Ejercicios Propuestos Inducción Electromagnética.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios Propuestos Inducción Electromagnética."

Transcripción

1 Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de la superficie de un disco de 5[] de radio que está colocado de forma perpendicular y centrado al eje del solenoide. 2. Una espira circular de alambre de radio R se coloca en un campo magnético uniforme B y entonces se impulsa para que gire con una velocidad ω alrededor de un eje a través de su diámetro. Determine el flujo magnético a través de la espira como función del tiempo si el eje de rotación está: (a) Perpendicular a B. (b) Paralelo a B. 3. Se coloca una espira plana en un campo magnético uniforme cuya dirección es perpendicular al plano de la espira. Si el área de la espira aumenta a razón de 0 04 [ 2 /] se induce una fem de 0 16 [V ], cuál es la magnitud del campo magnético?. 4. Una bobina circular tiene un diámetro de 16 7[] y 24 vueltas. El campo magnético es perpendicular al plano de las espiras. Si el campo aumenta linealmente de 2[µT] a 8[µT] en un tiempo de 0 6[], cuál es la fem inducida?. 5. Un campo magnético uniforme y constante B =0 5[T ] pasa a través de una bobina plana circular de alambre de 16 vueltas, donde cada una de las espiras tiene un área de 4 8[ 2 ]. Si la bobina gira sobre un eje que pasa por su diámetro con una

2 236 Ejercicios propuestos Inducción Electromagnética. velocidad angular ω = 60π [/], calcule la fem inducida como función del tiempo, si inicialmente en =0[] el campo magnético es perpendicular al plano de la bobina. 6. Una bobina de N vueltas y área A está situada en el interior de un solenoide coaxialmente (el eje del solenoide coincide con el de la bobina). El solenoide tiene vueltas por metro, y por él circula una corriente variable en el tiempo de acuerdo a la expresión I = I 0 (1 exp α). Calcule la fem inducida en la bobina. 7. Existe un campo magnético a través de una bobina circular de radio R y N vueltas de alambre; la dirección del campo es perpendicular al plano de la bobina. La magnitud del campo en el plano de la espira es B = B 0 (1 /2R) cos(ω), donde es medida desde el centro de la espira. Determine la fem inducida en la espira. 8. Un solenoide largo de radio y longitud L de N vueltas tiene a su alrededor una espira de radio R coaxial al solenoide. Con una resistencia variable se hace que la intensidad de corriente disminuya linealmente de 10 [A] hasta 5 6[A] en 1 5[]. Si =4 5[], L =2[] y N = 4000 vueltas, calcule la fem inducida en la espira circular. 9. Una corriente que varía en el tiempo de acuerdo a la expresión I = 5 exp 0 4 [A], donde está en segundos, circula por un solenoide circular de radio 4[] que tiene 2500 vueltas/metro. Calcule la magnitud del campo eléctrico inducido a una distancia de 8[] del eje del solenoide en el instante =3[]. 10. Una barra de longitud L se mueve sobre dos rieles con una velocidad constante. Los rieles están conectados en uno de sus extremos por una resistencia R, como muestra la figura 4.33, y un campo magnético uniforme de 352 [T ] está dirigido hacia dentro de la página. Suponiendo que R =8 6 [Ω] y L = 120 [], con qué velocidad debería moverse la barra para producir una intensidad de corriente de 0 5[A] en la resistencia?. Figura 4.33: (Problema 10).

3 Ejercicios propuestos Inducción Electromagnética Dos rieles conductores forman un ángulo θ en donde se unen sus extremos. Una barra conductora en contacto con los rieles y formando un triángulo isósceles con ellos empieza a moverse en el vértice en el instante =0y se mueve a rapidez contante ν hacia la derecha, como muestra la figura Un campo magnético uniforme B apunta hacia fuera de la página. Encuentre la fem inducida como función del tiempo. Figura 4.34: (Problema 11). 12. Una espira rectangular de área A y resistencia R se coloca en una región donde el campo magnético es perpendicular al plano de la bobina. La magnitud del campo varía como función del tiempo de acuerdo a la expresión B = B 0 exp /τ, donde B 0 y τ son constantes positivas. El campo tiene una magnitud de B 0 para 0. (a) Encuentre la magnitud y dirección de la intensidad de corriente inducida en la espira. (b) Obtenga el valor numérico de la intensidad de corriente para =4[] cuando A =0 45 [ 2 ], R =0 4 [Ω], B 0 = 659 [T ] y =5[]. 13. En un campo magnético uniforme B se deja caer una espira rectangular de masa 200[], resistencia 1 [Ω] y dimensiones 50 [] de base y 2[] de altura. Note que las partes de los lados verticales dentro del campo son de igual longitud. La espira se acelera hasta alcanzar su velocidad terminal 3[/] (velocidad constante). Calcule la magnitud de B. 14. Un generador consta de 97 vueltas de alambre formadas en una bobina rectangular de 50 [] por 20 [], situada por completo dentro de un campo magnético uniforme de

4 238 Ejercicios propuestos Inducción Electromagnética. magnitud 3 5[T ]. Calcule el valor máximo de la fem inducida cuando gira la bobina a razón de 1200 revoluciones por minuto alrededor de un eje perpendicular al campo. 15. Un alambre conductor con una longitud de 60 [] puede ser enrollado en N vueltas cuadradas y usado como la armadura de un generador de CA de frecuencia 60 [H]. Si se usa un campo magnético de 1 23 [T ], cuál debe ser la longitud del lado del cuadrado de la armadura para generar una fem máxima de [V ]?. 16. Un alambre rígido doblado en forma semicircular de radio 4 4[] gira con una frecuencia de 120 [H], dentro de un campo magnético uniforme de magnitud 2 5[T ], como muestra la figura Calcule el valor máximo de la fem inducida en el conductor. Figura 4.35: (Problema 16). 17. Considere un inductor con núcleo de aire de una longitud de 28 [] y [ 2 ] de área de sección transversal. Cuántas vueltas por metro debe tener el inductor para tener una inductancia de 77 [µh]?. 18. Una intensidad de corriente de 45 [A] circula por un solenoide con núcleo de aire de 450 vueltas y 14 [H]. Calcule el flujo magnético a través del solenoide. 19. Por un solenoide de 1 53 [H] pasa una intensidad de corriente que varía con el tiempo de acuerdo a la expresión I() = ( )A, donde está medido en segundos. (a) Calcule la magnitud de la fem inducida en =2[] y =4[]. (b) Para qué valor del tiempo la fem será cero?.

5 Ejercicios propuestos Inducción Electromagnética Tres inductores de 400, 200 y 100 vueltas están conectados en serie y separados por una gran distancia. Los tres inductores tienen el mismo radio (0 5[]) y la misma longitud (6 []). Cuál es la inductancia equivalente de las 700 vueltas cuando los inductores se conectan en serie?. 21. Dos inductores L 1 y L 2 están conectados en paralelo y separados por una gran distancia. Calcule la inductancia equivalente. 22. Un toroide de sección transversal circular, con núcleo de aire, con N vueltas, radio interior R y radio de la sección transversal. Si R, el campo magnético en el interior del toroide es básicamente igual al de un solenoide muy largo, el cual ha sido doblado para formar un circulo de radio R. Utilizando el campo uniforme de un solenoide largo, muestre que la autoinductancia del toroide está dada (aproximadamente) por L = µ 0 N 2 A/2πR. 23. Dos alambres paralelos largos, cada uno de radio, cuyos centros están separados por una distancia, conducen corrientes iguales en dirección contraria. Despreciando el flujo en los alambres mismo, calcule la inductancia de una longitud de tal par de alambres. 24. Un solenoide largo consta de N 1 vueltas con un radio R 1. Un segundo solenoide, con N 2 vueltas de radio 2, tiene la misma longitud que el primero y se encuentra completamente dentro de este, con sus ejes coincidentes. (a) Suponiendo que por el solenoide 1 circula una intensidad de corriente I, calcule la inductancia mutua. (b) Ahora suponga que por el solenoide 2 circula la misma intensidad de corriente I (y no circula corriente por el solenoide 1). Calcule la inductancia mutua. Se obtiene el mismo resultado?. 25. Una intensidad de corriente de 5[A] circula por un solenoide de 120 vueltas, 7[] de largo y 1 5[] de diámetro. Una espira de radio 4[] tiene su centro en el eje del solenoide; el plano de la espira es perpendicular al eje del solenoide y pasa por el centro de éste. Calcule la inductancia mutua de los dos, si el plano de la espira pasa por el centro del solenoide. 26. Dos espiras de alambre circulares con centro común y que están en el mismo plano tiene radios R y, con R.

6 240 Ejercicios propuestos Inducción Electromagnética. (a) Encuentre la inductancia mutua. (b) Calcule la inductancia mutua para =1[] y R = 15 []. 27. Considere un inductor de núcleo de aire de 5980 vueltas, 8[] de radio y 1 2[] de longitud. Por el solenoide circula una intensidad de corriente de 3 43 [A]. Determine la energía almacenada en el campo magnético. 28. Se tiene un solenoide con núcleo de aire de 1220 vueltas por metro perfectamente enrollado. Encuentre la densidad de energía magnética cerca del centro si por el solenoide circula una intensidad de corriente de 5[A]. 29. Un tramo de alambre de cobre recto de diámetro 2 5[] consume una corriente de 10 [A], distribuida uniformemente. Calcule la densidad de energía magnética a una distancia de 5[] del eje del alambre. 30. En un circuito como se muestra en la figura 4.36, con una fem de 36 [V ], L =5 98 [H] y R = 7 [Ω], el interruptor se cierra en =0. (a) Calcule la rapidez con la cual se almacena energía en el inductor después de que ha transcurrido un tiempo igual a dos veces la constante de tiempo del circuito. (b) Con qué rapidez se disipa energía en forma de calor por efecto Joule en la resistencia en este tiempo?. (c) Cual es la energía total almacenada en el inductor en este tiempo?. Figura 4.36: (Problema 30). 31. Considere el circuito de la figura 4.37 con L = 104 [H], R =5 98 [Ω], ε = 12 [V ].

7 Ejercicios propuestos Inducción Electromagnética. 241 (a) Si el interruptor se cierra en el punto (conectando la batería), cuánto tiempo pasa antes de que la intensidad de corriente alcance los 130 [A]?. (b) Cuál es la intensidad de corriente que circula por el inductor 0 1[] después de que éste se cierra?. (c) Después de un tiempo considerablemente largo, el interruptor se mueve rápidamente de a. Cuánto tiempo debe pasar antes de que la intensidad de corriente disminuya a 250 [A]?. Figura 4.37: (Problema 31). 32. Vamos a usar la figura 4.36 con L =5[H], R = 6 [Ω], ε = 12 [V ]. (a) Si en =0se cierra el interruptor, calcule el cociente de la diferencia de potencial a través del resistor a la del inductor cuando la intensidad de corriente en el circuito es igual a 1 5[A]. (b) Calcule el voltaje a través del inductor cuando I =2[A]. 33. Considere el circuito de la figura (a) Cuál es la intensidad de corriente en el circuito en un tiempo suficientemente grande después de haber posicionado el interruptor en el punto A?.

8 242 Ejercicios propuestos Inducción Electromagnética. (b) Ahora el interruptor se pasa rápido de A a B. Calcule el voltaje a través de cada resistor y del inductor. (c) Cuánto tiempo pasará antes de que el voltaje a través del inductor caiga a 12[V ]?. Calcule la inductancia. Figura 4.38: (Problema 33). 34. Un circuito LC en serie, donde C =5[µF], oscila a una frecuencia de 100 [H]. Calcule la inductancia. 35. Un circuito LC en serie, donde L = 119 [H], C = 12 5[µF], donde el capacitor tiene una carga inicial de 150 [µc]. (a) Encuentre la frecuencia (en Hz) de la oscilación resultante. (b) En el instante =1[], encuentre la carga en el capacitor y la intensidad de corriente en el circuito. 36. En un circuito LC circula una intensidad de corriente que oscila con un periodo T. Si en =0la carga en el capacitor es máxima, en qué tiempo la energía almacenada en el campo eléctrico del capacitor será igual a la energía almacenada en el campo magnético del inductor? (Exprese su respuesta en fracciones de T ). 37. Un inductor de 12 6[H] y un capacitor de 1 15 [µf] se conectan en serie con un resistor. Cuál es el valor máximo del resistor que permitirá al circuito continuar oscilando?. 38. Considere un circuito RLC en serie que consta de un capacitor de 14 4[µF], conectado a un inductor de 36 [H] y a un resistor R. Calcule la frecuencia de las oscilaciones (en H) para los siguientes valores de R:

9 Ejercicios propuestos Inducción Electromagnética. 243 (a) R = 0 [Ω] (sin amortiguamiento). (b) R = 20 [Ω] (bajo amortiguamiento). (c) R = 100 [Ω] (amortiguamiento critico). (d) R = 200 [Ω] (sobre amortiguamiento). 39. Un inductor tiene una reactancia de 45 2 [Ω] a 50 [H]. Cuál será la corriente Peak si el inductor se conecta a una fuente de 60 [H] que entrega un voltaje de 100 [V ]?. 40. Un inductor de 452 [H] se conecta a un generador de corriente alterna que tiene un voltaje Peak de 120 [V ]. (a) Cuál es el valor de la frecuencia del generador para que la reactancia del inductor sea igual a 38 [Ω]?. (b) Calcule el valor Peak de la corriente en el circuito a esta frecuencia. 41. La reactancia de un capacitor de 25 [µf] tiene que ser menor que 377 [Ω]. (a) Cuál es el rango de frecuencias para lograr esto?. (b) Dentro de este rango de frecuencias, cuál sera la reactancia de un capacitor de 35 [µf]?. 42. Un circuito de corriente alterna puramente capacitivo con C = 27[µF], V () =V sin ω con V = 91 3[V ], = 100 [H], cuál es la intensidad de corriente instantánea en el circuito a = []?. 43. Un circuito RLC en serie tiene R = 51 2 [Ω], L = 980 [H], C = 1 93 [µf] y un generador con V = 313 [V ] que opera a 60 [H]. (a) Calcule la reactancia inductiva. (b) Calcule la reactancia capacitiva.

10 244 Ejercicios propuestos Inducción Electromagnética. (c) Calcule la impedancia total del circuito. (d) Calcule la corriente Peak. (e) Calcule el ángulo de fase. 44. Un inductor de 19 3[H] y un resistor de 7 47 [Ω] se conectan en serie a una fuente de corriente alterna de frecuencia variable. A qué frecuencia el voltaje a través de la bobina se adelantará a la corriente en 60?. 45. Un circuito RLC en serie tiene R = 512 [Ω], L = 193 [H], C = 19 3[µF], con un generador de corriente alterna a 70 [H] que entrega al circuito una corriente Peak de 313 [A]. (a) Calcule el voltaje Peak requerido Vm. (b) Determine el ángulo con el cual la corriente en el circuito se adelanta o atrasa respecto al voltaje aplicado. 46. Un circuito de corriente alterna conectado en serie tiene una resistencia R, un inductor L, un capacitor C y un generador V () =V cos(ω) que opera a una frecuencia ω. (a) Usando Ley de Kirchhoff, demuestre que la impedancia total del circuito está dada por Z = Z exp φ = R + ωl 1 (4.231) ωc (b) Grafique en el plano complejo la impedancia, especificando R, χl, χc, Z, φ. (c) Defina el factor de calidad de la frecuencia de resonancia. Demuestre que si tomamos valores de ω para los cuales la corriente máxima cae a 1/ 2 de su valor máximo, entonces ω ω ω 0 = ± 1 1 ω 0 ω 0 Q 1+ ω (4.232) 0 ω

11 Ejercicios propuestos Inducción Electromagnética Calcule la potencia promedio entregada al circuito RLC en serie descrito en el problema Un inductor de 17 2[H], un capacitor de 6 23 [µf], un resistor de 45 2 [Ω] y un generador cuya salida está dada por V () = 31 4 sin(350) [V ] se colocan en serie. (a) Encuentre la potencia promedio entregada al circuito por la fuente de poder. (b) Encuentre la potencia promedio disipada por la resistencia. 49. En un circuito RLC en serie, C = 122 [µf] y L = 193 [H]. Calcule su frecuencia de resonancia. 50. Para sintonizar una estación de radio FM que transmite a 97 7[MH] se utiliza un circuito RLC en serie. El resistor en este circuito es de 8 2 [Ω] y el inductor es de 1 2[H]. Qué capacitancia debemos utilizar?. 51. Un resistor de 75 [Ω], un inductor de 120 [H] y un capacitor de 15 [µf] se conectan en serie con un generador de corriente alterna de voltaje máximo 120 [V ] y de frecuencia variable. (a) Calcule la frecuencia de resonancia del circuito. (b) Calcule el factor de calidad del circuito. 52. Un generador suministra 150 [V ] (efectivos) al enrollado primario de un transformador ideal de 282 vueltas. El enrollado secundario tiene 920 vueltas. Cuál es el voltaje efectivo de salida?. 53. Considere un transformador ideal con N 1 y N 2 vueltas en el primario y en el secundario, respectivamente. Demuestre que un transformador de subida (uno con N 2 >N 1 ) reduce la corriente a la salida en un factor N 1 /N Un transformador ideal de subida tiene un voltaje a través del secundario de 330 [V ] (efectivos) cuando el voltaje de entrada es de 100 [V ] (efectivos). (a) Si la bobina del primario tiene 100 vueltas, cuántas vueltas tiene el secundario?. (b) Si una resistencia de carga a través del secundario consume una corriente de 10[A], cuál debe ser la corriente en el primario?.

12 246 Ejercicios propuestos Inducción Electromagnética. 55. En el circuito RC de la figura 4.39 con R = 282 [Ω] y C =6[µF] calcule el cociente entre V salida /V entrada para: (a) ω = 30 [/]. (b) ω = [/]. Figura 4.39: (Problema 55). 56. Considere el circuito de la figura Encuentre V salida /V entrada si el voltaje de salida se toma entre los puntos: (a) y. (b) y. (c) y. Figura 4.40: (Problema 56).

13 Ejercicios propuestos Inducción Electromagnética Demuestre que dos filtros RC consecutivos con los mismos valores de R y C como se muestra en la figura 4.41 entregan la siguiente ganancia: V salida 1 = V entrada 1+(RCω) 2 (4.233) Figura 4.41: (Problema 57). 58. El fragmento de circuito que se muestra en la figura 4.42 se conoce como divisor de voltaje. (a) Si R load no está conectado al circuito muestre que R2 V = V R 1 + R 2 (4.234) (b) Si R 1 = R 2 = 10 [Ω], cuál es el menor valor de R que puede ser usado de manera que el voltaje de salida V disminuya menos que un 10 % de su valor sin R?(V es medido con respecto a tierra). Figura 4.42: (Problema 58).

14 248 Ejercicios propuestos Inducción Electromagnética.

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

Guía de Ejercicios de Electromagnetismo II Lapso I-2010

Guía de Ejercicios de Electromagnetismo II Lapso I-2010 UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

Inductancia y Circuítos LRC

Inductancia y Circuítos LRC Inductancia Mutua Inductancia y Circuítos LRC un campo magnético en la bobina 2, creando un flujo magnético en 2 Φ B2 = M 21 i 1. De la ley de Faraday se tiene la fem inducida en 2 debido al cambio temporal

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

Lección 2: Magnetismo

Lección 2: Magnetismo : Magnetismo : Magnetismo Introducción Esta lección describe la naturaleza del magnetismo y el uso de los imanes en varios componentes eléctricos para producir y controlar la electricidad. Objetivos Al

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA

TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA V.A Trigonometría V.B Coordenadas vectoriales V.C Operaciones vectoriales V. Generación de la CA V. Características de la CA V.3 Receptores ideales de CA V.4 Asociación

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

APLICACIONES DE OSCILADORES

APLICACIONES DE OSCILADORES APLICACIONES DE OSCILADORES. Oscilador de radio frecuencias Con el oscilador colpitts se puede hacer un transmisor de FM y/o video, para enviar una señal de audio o video al aire (señal electromagnética)

Más detalles

UNIVERSIDAD AUTONOMA DE TAMAULIPAS

UNIVERSIDAD AUTONOMA DE TAMAULIPAS R-RS-01-25-03 UNIVERSIDAD AUTONOMA DE TAMAULIPAS NOMBRE DE LA FACULTAD O UNIDAD ACADEMICA NOMBRE DEL PROGRAMA INGENIERO INDUSTRIAL NOMBRE DE LA ASIGNATURA ELECTRICIDAD Y MAGNETISMO PROGRAMA DE LA ASIGNATURA

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

Asignatura: Electromagnetismo Programa por objetivos

Asignatura: Electromagnetismo Programa por objetivos Asignatura: Electromagnetismo Programa por objetivos PRESENTACION Y ENCUADRE CARGA Y CAMPO ELÉCTRICO...3......3..4......3.3..3..3.3.3.4 CARGA ELECTRICA Evolución del concepto de carga eléctrica. Estructura

Más detalles

Carrera: Ingeniería en Mecatrónica. Clave de la asignatura: Horas teoría-horas práctica-créditos: 4-2-10 ASIGNATURAS TEMAS ASIGNATURAS TEMAS

Carrera: Ingeniería en Mecatrónica. Clave de la asignatura: Horas teoría-horas práctica-créditos: 4-2-10 ASIGNATURAS TEMAS ASIGNATURAS TEMAS 1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Electricidad y Magnetismo Carrera: Ingeniería en Mecatrónica Clave de la asignatura: Horas teoría-horas práctica-créditos: 4-2-10 2. - UBICACIÓN a)

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2004-2005 - CONVOCATORIA: Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si fuera necesario. Capacidad para el planteamiento de problemas y procedimientos

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

Contenido del módulo 3 (Parte 66)

Contenido del módulo 3 (Parte 66) 3.1 Teoría de los electrones Contenido del módulo 3 (Parte 66) Localización en libro "Sistemas Eléctricos y Electrónicos de las Aeronaves" de Paraninfo Estructura y distribución de las cargas eléctricas

Más detalles

Apéndice B Construcción de Bobinas

Apéndice B Construcción de Bobinas Apéndice B Construcción de Bobinas B.1 Características de una Bobina. El diseño de los inductores se basa en el principio de que un campo magnético variable induce un voltaje en cualquier conductor en

Más detalles

CIRCUITOS RESONANTES, RLC

CIRCUITOS RESONANTES, RLC CIRCUITOS RESONANTES, RLC En este desarrollo analizamos circuitos RLC alimentados con una tensión alternada (AC) y su respuesta a distintas frecuencias. Por convención, y a los fines de simplificar la

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA 9 NDUCCÓN ELECTROMAGNÉTCA 9.. FLUJO MAGNÉTCO. Por qué es nulo el flujo magnético a través de una superficie cerrada que rodea a un imán? Las líneas de campo magnético son cerradas. En el caso de un imán,

Más detalles

Corriente alterna monofásica

Corriente alterna monofásica Corriente alterna monofásica Qué es la corriente alterna? + - - + La corriente alterna se caracteriza por alternar la polaridad en la fuente de alimentación en forma períodica, provocando que la corriente

Más detalles

1.1 La Bobina Ideal. Preguntas conceptuales

1.1 La Bobina Ideal. Preguntas conceptuales 1. RESPUESTA DEL CIRCUITO EN ESTADO TRANSITORIO (DOMINIO DEL TIEMPO) 1.1 La Bobina Ideal Preguntas conceptuales 1. La inductancia de cierta bobina está determinada por la ecuación 1.2. Si se desea construir

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

Relación de Problemas: CORRIENTE ELECTRICA

Relación de Problemas: CORRIENTE ELECTRICA Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores INDICE Prefacio XXI Capitulo I. 1. Introducción a los Principios de las Máquinas 1.1. Las máquinas eléctricas y los transformadores en la vida cotidiana 1 1.2. Nota sobre las unidades y notación Notación

Más detalles

CAPITULO 5. Corriente alterna

CAPITULO 5. Corriente alterna CAPITULO 5 Corriente alterna Se denomina Corriente Alterna (CA) a la corriente eléctrica en la cual la magnitud y el sentido varían periódicamente, siendo la forma sinusoidal la más utilizada. El uso doméstico

Más detalles

XIX OLIMPIADA ESPAÑOLA DE FÍSICA.

XIX OLIMPIADA ESPAÑOLA DE FÍSICA. P Exp. Estudio experimental de un generador de corriente Introducción; objetivos Según la ley de Faraday, cuando cambia el flujo magnético a través de un circuito se induce en él una fuerza electromotriz

Más detalles

Introducción al Diseño de Generadores con Imanes Permanentes

Introducción al Diseño de Generadores con Imanes Permanentes Introducción al Diseño de Generadores con Imanes Permanentes RESUMEN En este artículo se presentan los resultados del Modelaje de Generadores con Imanes Permanentes para ser usados en el desarrollo de

Más detalles

Definimos así a la región del espacio donde se manifiestan acciones magnéticas.

Definimos así a la región del espacio donde se manifiestan acciones magnéticas. Unidad N 1 - TRANSFORMACION DE LA ENERGIA CAMPO MAGNETICO: Definimos así a la región del espacio donde se manifiestan acciones magnéticas. ELECTROMAGNETISMO Ley de Biot Savart En todo conductor recorrido

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE MINAS FÍSICA III SÍLABO

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE MINAS FÍSICA III SÍLABO SÍLABO 1. DATOS GENERALES: CARRERA PROFESIONAL : INGENIERÍA DE MINAS CÓDIGO CARRERA PRO. : 32 ASIGNATURA : FISICA III CÓDIGO DE ASIGNATURA : 3202-32213 Nº DE HORAS TOTALES : 4 HORAS SEMANALES Nº DE HORAS

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles

Motor de Inducción RESUMEN

Motor de Inducción RESUMEN Motor de Inducción RESUMEN Una vez que la civilización comenzó a crecer, las necesidades de la misma se aumentaron, causando que los adelantos científicos fueran necesarios, y hasta en un punto indispensable;

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES

PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES PRODUCTO P06 UNIDAD MODULAR FUENTE DE ALIMENTACIÓN Actividades: A06 1: Diseño y estructuración de las diferentes

Más detalles

Propiedades de la corriente alterna

Propiedades de la corriente alterna Propiedades de la corriente alterna Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente.

Más detalles

Conceptos básicos de electrónica en radio frecuencia

Conceptos básicos de electrónica en radio frecuencia Conceptos básicos de electrónica en radio frecuencia Prometheus Radio Project Introducción Te has puesto a pensar cómo es que un sonido que entra en un transmisor de radio llega hasta el radio receptor

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO 1.- INTRODUCCION Los tres componentes pasivos que, en general, forman parte de los circuitos eléctricos son los resistores, los inductores y los capacitores.

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar

Más detalles

TEORIA UTIL PARA ELECTRICISTAS ALTERNADORES Y MOTORES CA

TEORIA UTIL PARA ELECTRICISTAS ALTERNADORES Y MOTORES CA Definición.- Es una maquina rotativa que genera corriente eléctrica alterna a partir de otra energía mecánica, como un molino de viento, una noria de agua, por vapor, etc. Diferencias con la dinamo.- En

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

Bases Físicas del Medio Ambiente. Campo Magnético

Bases Físicas del Medio Ambiente. Campo Magnético ases Físicas del Medio Ambiente Campo Magnético Programa X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fuerza de Lorentz. Movimiento de partículas cargadas en el seno de un campo magnético. Fuerza magnética

Más detalles

Apunte LTspice: Acoplamiento magnético y transformadores

Apunte LTspice: Acoplamiento magnético y transformadores Apunte LTspice: Acoplamiento magnético y transformadores Ayudante: Marco Guerrero Ilufi - Felipe Vega Prado Contacto: m.guerrero144@gmail.com - felipe.vegapr@gmail.com 2 de junio de 2011 Introducción En

Más detalles

REOVIB ELEKTRONIK AG. HighTech aus Deutschland. Balance de energía de un controlador de ángulo de fase y un controlador de frecuencia

REOVIB ELEKTRONIK AG. HighTech aus Deutschland. Balance de energía de un controlador de ángulo de fase y un controlador de frecuencia REOVIB Balance de energía de un controlador de ángulo de fase y un controlador de frecuencia ELEKTRONIK AG HighTech aus Deutschland HighTech aus Deutschland Quien abandona en le intento de ser mejor deja

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

TEMA 4 ELECTROMAGNETISMO

TEMA 4 ELECTROMAGNETISMO TEMA 4 ELECTROMAGNETISMO IV.1 Magnetismo e imanes IV.2 Electroimanes IV.3 Flujo magnético IV.4 Fuerza magnética IV.5 Inducción electromagnética IV.6 Autoinducción Cuestiones 1 IV.1 MAGNETISMO E IMANES

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Índice. prólogo a la tercera edición...13

Índice. prólogo a la tercera edición...13 Índice prólogo a la tercera edición...13 Capítulo 1. CONCEPTOS BÁSICOS Y LEYES FUNDAMENTALES DE LOS CIRCUITOS...17 1.1 CORRIENTE ELÉCTRICA...18 1.1.1 Densidad de corriente...23 1.2 LEY DE OHM...23 1.3

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

ELECTRICIDAD Y MAGNETISMO. Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo.

ELECTRICIDAD Y MAGNETISMO. Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo. ELECTRICIDAD Y MAGNETISMO Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo. UNIDAD 5 PRÁCTICA 13 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO

Más detalles

Inducción de fuerzas electromotrices por un campo variable en el tiempo

Inducción de fuerzas electromotrices por un campo variable en el tiempo ELECTRICIDAD Y MAGNETISMO Inducción de fuerzas electromotrices por un campo variable en el tiempo UNIDAD 5 PRÁCTICA 14 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO PRIETO YAMANI DE

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

GUÍA DE ESTUDIOS DE FÍSICA PARA CxTx

GUÍA DE ESTUDIOS DE FÍSICA PARA CxTx GUÍA DE ESTUDIOS DE FÍSICA PARA CxTx Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como a los integrantes de la CONCAyNT y a

Más detalles

Campo magnetico e inductores

Campo magnetico e inductores Campo magnetico e inductores Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos Campo Magnético Ley de inducción de Faraday Inductor Asociacion de inductores Circuitos RL

Más detalles

Trabajo práctico Nº 1

Trabajo práctico Nº 1 Circuito de acoplamiento 1. Introducción 1.1. Requisitos 2. Funcionamiento 2.1. Sintonización 2.2. Adaptación 3. Diseño 3.1. Consideraciones generales 3.2. Diseño inductor 3.3. Factor de calidad 3.4. Cálculo

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles