es igual a la tasa de poducción de enegía tubulenta. Se supone que la velocidad del movimiento del aie en la escala L depende sólo de L y de la tasa de poducción y disipación de enegía. Un azonamiento dimensional muesta que: 1/ 3 1/ 3 V = ε 0 L (1.2) En un análisis espectal de la enegía cinética en función del módulo κ del vecto de onda, la enegía E(κ)dκ ente κ y κ +dκ es popocional a V 2 (κ). De (1.2) teniendo en cuenta que L 1/κ, se obtiene: 2 / 3 E ( κ )dκ κ (1.3) y po tanto: 5 / 3 E ( κ ) κ (1.4)

5 20 Fomación de imágenes en óptica adaptativa que se conoce como ley de Kolmogoov, válida sólo en el ango inecial 1/L 0 << κ << 1/l 0, donde L 0 es la escala supeio (genealmente la escala de los movimientos que dan luga a la tubulencia) y l 0 es la escala infeio, en la que apaece la disipación. En la toposfea, l 0 vaía ente unos milímetos ceca de la supeficie teeste hasta 1 cm en los límites con la topopausa, y L 0 es del oden de 100 m. El tamaño de las zonas homogéneas en el fente de onda oscila ente unos pocos centímetos y pocos metos. Po tanto, la ley de Kolmogoov se puede aplica a este caso. Este esultado se ha compobado expeimentalmente en multitud de cicunstancias. 1.2 Fluctuaciones del índice de efacción Las vaiaciones de tempeatua en la atmósfea poducen vaiaciones de la densidad del aie y po consiguiente, del índice de efacción n. Es conveniente descibi sus popiedades estadísticas usando la función de estuctua o el especto de potencias. La función de estuctua se define como: D n 2 ( ρ ) = n( + ρ) n( ) (1.5) donde < > epesenta un pomedio al conjunto de estados y y ρ son vectoes de posición en la pupila. El especto de potencias de las fluctuaciones del índice es la tansfomada de Fouie de la función de estuctua: 2 φn ( κ ) = n( + ρ) n( ) exp( 2πiκρ ) dρ (1.6) donde κ es un vecto en el espacio de fecuencias espaciales. De la teoía de Kolmogoov se puede deduci la función de estuctua:

6 Capítulo 1 La tubulencia atmosféica 21 2 / 3 D ( = ρ (1.7) 2 n ρ) C n donde C n es la constante de estuctua del índice de efacción. Este paámeto expesa la fueza de la tubulencia. La atmósfea teeste está estatificada: existen capas con distinto gado de tubulencia a difeentes altuas. Po tanto, es necesaio detemina la constante de estuctua en función de la altitud h. La figua 1.1 muesta el pefil expeimental de C n (h) (Hufnagel 1974). Finalmente, el especto de potencias queda: φ ( κ ) n 2 n = C κ 11/ 3 (1.8) Figua 1.1 Pefil pomedio de C n 2 extendido a bajas altitudes siguiendo una ley h -2/3 (línea continua: condiciones noctunas estables) y siguiendo una ley h -4/3 (línea discontinua: condiciones diunas inestables).

7 22 Fomación de imágenes en óptica adaptativa 1.3 Estuctua espacial del fente de onda El fente de onda se epesenta po: ( ) A( ) e iφ ( ) ψ = (1.9) La magnitud A es la amplitud y φ la fase del fente de onda. El fente de onda que incide en el telescopio pesenta vaiaciones espaciales tanto de la amplitud como de la fase. Estas últimas son las más impotantes paa el poceso de fomación de imágenes, y se descibián utilizando la función de estuctua, definida po: D φ ( ρ) = (1.10) ( φ( + ρ) φ( )) 2 Todos los puntos del fente de onda son equivalentes, popiedad que se denomina estacionaiedad del fente de onda. Debido a la estacionaiedad la función de estuctua sólo depende del vecto que une los puntos, no de los puntos en sí. La función de estuctua de la fase a la entada del telescopio que esulta del modelo de Kolmogoov es: D φ ( ρ) = ρ / 3 ad 2 (1.11) donde 0, denominado paámeto de Fied (1966) depende de la longitud de onda y la distancia al cenit como: 3/ 5 6 / 5 cos 0 (, ) ξ λ ξ = λ (1.12) 2 ( ) d Cn h h En lo sucesivo nos efeiemos al paámeto de Fied 0, que coesponde a las condiciones 0 (λ=500 nm, ξ=0 ad). Se define como zona coheente de la atmósfea una

8 Capítulo 1 La tubulencia atmosféica 23 egión en la que apenas se poducen vaiaciones del índice de efacción. El paámeto de Fied epesenta el diámeto de las zonas coheentes en la atmósfea. La función de estuctua expesada en (1.11) sólo depende de la distancia ente puntos, es deci, del módulo del vecto que une los puntos. Esto significa que se considea a la atmósfea un medio isótopo. Una última popiedad impotante de la atmósfea es la egodicidad, que estipula que el pomedio de cualquie magnitud se puede obtene ealizando medidas a lo lago del tiempo sin cambia de punto o en distintos puntos en un instante deteminado. Dicho de ota manea, es indifeente ealiza el pomedio espacial o el tempoal. Las vaiaciones de amplitud en la abetua del telescopio contibuyen en mucha meno medida a la degadación de la imagen que las de la fase y son genealmente ignoadas en la planificación y evaluación de los sistemas de óptica adaptativa (Beckes 1993). Cuanto mayo es la longitud de onda menos afectan a la calidad de la imagen, desde el 15% paa 500 nm al 3% a 2200 nm (Roddie y Roddie 1986).

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

7. INTERFERENCIA Y DIFRACCIÓN

7. INTERFERENCIA Y DIFRACCIÓN 7. INTERFERENCIA Y DIFRACCIÓN Fenómenos de singula impotancia que distinguen las ondas de las patículas son la intefeencia y la difacción. La intefeencia es la combinación po supeposición de dos ó más

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso.

La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso. II. RANSFERENCIA DE CALOR POR CONDUCCIÓN II.1. MECANISMO La tansmisión de calo po conducción puede ealizase en cualquiea de los tes estados de la mateia: sólido líquido y gaseoso. Paa explica el mecanismo

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

MÉTODO DE ESTUDIO DE LA ASIGNATURA

MÉTODO DE ESTUDIO DE LA ASIGNATURA MÉODO DE ESUDIO DE LA ASIGNAURA 1º) Estudia detenidamente el esumen teóico que se pesenta paa cada tema º) Acudi al libo de texto paa consulta aquel apatado o concepto que no se haya compendido al estudia

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

MECÁNICA DE FLUIDOS. pfernandezdiez.es. Pedro Fernández Díez

MECÁNICA DE FLUIDOS. pfernandezdiez.es. Pedro Fernández Díez MEÁNIA DE FLUIDOS Pedo Fenández Díez I.- INTRODUIÓN A LOS FLUIDOS I..- PROPIEDADES DE LOS FLUIDOS Los fluidos son agegaciones de moléculas, muy sepaadas en los gases y póximas en los líquidos, siendo la

Más detalles

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador.

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador. 6. nductancias Almacenan enegía magnética geneada como consecuencia de las vaiaciones de coiente. Suelen se fabicados a medida po el popio diseñado. Pincipios de la teoía electomagnética Magnitudes a utiliza:

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

UNIVERSIDAD DE ZARAGOZA

UNIVERSIDAD DE ZARAGOZA Reflectometía en el dominio del tiempo UNIERIDAD DE ZARAGOZA FACUTAD DE CIENCIA DEPARTAMENTO DE FIICA APICADA AREA DE EECTROMAGNETIMO CARACTERIZACIÓN DIEÉCTRICA POR T. D. R. DE UNA MEZCA REINA EPOXY TITANATO

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

TEMA 5 : ANIMACIÓN 3D

TEMA 5 : ANIMACIÓN 3D Dpto. Infomática Univesitat de València Ampliación de Infomática Gáfica TEMA 5 : ANIMACIÓN 3D Podemos considea que una animación descibe el cambio de una imagen a lo lago del tiempo, con el suficiente

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Capitulo 1. Carga y Campo eléctricos.

Capitulo 1. Carga y Campo eléctricos. Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Soluciones Actividades Tema 1

Soluciones Actividades Tema 1 Soluciones Actividades Tema 1 Actividades Unidad 1.- Busca infomación y discimina ente ciencia o falsa ciencia. a) Mal de ojo y amuletos. b) Astología: ceencia en los hoóscopos. c) Astonomía y viajes planetaios.

Más detalles

Diseño de un metamaterial con índice de refracción negativo en el espectro visible

Diseño de un metamaterial con índice de refracción negativo en el espectro visible Diseño de un metamateial con índice de efacción negativo en el especto visible Auto: Calos Gacía Meca Diectoes: D. Alejando Matínez Abiéta David Zoilla Gascón Poyecto Final de Caea pesentado en la Univesidad

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

Magnetismo solar: un poco de teoría

Magnetismo solar: un poco de teoría 1 Magnetismo sola: un poco de teoía La actividad magnética del Sol ha ataído a los astónomos duante al menos años: pimeo, la apaiencia y vaiabilidad de las manchas, más tade, su estuctua, las potubeancias,

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

Colegio Nuestra Señora de los Ángeles Curso 2015-2016

Colegio Nuestra Señora de los Ángeles Curso 2015-2016 Colegio Nuesta Señoa de los Ángeles Cuso 05-06 Almudena de la Fuente, 05 ÍNDICE TEMA : VIBRACIONES Y ONDAS. Movimiento amónico simple 3. Movimiento ondulatoio 3. Ondas sonoas 8 TEMA : ÓPTICA. Natualeza

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. UNIVERSIDADES PÚBLICAS DE LA COUNIDAD DE ADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO ATERIA: FÍSICA Cuso 013-014 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN odelo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Seguimiento de Trayectorias de un Robot Móvil Omnidireccional Basado en el Modelo Dinámico

Seguimiento de Trayectorias de un Robot Móvil Omnidireccional Basado en el Modelo Dinámico Seguimiento de Tayectoias de un Robot Móvil Omnidieccional Basado en el Modelo Dinámico J. A. Vázquez, M. Velasco-Villa CINVESTAV-IPN, Depatamento de Ingenieía Eléctica, Sección de Mecatónica, A.P. 14-74,

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA Raymundo López, Juan Moales, Alen Díaz, Mabel Vaca, Aaceli Laa y Atuo Lizadí. Univesidad Autónoma Metopolitana- Azcapotzalco Depatamento de Enegía,

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Kronotek: Configuración de Red para VoIP

Kronotek: Configuración de Red para VoIP Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

CAPITULO VI FUERZAS CENTRALES. " Qué es lo que hace que los planetas giren en torno al Sol?

CAPITULO VI FUERZAS CENTRALES.  Qué es lo que hace que los planetas giren en torno al Sol? FUEZAS CENALES CAPIULO VI " Qué es lo que hace que los planetas gien en tono al Sol? En los tiempos de Keple algunas pesonas contestaban esta pegunta diciendo que había ángeles detás de ellos, agitando

Más detalles

Control Predictivo para un Reactor por Lotes de Policondensación. Juan Esteban Castaño Velásquez

Control Predictivo para un Reactor por Lotes de Policondensación. Juan Esteban Castaño Velásquez Contol Pedictivo paa un Reacto po Lotes de Policondensación Juan Esteban Castaño Velásquez Univesidad Nacional de Colombia Facultad de Minas, Depatamento de Pocesos y Enegía Medellín, Colombia 214 Contol

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

AUTOMATIZACIÓN DEL CORTE TRIDIMENSIONAL DE PIEZAS MEDIANTE UN ROBOT MANIPULADOR A PARTIR DE UN DISEÑO CAD

AUTOMATIZACIÓN DEL CORTE TRIDIMENSIONAL DE PIEZAS MEDIANTE UN ROBOT MANIPULADOR A PARTIR DE UN DISEÑO CAD AUTOMATIZACIÓN EL CORTE TRIIMENSIONAL E PIEZAS MEIANTE UN ROBOT MANIPULAOR A PARTIR E UN ISEÑO CA M. Gómez Langley pto. Ing. Sistemas y Automática, Univesidad de Sevilla, email: mglangley@supecable.es

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS

COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS UNIVERSIDAD DEL NORTE Diciembe de 2008 i COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA

Más detalles

Turbinas Axiales. Contenido. Marzo 2012. Generalidades. Triangulo de Velocidades y Etapa Normal. Trabajo de una Etapa. Diagrama de Mollier

Turbinas Axiales. Contenido. Marzo 2012. Generalidades. Triangulo de Velocidades y Etapa Normal. Trabajo de una Etapa. Diagrama de Mollier Tubinas Axiales Pof. Miguel ASAJE Mazo 0 ontenido Genealidades Análisis i de la etapa de una tubina axial Tiangulo de Velocidades Etapa Nomal Tabajo de una Etapa Diagama de Mollie Gado de eacción endimiento

Más detalles

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013 Compensión conceptual y el uso de tecnología Césa Cistóbal Escalante Veónica Vagas Alejo Univesidad de Quintana Roo Julio 203 Qué significa tene conocimiento de un concepto? Conoce su definición? Conoce

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes ANALISIS DE RIESGO E INCERTIDUMBRE Análisis Deteministico V/S Análisis de Riesgo e Incetidumbe Valoes Únicos y Conocidos Valoes Vaiables y Desconocidos ANALISIS DETERMINISTICO Pecio Cantidad Invesión EVALUACION

Más detalles

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO V CONTENIDO PROLOGO I PRTE I FUNDMENTOS DE L MECÁNIC PR L INGENIERÍ Y DINÁMIC DE L PRTÍCUL EN MOVIMIENTO PLNO 1. Fundamentos de la Mecánica paa la Ingenieía. 1.1 Intoducción. 1 1. Conceptos básicos. 1.3

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans 1 Cómo funcionan los dispositivos que utilizan enegía espacial? Una explicación a pati de la Teoía de Einstein-Catan-Evans Host Eckadt Munich, Alemania Alpha Institute fo Advanced Study (www.aias.us) Resumen

Más detalles

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA DIVISION DE POSTGRADO PROGRAMA DE POSTGRADO EN MATEMÁTICA APLICADA

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA DIVISION DE POSTGRADO PROGRAMA DE POSTGRADO EN MATEMÁTICA APLICADA REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA DIVISION DE POSTGRADO PROGRAMA DE POSTGRADO EN MATEMÁTICA APLICADA APLICACIÓN DEL MÉTODO DE DIFERENCIAS FINITAS EN EL DOMINIO

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

1. ENGRANAJES CILÍNDRICO RECTOS

1. ENGRANAJES CILÍNDRICO RECTOS . ENGRANAJES CILÍNDRICO RECTOS. TIPOS DE TRANSMISIONES MECÁNICAS. VENTAJAS E INCONVENIENTES. Las tansmisiones mecánicas se emplean paa comunica potencia de un ógano de un sistema mecánico a oto, y se emplean

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

Fenómenos Ondulatorios: Interferencias

Fenómenos Ondulatorios: Interferencias Fenómenos Ondulatoios: Inteeencias Fenómenos de supeposición de ondas. Inteeencias (pags 67-76 Guadiel) Cuando en un punto de un medio coinciden dos o más ondas (petubaciones) se dice que en ese punto

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

Radiación Solar = [ 2] n 365

Radiación Solar = [ 2] n 365 Radiación Sola Radiación Sola 1. EL SOL Y LA TIERRA 1.1. Movimiento obital de la Tiea alededo del Sol La Tiea, al igual que el esto de los planetas, de acuedo con la pimea ley de Keple, gia en tono al

Más detalles