Formas canónicas reales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Formas canónicas reales"

Transcripción

1 Capítulo 7 Formas canónicas reales Introducción Sea V un espacio vectorial sobre C, f End(V y M B (f = A M(n n Sea λ = a + bi es una autovalor complejo de f de multiplicidad m Para tal autovalor complejo hemos aprendido a calcular un bloque complejo de Jordan así como un bloque de base canónica compleja asociados a dicho autovalor Nuestro objetivo en el presente capítulo es hallar una forma canónica real de Jordan así como una base canónica real de V para f cuando f posea autovalores complejos Para alcanzar este objetivo comenzaremos revisando algunas propiedades relacionadas con los números complejos 71 Algunos resultados sobre C Definición 711 Consideremos el conjunto de los números complejos C = {a + bi a, b R, i 2 = 1} Sea α = a + bi C, llamamos conjugado del número complejo α, al complejo α = a bi Los números reales a y b reciben el nombre de parte real y parte imaginaria, respectivamente, del complejo α Habitualmente, se utiliza la notación: a = Re(α, b = Im(α Proposición 711 Sean α, β C Se verifica: 1 α + β = α + β 2 αβ = αβ 3 Re(α = 1 2 (α + α, Im(α = 1 (α α 2i Proposición 712 Sea p(x R[x] un polinomio cuyos coeficientes son números reales y α C una raíz de p(x de multiplicidad m Se verifica que: 1 α es también raíz de p(x En otras palabras, p(α = 0 p(α = 0 2 La multiplicidad de α como raíz de p(x es también m 129

2 71 ALGUNOS RESULTADOS SOBRE C 130 Definición 712 Sea A = (a ij una matriz cuyos elementos son números complejos Llamamos conjugada de A a la matriz A = (a ij Proposición 713 Sean A y B matrices cuyos elementos son números complejos Se verifica: 1 A + B = A + B 2 A B = A B 3 A M(n n, C = det(a = det(a 4 rg(a = rg(a Notaciones Sea v V un vector cuyas coordenadas respecto de B son v B = ( + y 1 i, + y 2 i,, x n + y n i Consideremos los vectores x, y V tales que x B = (,,, x n e y B = (y 1, y 2,, y n Se tiene: v B = ( + y 1 i, + y 2 i,, x n + y n i = (,,, x n + i(y 1, y 2,, y n = x B + iy B, de aquí que adoptemos la notación v = x + yi Por analogía con los números complejos, escribiremos, Re(v = x, Im(v = y, donde x e y son vectores de V cuyas coordenadas son números reales Se tiene, igualmente, que x = 1 (v + v, 2 y = 1 (v v 2i Definición 713 Sean V un espacio vectorial sobre el cuerpo C y B una base de V Sea L una variedad lineal de V de ecuaciones respecto de B son Ax t = 0 Llamaremos conjugada de la variedad L a la variedad L cuyas ecuaciones, respecto de B son Ax t = 0 Proposición 714 Sean L y L variedades lineales de V Se verifica que: 1 a L a L 2 dim(l = dim(l 3 L = {v 1, v 2,, v r } es una base de L si y sólo si L = {v 1, v 2,, v r } es una base de L Las demostraciones de estas propiedades son triviales y se dejan como ejercicio dto de álgebra

3 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL Construcción de un bloque de Jordan real Proposición 721 Sean V un C-espacio vectorial, f End(V, B una base de V y A = M B (f, ( A M(n n, R Se verifica: 1 Si λ C \ R es un autovalor complejo de f cuya multiplicidad algebraica es m, entonces λ es un autovalor de f de multiplicidad m 2 Si V 1 (λ, V 2 (λ,, V s (λ es la sucesión de subespacios asociados al autovalor λ, los subespacios asociados al autovalor λ son V j (λ = V j (λ, (j = 1,, s 3 El par de autovalores λ y λ tienen la misma partición de su multiplicidad 4 Si B λ = {u 1 + v 1 i, u 2 + v 2 i,, u m + v m i} es una base de V s (λ calculada por el algoritmo de la proposición 621, entonces una base de V s (λ es B λ = {u 1 v 1 i, u 2 v 2 i,, u m v m i} y, por consiguiente, una base de V s (λ V s (λ es B λ B λ = {u 1 + v 1 i, u 2 + v 2 i,, u m + v m i, u 1 v 1 i, u 2 v 2 i,, u m v m i} 5 Si B λ y B λ son, respectivamente, las bases de V s (λ y de V s (λ, calculadas en el apartado anterior, se verifica que una base real de V s (λ V s (λ es 6 Sea B λλ = {u 1, v 1, u 2, v 2,,, u m, v m } E = λ 1 λ 1 1 λ una caja elemental de Jordan de orden r r sobre C asociada a una columna de altura r (r s en la base B λ Entonces la caja elemental de Jordan asociada a la misma columna en la base B λ será la matriz de orden r r, E = λ 1 λ 1 1 λ 7 Tomando B λλ como base de V s (λ V s (λ la caja elemental sobre R correspondiente a las cajas elementales de orden r E y E asociadas a los autovalores λ = a + bi y λ = a bi es de la forma: C E λ,λ = I C I I C, m iglesias

4 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL 132 donde Demostración ( a b C = b a ( 1 0, I = 0 1, E λ,λ = M(2r 2r, R 1 Es consecuencia inmediata de la proposición 712 ya que si p(x es el polinomio característico de f y λ C es una raíz de p(x, también lo es λ y si la multiplicidad algebraica de λ es m, también m la multiplicidad de λ 2 Sean V j (λ, (j = 1,, s los subespacios invariantes asociados al autovalor λ Sabemos que V j (λ (λi Ax t = 0 Además, teniendo en cuenta que las matrices I y A son reales, de acuerdo con las propiedades de la proposición 713, se tiene: (λi A j = (λi A j = (λi A j Igualdades de las que deducimos que V j (λ = V j (λ, (j = 1,, s 3 Como consecuencia del apartado 4 de la proposición 713 se tiene: rg ( (λi A j = rg ((λi A j = rg ( (λi A j, de donde dim ( V j (λ = dim ( V j (λ Sabiendo que la partición de la multiplicidad m de λ o λ está determinada por las dimensiones de los subespacios asociados a dichos autovalores y que estos tienen la misma dimensión, se deduce inmediatamente la proposición 4 Recuérdese, en primer lugar que dim ( V s (λ = m (multiplicidad de λ Por lo demás, la proposición es consecuencia inmediata del apartado 3 de la proposición 714 y de ser directa la suma V s (λ + V s (λ (Ver para esto último la demostración para r = 2 del lema Recordando que las transformaciones elementales de los tipos I y II, conservan la independencia lineal (ya que conservan el rango de la matriz de las coordenadas respecto de una base es fácil probar que B λλ = {u 1, v 1,,, u m, v m } es una base de V 6 Como la partición de la multiplicidad m de para ambos autovalores (λ y λ es la misma, los bloques de Jordan de ambos autovalores están compuestos por el mismo número de cajas elementales y del mismo orden de ahí, que si E es una caja elemental del bloque de Jordan asociado a λ, E lo será del asociado a λ 7 En efecto, supuesto que se ha calculado una base de V s (λ mediante el algoritmo de la proposición 621, sea {u 1 + iv 1, u 1 + iv 2,, u r + iv r }, (r s una columna completa tomada de abajo hacia arriba Por construcción, sabemos que: dto de álgebra

5 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL 133 V r V r 1 u r + iv r u r 1 + iv r 1 V 2 u 2 + iv 2 V 1 u 1 + iv 1 0 Es decir: (λ1 V f(u r + iv r = u r 1 + iv r 1 (λ1 V f(u r 1 + iv r 1 = u r 2 + iv r 2 (λ1 V f(u 3 + iv 3 = u 2 + iv 2 (λ1 V f(u 2 + iv 2 = u 1 + iv 1 (λ1 V f(u 1 + iv 1 = 0 Sea pues u k + iv k, (k = 1,, r un vector de dicha columna Caben dos casos: a k = 1 En este caso u 1 + iv 1 V 1 (λ con lo cual u 1 + iv 1 es un autovector asociado al autovalor λ = a + bi, de donde f(u 1 + iv 1 = λ(u 1 + iv 1 = f(u 1 + if(v 1 = (au 1 bv 1 + i(bu 1 + av 1 Es decir, f(u 1 = au 1 bv 1, f(v 1 = bu 1 + av 1 Con lo que la matriz de las relaciones 71 es ( a b C = b a (71 b 1 < k r En este caso u k + iv k V k (λ y, por lo tanto, (λ1 V f(u k + iv k = u k 1 + iv k 1 = f(u k + iv k = u k 1 + iv k 1 + λ(u k + iv k Es decir, { f(u k = u k 1 + au k bv k, f(v k = v k 1 + bu k + av k, (72 Regla práctica de donde la matriz de las relaciones 72 respecto de {u k 1, v k 1, u k, v k } es de la forma: 1 0 ( 0 1 I a b = C b a Con lo que queda probada la proposición Sea λ = a + bi un autovalor complejo de f de multiplicidad m 1 o Comenzamos, como en el caso complejo, calculando los subespacios asociados a λ, V 1, V 2,, V s, sus correspondientes dimensiones n 1, n 2,, n s y los números p 1, p 2,, p s m iglesias

6 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL o Con los datos anteriores ya podemos calcular el bloque complejo de Jordan asociado a λ Ahora, para obtener el bloque real asociado a los autovalores λ y λ bastará sustituir el autovalor λ por la caja C definida en el apartado 7 de la proposición anterior, los unos, si los hubiese, de la paralela a la diagonal por la matriz I y completar con ceros de modo que el orden de la nueva matriz se 2m 2m 3 o A continuación calculamos, por el método establecido en la proposición 621, una base compleja de V s Sea ésta B λ = v 1, v 2,, v m 4 o El bloque de base canónica real asociado a los autovalores λ y λ será de la forma: B λλ = { Re(v 1, Im(v 1, Re(v 2, Im(v 2,,, Re(v m, Im(v m } Ejemplo 1 Sean V un espacio vectorial sobre C, B = {u 1, u 2, u 3, u 4 } y f End(V tal que: A = M B (f = Calcular las formas canónicas, compleja y real de f y unas bases canónicas, compleja y real de V para f Solución Autovalores de f 0 = λi A = (λ 2 2 λ = λ 1 = 1 + i, (m 1 = 2, λ 2 = 1 i, (m 2 = 2 Subespacios asociados a λ 1 = 1 + i V 1 (λ i i i i = 0 Utilizando la forma reducida de la matriz de los coeficientes de V 1, obtenemos: i 1 V 1 (λ (1 i 1 2 (1 + i = 0, de donde deducimos que dim ( V 1 (λ 1 = 2, con lo cual los bloques de Jordan asociados a los autovalores λ 1 = 1 + i y λ 2 = 1 i son de la forma: J λ1 = ( 1 + i i ( 1 i 0, J λ2 = 0 1 i Una base B λ1 de V 1 (λ 1 es B λ1 = {( 2, 1 + i, 2, 0, ( 2i, 1 i, 0, 2} dto de álgebra

7 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL 135 Formas canónicas compleja y real de f De lo anterior se deduce que J C = 1 + i 1 + i 1 i 1 i, J R = Bases canónicas compleja y real de V para f Estas son: B C = {( 2, 1 + i, 2, 0, ( 2i, 1 i, 0, 2, ( 2, 1 i, 2, 0, (2i, 1 + i, 0, 2}, B R = {( 2, 1, 2, 0, (0, 1, 0, 0, (0, 1, 0, 2, ( 2, 1, 0, 0} Ejemplo 2 Sean V un espacio vectorial sobre C, B = {u 1, u 2, u 3, u 4 } y f End(V tal que: A = M B (f = Calcular las formas canónicas, compleja y real de f y unas bases canónicas, compleja y real de V para f Solución Autovalores de f 0 = λi A = (λ 2 2 λ = λ 1 = 1 + i, (m 1 = 2, λ 2 = 1 i, (m 2 = 2 Subespacios asociados a λ 1 = 1 + i V 1 (λ I I I I = 0 Utilizando la forma reducida de la matriz de los coeficientes de V 1, obtenemos: V 1 (λ i = 0, de donde deducimos que dim ( V 1 (λ 1 = 1, con lo cual f no es diagonalizable y los bloques de Jordan asociados a los autovalores λ 1 = 1 + i y λ 2 = 1 i son de la forma: J λ1 = ( 1 + i i ( 1 i 1, J λ2 = 0 1 i m iglesias

8 CONSTRUCCIÓN DE UN BLOQUE DE JORDAN REAL 136 Una base B 1λ1 de V 1 (λ 1 es B λ1 = {( 1 i, 1, 1, 1} V 2 (λ i i 2 2 i 2 i 0 2 i 2 2 i 2 2 i i 2 2 i 2 i i 4 i 4, lo que es equivalente (utilizando, igualmente, la forma reducida por filas, V 2 (λ i (1 i 1 2 (1 + i = 0 = 0 Una base B 2λ1 de V 2 (λ 1 es Formas canónicas compleja y real de f De lo anterior se deduce que: J C = B 2λ1 = {( 2, 1 + i, 2, 0, ( 2i, 1 i, 0, 2} 1 + i i 1 i 1 1 i, J R = Bases canónicas compleja y real de V para f Calculemos un bloque de base compleja de Jordan asociada al autovalor λ 1 Como p 1 = 1 y p 2 = 1, tenemos V 2 ( 2, 1 + i, 2, 0 (λ 1 I A V 1 (2i, 1 + i, 1 i, 1 i B C = {(2i, 1 + i, 1 i, 1 i, ( 2, 1 + i, 2, 0, ( 2i, 1 i, 1 + i, 1 + i, ( 2, 1 i, 2, 0}, B R = {(0, 1, 1, 1, (2, 1, 1, 1, ( 2, 1, 2, 0, (0, 1, 0, 0} dto de álgebra

Formas canónicas de Jordan

Formas canónicas de Jordan Capítulo 6 Formas canónicas de Jordan 61 Subespacios propios generalizados Introducción En el capítulo anterior se han estudiado los endomorfismos diagonalizables y se han dado condiciones necesarias y

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

2.5 Teorema de Jordan

2.5 Teorema de Jordan Capítulo 2/ Forma canónica de Jordan (Versión 13-03-2015) 15 2.5 Teorema de Jordan En esta sección queremos abordar ya el caso general de un endomorfismo f : V V cualquiera (no necesariamente con un único

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D.

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D. 22 Departamento de Álgebra. Universidad de Sevilla Tema 5. Sección 1. Endomorfismos. Endomorfismos diagonalizables. Ejercicio 5.1 Dadas las matrices complejas: 3 2 0 2 3 0, B = 0 0 5 14 1 12 13 0 12 17

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Respuestas Guía de ejercicios N 7 parte Complemento Valores y Vectores Propios. λ 7 λ λ λ λ + 3λ. Sea v el vector propio asociado al valor propio λ 3 y v el vector propio asociado al valor propio λ. Para

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Tema 21. Exponencial de una matriz Formas canónicas de Jordan.

Tema 21. Exponencial de una matriz Formas canónicas de Jordan. Tema 21 Exponencial de una matriz En este tema vamos a definir y calcular la exponencial de una matriz cuadrada mediante una expresión formalmente análoga al desarrollo en serie de potencias de la exponencial

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Afinidades. Movimientos

Afinidades. Movimientos Capítulo 3 Afinidades. Movimientos 3.1 Aplicaciones afines Nota En lo que sigue E = (X, V, + es un espacio afín sobre K de dimensión n y R = {O, B} un sistema de referencia de E. Definición 3.1.1 Llamamos

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución:

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución: ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Fundamentos Matemáticos de Ingeniería T. I. Electrónica y Eléctrica Primer Parcial (--4), primera parte. PROBLEMA A)[ puntos] Indica razonadamente cuál de los

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre Álgebra. Ingeniería Industrial. Curso / Examen de Septiembre OBSERVACIONES: Cada hoja entregada debe contener el nombre, apellidos y número de identificación escrito de forma clara. No mezclar ejercicios

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

5. Autovalores y autovectores

5. Autovalores y autovectores 172 Autovalores y autovectores Al ser x 0 = y = P 1 x 0yportanto,λ es un autovalor de A. Recíprocamente, si λ es un autovalor de A existe un vector x 0talque A x = λx y por tanto, 5. Autovalores y autovectores

Más detalles

7.1 Transformaciones lineales nilpotentes

7.1 Transformaciones lineales nilpotentes Capítulo 7 Forma de Jordan En este capítulo continuaremos estudiando la estructura de los endomorfismos de un espacio vectorial de dimensión finita Veremos que si V es un K-espacio vectorial de dimensión

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles

6. Forma canónica de matrices

6. Forma canónica de matrices 6. Forma canónica de matrices Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 6 6. Forma canónica de matrices 7 6.1 Introducción....................................

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 7

ÁLGEBRA Ejercicios no resueltos de la Práctica 7 ÁLGEBRA Ejercicios no resueltos de la Práctica 7 Endomorfismos (Curso 2007 2008) 3. Hallar la matriz de Jordan J de la siguiente matriz A, así como una matriz P de paso de A a J, esto es, tal que J = P

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

TEMA 5: Aplicaciones Lineales. Diagonalización.

TEMA 5: Aplicaciones Lineales. Diagonalización. TEMA 5: Aplicaciones Lineales. Diagonalización. 1. Aplicaciones Lineales 1.1. Definición, propiedades y ejemplos. Definición 1. Dados dos espacios vectoriales V y V sobre un mismo cuerpo K, una aplicación

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

2.6 Polinomios anuladores y los Teoremas A y B

2.6 Polinomios anuladores y los Teoremas A y B 20 Álgebra lineal 2.6 Polinomios anuladores y los Teoremas A y B En esta sección vamos a suponer que todos los espacios vectoriales son sobre K = C. Esta sección está basada en la Sección 14.6 de Volumen

Más detalles

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización.

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización. Álgebra II(6108, 8102) Segundo cuatrimestre 2017 Práctica 4 Autovalores y autovectores de matrices Diagonalización Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C

Más detalles

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN 5.1- Definición: matrices semejantes. Se dice que dos matrices A y B son semejantes si existe una matriz regular P tal que se verifica B

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática El mayor portal de recursos educativos a tu servicio! Capítulo 5 Cónicas 5.1 Definiciones y ecuaciones reducidas Nota En

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

A-PDF Page Cut DEMO: Purchase from to remove the watermark. Ejercicios resueltos 125

A-PDF Page Cut DEMO: Purchase from   to remove the watermark. Ejercicios resueltos 125 A-PDF Page Cut DEMO: Purchase from www.a-pdf.com to remove the watermark Ejercicios resueltos 125 Las matrices asociadas a g f y f g son, respectivamente 0 3 8 ) 14 13 g f BA = 3 3 1 f g AB = 16 22 7 2

Más detalles

0 a b X = b c 0. f X (A) = AX XA.

0 a b X = b c 0. f X (A) = AX XA. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Industriales Álgebra Lineal Convocatoria de Junio 8 de Junio de 2007 (3 ptos.). Sea V = {A M 3 3 (R) / A t = A}. (a) Demostrar que toda

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

2.4 Endomorfismos con un único autovalor

2.4 Endomorfismos con un único autovalor Capítulo 2/ Forma canónica de Jordan (Versión 13-3-215) 7 24 Endomorfismos con un único autovalor Diagramas de puntos En esta sección vamos a empezar estudiando endomorfismos con un único autovalor Aunque

Más detalles

Transformaciones Lineales

Transformaciones Lineales Transformaciones Lineales En lo que sigue denotaremos por K al conjunto R ó C Definición Sean V y W dos K-ev (espacios vectoriales sobre K Se llama transformación lineal de V en W a toda función T : V

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

Práctica 6: Autovalores y autovectores - Diagonalización

Práctica 6: Autovalores y autovectores - Diagonalización ALGEBRA LINEAL Primer Cuatrimestre 2010 Práctica 6: Autovalores y autovectores - Diagonalización 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009 6. Sean a y b dos números reales. En el espacio P 1 de los polinomios de grado menor o igual que

Más detalles

Endomorfismos: autovalores, autovectores, diagonalización

Endomorfismos: autovalores, autovectores, diagonalización Capítulo 14 Endomorfismos: autovalores, autovectores, diagonalización Consideraremos en este capítulo endomorfismos f : IR n IR n, siendo IR n espacio vectorial sobre IR. 14.1 Valores y vectores propios

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Examen Final Soluciones (3 horas) 8 de julio de 2015

Examen Final Soluciones (3 horas) 8 de julio de 2015 Álgebra Lineal I Examen Final Soluciones (3 horas) 8 de julio de 2015 1. Siete personas suben en un ascensor en la planta baja de un edificio de cinco pisos. Cada una de ellas se apea en alguna de las

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Diagonalización y Formas canónicas en la semejanza. Antonia González Gómez Dep. de Matemáticas Aplicadas a los Recursos Naturales ETSI de Montes UPM

Diagonalización y Formas canónicas en la semejanza. Antonia González Gómez Dep. de Matemáticas Aplicadas a los Recursos Naturales ETSI de Montes UPM y Formas canónicas en la semejanza Antonia González Gómez Dep. de Matemáticas Aplicadas a los Recursos Naturales ETSI de Montes UPM Índice 1. Introducción 2 2. Autovalores, autovectores y autoespacios

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

DIAGONALIZACIÓN DE MATRICES

DIAGONALIZACIÓN DE MATRICES Tema 2 DIAGONALIZACIÓN DE MATRICES 2.1. Introducción El álgebra matricial proporciona herramientas elementales para simplificar y resolver problemas donde intervienen un número elevado de datos. El siguiente

Más detalles

2.7 Aplicaciones del Teorema de Jordan

2.7 Aplicaciones del Teorema de Jordan 26 Álgebra lineal 27 Aplicaciones del Teorema de Jordan En esta sección seguimos suponiendo que K C Endomorfismos y matrices nilpotentes Definición Decimos que una matriz A M n (C es nilpotente si existe

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Departamento de Matemáticas, CCIR/ITESM 4 de enero de 20 Índice 8.. Definición de valor y vector propio.................................. 8.2. Determinación de los valores propios.................................

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles