CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES"

Transcripción

1 CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES

2 EFECTOS CAPACITIOS CONCEPTOS BÁSICOS DE ELECTROSTÁTICA Cagas puntuales F a,b Q a Q b Fueza ente os cagas F a, b 4 π o Q Q a b [ N] Intensia e campo eléctico E a, b 4 π o Q a [ ] m Constante ieléctica el vacío E o [F/m]

3 EFECTOS CAPACITIOS E: campo Newtoniano ive ote ρ o 0 Integano las ecuaciones e Maxwell E ga : potencial electostático b a b ( E ) l ( E ) l a : tabajo paa move una caga a velocia constante e A a B a b MATERIALES DIELÉCTRICOS P i D Eo D Eo D P χ o e De one E + P o E D o E ( + χ e )

4 EFECTOS CAPACITIOS T ma e Gauss Done σ f es la ensia e caga libe De one enceaa ceaa S Q s D, f f D s s D σ σ o f o E E D σ x E E o f ga σ s s Q C o o f f σ σ

5 EFECTOS CAPACITIOS ENERGÍA ASOCIADA A UN CAMPO ELÉCTRICO E D v o v E v v L H E Ambas placas están a igual tensión po lo que el campo E es constante a lo lago e toa la supeficie o v o s C eq C eq o s

6 EFECTOS CAPACITIOS Según la estategia e evana las capaciaes paásitas cambian. / x a) E(x) x h h b) E / 0 Consieemos placas planas e sección S y longitu l. Caso a) El campo eléctico epene e x x o v o h 6 Caso b) C El campo eléctico no epene e x o v o 4 8 C 3 4 eq o eq o s s s s

7 EFECTOS CAPACITIOS Conensao cilínico R R E() -Q +Q H s Aplicano el Teoema e Gauss a un conensao cilínico sometio a una tensión, tenemos: S E s, E ceaa Q Q libe π H E π Q o H ln R R C Q π H R ln R

8 EFECTOS CAPACITIOS O también Q R o E( ) v ln π H R Q Ceq Ceq eq C C eq π H R ln R Si el conensao esta fomao po os capas e conuctoes unios como se inica en la figua y sometios a la tensión, el conensao equivalente seá: R R C E() -Q +Q H s y

9 EFECTOS CAPACITIOS Tomemos un ifeencial e conensao C: La enegía almacenaa en este conensao ifeencial seá: Integano a lo lago e la altua H, tenemos: La enegía almacenaa en un conensao equivalente es De one se euce la capacia equivalente ln R R y C π C W 4ln 4 ln 0 0 R R H R R y W W H H π π C W eq ln R R H C eq π

10 EFECTOS CAPACITIOS Si po el contaio las conexiones ente evanaos son las mostaas en la figua: R R C E() -Q +Q H s y El pefil e tensiones a lo lago el eje y seá como el inicao en el caso a): (y)y/h Siguieno el mismo poceso que es el caso anteio tenemos: C π y R ln R W y C H W H W 0 0 H π y y R H ln R π H R 3ln R

11 EFECTOS CAPACITIOS Finalmente igualano la expesión anteio a la enegía almacenaa en un conensao C eq sometioo a la tensión, obtenemos el valo e C eq : C eq π H R 3ln R Las técnicas e inteleaving: C C C Aumentan la capacia ente evanaos C (se euce la istancia ente ellos) Disminuyen la capacia popia C, C

12 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES Ejemplo e iseño: U B N :N L F u u u 0 Convetio en puente completo i: (eficaces) o: (DC) P o : 00 W F c : 00kHz Asignaemos inicialmente el 0 % e péias a los semiconuctoes y oto 0 % a los magnéticos. u (T/) T/ T t φ, i m t u t i t

13 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES a) Diseño el tansfomao e aislamiento º) Detemina el ciclo e tabajo el convetio M(N/N) t N/N8 U Bmax U B U Bmin º) Detemina los valoes e coiente y tensión que eben se manejaos po los magnéticos Coiente eficaz po el secunaio i I O 4.56 A (suponemos especiables los izaos e coiente ebios a la L F y L m ) Coiente eficaz po el pimaio I I / t 0.57 A 3º) Selección e los conuctoes Objetivo: minimiza los efectos e la alta fecuencia δ ρ πµ f C δ (00kHz)0.4 mm PRIMARIO: hilo eono e φ 0.5 mm SECUNDARIO: Hilo litz 400xφ 0.04mm

14 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES 4º) Selección el mateial magnético Objetivo: minimiza las péias en alta fecuencia Evita la satuación el nucleo 3F3 PHILIPS Pn( W / m 3 ) x y Cm fc Bac ( ct ct T + c t T ) Ente khz Cm0.5, x.6, y.5, c t.6, c t.050 -, c t Satuación B S 0.3 T B max ( N) U 4 f C max N A e 5º) Evaluación e las péias en el núcleo Pn ( N) 0.5 fc U B fc N A e P n (N)K/N 6º) Evaluación e las péias en el cobe Pcu m N lm t ( N) ρcu I + ρcu t φ π 4 e N l φ π ( I )

15 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES P Cu (N)KN Péias totales P T (N) P Cu (N)+ P n (N) El mínimo se obtiene cuano P Cu (N)P n (N) P(W) P n P Cu N optimo N Inuctancia magnetizante: Lm( N) N µ µ A l o e e

16 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES Coiente magnetizante: Im( N) U B 4 Lm( N) f C 7º) Disposición e los evanaos Secunaio Pimaio núcleo El pimaio se ivie en os capas en paalelo paa minimiza la inuctancia e ispesión.

17 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES Ficheo Mathca Ieff 0.6 t 8 f Ub ρcu capas numeo e capas en paalelo el pimaio Datos el núcleo e Ae φ c 50. mu 000 muo 4. π. 0 7 le h Datos conuctoes φ φ Cálculo e péias en el cobe N. π. φc Pcu( N ) ρcu... φ capas Ieff π. 4 Bmax( N) Lm( N) Ub. 4fNAe... N. muo. mu. Ae le N. π. φ c t Pcu( N ) ρcu..( Ieff. t) π. φ Im_max( N) Ub. 4Lm(. N). f Pcu( N) Pcu( N) Pcu( N)

18 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES Cálculo e péias en el núcleo Pn( N ) 0.5.( f).6. Ub e. f. N. Ae.5 N 89, Pcu( N ) Pn( N ) N.5 Im_max( N) N

19 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES.5 Bmax( N) N A la vista e las anteioes gáficas se selecciona: Núcleo RM5 N3 (os capas en paalelo) N8 Péias totales P T. W

20 ELEMENTOS MAGNÉTICOS: TRANSFORMADORES b) Diseño e la bobina A pati el izao e coiente (i A) se etemina el valo e L F L U i T B O F U B 56, 0.8 L F 0.45mH A pati e éste valo se ha e etemina el númeo e espias N y el entehieo necesaios paa obtene el valo eseao e L F. L l e µ A e N g + µ A o e B max N I l e µ + max g µ o El cálculo sigue un poceso iteativo simila al ealizao con el tansfomao.

21 EFECTOS EN LOS DEANADOS EN ALTA RECUENCIA EJEMPLO: Tansfomao paa flyback: Resultaos en función e la estategia e evanao: (Coiente neta po los evanaos A)

22 EFECTOS EN LOS DEANADOS EN ALTA RECUENCIA Influencia el entehieo: RM, conuctoes e φ.5 mm, Análisis a 50 khz

23 CRITERIOS DE DISEÑO ESPESOR ÓPTIMO EN FUNCIÓN DEL NÚMERO DE CAPAS QUE FORMAN EL DEANADO Espeso óptimo nomalizao ϕ opt (m)espeso/δ SKIN Péias: P(m)P DCF(ϕ opt (m),m) Bobinas con entehieo cental m ϕ opt (m) F(ϕ opt (m),m) Bobinas con entehieo cental y exteio m ϕ opt (m) F(ϕ opt (m),m)

24 EJEMPLO DE DISEÑO MÉTODO DE DISEÑO DE BOBINAS: Datos e patia: L450 µh Fecuencia00 khz Coiente máxima I MAX 8.8 A Coiente ac I ac 0.5 A Coiente eficaz I RMS 8.5 A Facto e uso e ventana k W 0.3 Satuación B S 0.3 T Facto e foma geomético K FG 85 Facto e péias en el núcleo K M PNU ol B ac.- Selección el núcleo P OPT ρ CU K K M W K FG L 3 I ac I RMS P Bmax ac K M B MAX + ρ CU MAX I I K K FG W L I B RMS I MAX MAX 5 3

25 EJEMPLO DE DISEÑO Repesentación e las péias óptimas totales y las péias a B MAX en función el volumen el núcleo. El volumen óptimo se encontaá en el cuce e ambas cuvas. Con volúmenes infeioes al óptimo fozosamente acuiemos a un iseño a B MAX paa evita la satuación. Con volúmenes supeioes al óptimo minimizamos péias a costa e incementa el volumen Popt ( v ) Pbmax ( v ) v Se asumen como aceptables unas péias el oen e 5W, po lo tanto seleccionamos un volumen e núcleo mm 3 Es eci un RM4..- Selección el númeo e vueltas a) po límite e péias P N 0 N OPT K M K ρ CU W L I I ac RMS A W l Ae 4

26 EJEMPLO DE DISEÑO b) po límite e B MAX N L I B MAX MAX A e En nuesto caso es la opción b) la seleccionaa N Diámeto el hilo φ 4 K A π N W W 0. 8 mm 4.- Deteminación el entehieo g µ Ae N L le µ o 3 mm

27 EJEMPLO DE DISEÑO FICHERO MATHCAD: DATOS DE ENTRADA: INDUCTANCIA l FRECUENCIA f CORRIENTES imax 8.8 iac 0.5 ims 8.5 FACTOR DE USO DE ENTANA kw 0.3 RESISTIIDAD CONDUCTOR es PERMEABILIDAD u 000 bmax 0.3B MAXIMO PERDIDAS NUCLEO kfg 85 facto e foma geometico80 po lo geneal km facto e péias el núcleo v , es. km. kfg. l. iac. ims pebopt ( v ). kw 3 v pebmax ( v ). iac km. bmax. es. kfg v. l. ims. imax. imax kw bmax 5 3 v cálculo a mínimas péias pebopt(v) y a Bmax, pebmax(v). Hay un punto e cote. A la iza e eecho punto el iseño ha e se a Bmax ya que en el oto caso se satua la bobina. A la eecha el punto el iseño ha e se a mínimas péias pebopt( v) pebmax ( v ) v

28 EJEMPLO DE DISEÑO v v Aw Aw Ae Ae lme lme le le km. kw nopt. l. iac.. es Aw v l. imax nopt ims lme. Ae bmax. Ae nopt nopt imax. l imax. l bmax bmax Ae. nopt Ae. nopt bmax.584 bmax 0.3 iac. l iac. l bac bac Ae. nopt Ae. nopt bac 0.09 bac π Aw kw 4.. π Aw kw nopt nopt pnu km. v. iac. bmax pnu km. v. iac. bmax imax imax pnu pnu 0.0 es. nopt. lme pev. ims es. nopt. lme pev. ims π. 4 π. 4 pev π Ae. nopt le 4. π Ae. nopt le g g l u l u g g nopt nopt pev pev 5.49 pnu pnu bmax.584 bmax 0.3

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador.

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador. 6. nductancias Almacenan enegía magnética geneada como consecuencia de las vaiaciones de coiente. Suelen se fabicados a medida po el popio diseñado. Pincipios de la teoía electomagnética Magnitudes a utiliza:

Más detalles

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles

CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY

CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY Tópicos e Electicia y Magnetismo J.Pozo y R.M. Chobajian. CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY 8.1. Ley e Faaay En 1831 Faaay obsevó expeimentalmente que cuano en una bobina que tiene conectao un galvanómeto

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte.

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte. ROAMIENOS RIGIOS E OLAS Este tipo e oamientos son e uso geneal, ya que pueen absobe caga aial y axial en ambos sentios, así como las fuezas esultantes e estas cagas combinaas; a su vez, pueen opea a elevaas

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

EXAMEN DE LA CONVOCATORIA DE DICIEMBRE 2005 (AMPLIACIÓN DE FÍSICA - ELECTROMAGNETISMO) Nombre: DNI: PRIMERA PARTE

EXAMEN DE LA CONVOCATORIA DE DICIEMBRE 2005 (AMPLIACIÓN DE FÍSICA - ELECTROMAGNETISMO) Nombre: DNI: PRIMERA PARTE XAMN D LA CONVOCATORIA D DICIMBR 5 (AMPLIACIÓN D FÍICA - LCTROMAGNTIMO Nombe: DNI: PRIMRA PART Tema a esaolla ( punto negía electostática: tabajo paa move una caga puntual, enegía potencial e una caga

Más detalles

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO XAMN COMPLO legi n bloqe de poblemas y dos cestiones. PROBLMAS BLOQU A 1.- Umbiel, n satélite de Uano descibe na óbita pácticamente cicla de adio R 1 67 6 m y s peiodo de eolción ale,85 5 s. Obeón, oto

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Tablas y formulas prácticas

Tablas y formulas prácticas Tablas y fomulas pácticas ECCÓN Automation Technology Poducts Tablas y fómulas pácticas NDCE Tabla de esquemas típicos en sistemas de conmutación (tansfeencias)... Tabla de potencias y coientes nominales...

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO

LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO Tabla de Contenidos LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO 1. INTRODUCCIÓN... 1 1.1. INTRODUCCIÓN GENERAL... 1 1.2. TRABAJOS PREVIOS... 3 1.2.1 Equipos Comerciales... 3

Más detalles

10 El campo eléctrico

10 El campo eléctrico Solucionaio 0 l capo eléctico JRCICIOS PROPUSTOS 0. A cuántos electones euivale una caga eléctica negativa e os icoculobios? La caga inicaa es: μc 0 C uivale a: electón C,, 0 C 3 electones 0. Po ué se

Más detalles

2πε. V b a. b a. dr r 850V E 3

2πε. V b a. b a. dr r 850V E 3 3.6 El tuo e un conto Geige tiene un cilino metálico lgo y hueco e cm e iámeto. too lo lgo el eje el tuo hy un lme e.7 mm e iámeto. uno el tuo está funcionno, se plic un voltje e 85 V ente los conuctoes.

Más detalles

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS DE TRANSFORMADORES Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Columna armada del Grupo II (con forros intermedios) sometida a compresión axil y a compresión y tracción axil. Aplicación Capítulos A, B, C, D y E.

Columna armada del Grupo II (con forros intermedios) sometida a compresión axil y a compresión y tracción axil. Aplicación Capítulos A, B, C, D y E. 73 EJEMPLO N 13 Columna amada del Gupo II (con foos intemedios) sometida a compesión ail a compesión tacción ail. Aplicación Capítulos A, B, C, D E. Enunciado Dimensiona los codones supeioes e infeioes

Más detalles

H1 J1 K1 L1 AA1 P1 Q1 R1 V C AA2 B

H1 J1 K1 L1 AA1 P1 Q1 R1 V C AA2 B A1 B1 C1 E1 F1 H1 J1 K1 L1 AA1 M1 N1 O1 G1 P1 Q1 1 S1 T1 U1 E F H V C AA AA2 B A G TABLEO GENEAL CENU EL-01 CT-EL-01-Eléctrica - 0 Puerta automática de apertura lateral Pendiente 2% 2% pendiente JAÍN -

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

Capitulo 1. Carga y Campo eléctricos.

Capitulo 1. Carga y Campo eléctricos. Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por.

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por. Ley de Gauss La ley de Gauss elacina el fluj del camp eléctic a tavés de una supeficie ceada cn la caga neta incluida dent de la supeficie. sta ley pemite calcula fácilmente ls camps eléctics que esultan

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora) limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

ENSAYO de TRANSFORMADORES

ENSAYO de TRANSFORMADORES NTRODCCÓN ENSAYO de TRANSFORMADORES Nobeto A. Lemozy La veificación del coecto funcionamiento de cualquie equipo es de suma impotancia, en paticula cuando se tata de unidades gandes y de mucho costo, y

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

Flotamiento de esferas

Flotamiento de esferas Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia),

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

4.2 Transformadores de potencia

4.2 Transformadores de potencia 4. Transformadores de potencia 4.. Generalidades Descripción Circuito magnético Circuito eléctrico Refrigeración Aspectos constructivos 4.. Principio de funcionamiento El transformador ideal Funcionamiento

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo 1 Tansistoes e Efecto e Campo El fenómeno e moula la conuctancia e un semiconucto po un campo eléctico aplicao pepenicula a la supeficie el semiconucto se enomina "efecto e campo". Los tansistoes basaos

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Ejemplo 6-3. Tema 2. Electrocinética V =IR. Resolver circuitos simples. Resistencias Ley de Ohm: I, intensidad de corriente eléctrica.

Ejemplo 6-3. Tema 2. Electrocinética V =IR. Resolver circuitos simples. Resistencias Ley de Ohm: I, intensidad de corriente eléctrica. Tema 2. Electocinética Ojetivos: Defini los conceptos intensidad de coiente eléctica, velocidad de aaste, densidad de coiente y esistencia. Estalece la ley de Ohm. Defini la esistividad, y conoce su dependencia

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

UNIDAD IV: CAMPO MAGNETICO

UNIDAD IV: CAMPO MAGNETICO UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Teoría Electromagnética

Teoría Electromagnética José Moón Fundamentos de Teoía Electomagnética I. Campos Estáticos 3 Índice Geneal CAPÍTULO Intoducción al Análisis Vectoial. Intoducción. Escalaes Vectoes.3 Multiplicación Vectoial 5.4 Vectoes Base Componentes

Más detalles

Capítulo III. Circuito magnético con entrehierro

Capítulo III. Circuito magnético con entrehierro Capítulo III. Circuito magnético con entrehierro 3.1. Descripción general En ocasiones se pueden presentar núcleos con entrehierros. El entrehierro es necesario para evitar saturación para determinada

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

PROPIEDADES ELECTRICAS DE LA MATERIA

PROPIEDADES ELECTRICAS DE LA MATERIA PROPIEDADES ELECTRICAS DE LA MATERIA Paa el estuio e los fenómenos elécticos inteactuano con la mateia, se hace necesaio ifeencia a los meios mateiales en os tipos funamentales: - Dielécticos. - Conuctoes.

Más detalles

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009 1 DEÑO E MPLEMENACÓN DE UN COMPENADOR EÁCO DE POENCA REACA (D-ACOM); BAADO EN UN CONERDOR RFÁCO CON MODULACÓN NUODAL DE ANCHO DE PULO (PWM), CONROLADO POR UN PROCEADOR DGAL DE EÑALE (DP M30C000) ícto Lituma

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles