DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)
|
|
- Juan José Maldonado Mendoza
- hace 5 años
- Vistas:
Transcripción
1 UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS CIRCUNFERENCIAS FOCALES CIRCUNFERENCIA PRINCIPAL 7 4. DIÁMETROS CONJUGADOS 7 5. SOLUCIÓN A EJERCICIOS UNIDAD PROPUESTA DE EJERCICIOS Francisco Irles Mas.
2 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS. Una vez conocido el origen tridimensional de las cónicas vamos a estudiarlas con más profundidad pues son de muy amplia utilización en todos los ámbitos técnicos. Basaremos su estudio desde el concepto de lugar geométrico, ya enunciado en el teorema de Dandelin en la unidad anterior. ELIPSE: Curva cerrada y plana con dos ejes de simetría perpendiculares entre sí que se cortan en su punto medio O y que se denomina centro de la elipse. Eje real: es el eje mayor de la elipse y se denomina por AA'. Su longitud es 2a y contiene a los focos F y F'. Eje imaginario: es el eje menor de la elipse. Se denomina por BB' y su longitud es 2b. Figura 1: Elementos característicos de la elipse. Distancia focal: distancia que separa los focos F y F'. Su longitud es 2c. Radios vectores: son los segmentos FP y F P que unen cada punto de la elipse con los focos. La suma de los radios vectores en cada punto de la elipse es 2a. Circunferencia principal: es la circunferencia de diámetro 2a y que tiene su centro en el punto O. Circunferencias focales: son dos circunferencias de centros F y F' respectivamente y radio 2a. PARÁBOLA: Curva abierta, plana y de una sola rama, con un eje de simetría que contiene al foco y es perpendicular a la directriz d. Vértice: Es el punto V de intersección de la curva con el eje. Es equidistante del foco y de la directriz. Figura 2: Elementos característicos de la parábola. 2 Francisco Irles Mas.
3 Parámetro: longitud de la cuerda que pasa por el foco y es paralela a la directriz. Radios vectores: r y r definidos para todo punto P como segmento FP y el que se define sobre la recta que pasa por P y es perpendicular a la directriz. Ambos son iguales entre sí. Circunferencia principal: en el caso de la parábola, la circunferencia principal se transforma en una recta perpendicular al eje y que pasa por el vértice. Es la tangente a la curva en el vértice. Circunferencia focal: en la parábola, la circunferencia focal coincide con la directriz, es una circunferencia de radio infinito. Para comprender intuitivamente estos dos últimos conceptos, podemos considerar la parábola como una elipse que tiene uno de sus focos en el infinito. De ahí que las dos circunferencias mencionadas tengan radio infinito y por tanto se hayan convertido en sendas rectas. Las propiedades de la tangente en el vértice y de la directriz serán las mismas que las de la circunferencia principal y focal respectivamente. HIPÉRBOLA: Curva abierta y plana de dos ramas con dos ejes de simetría perpendiculares entre sí. Eje real: denominado por AA' de longitud 2a, que corresponde a la distancia que separa los vértices de cada una de las ramas de la curva. Eje imaginario: también se denomina eje no transverso. Es perpendicular al eje real en su punto medio. Se denomina por BB' y su longitud es 2b. Distancia focal: es la distancia que separa los dos focos F y F', y se denomina por 2c. La semi-distancia focal y los dos semiejes están en la relación a 2 + b 2 = c 2. Radios vectores: son los segmentos r y r' que unen cada punto de la curva con los focos. Figura 3: Elementos característicos de la hipérbola. Circunferencia principal: es la de centro O y diámetro 2a. Circunferencias focales: las de centros F y F' y radio 2a. 3 Francisco Irles Mas.
4 Asíntotas: son las tangentes a la hipérbola en el infinito y son las rectas que contienen el segmento c. La hipérbola es equilátera cuando las asíntotas forman 45º con los ejes. 2 TRAZADO MEDIANTE RADIOS VECTORES. ELIPSE: Definidos los ejes de la elipse AA' y BB', podemos localizar los focos trazando desde B o B' un arco de circunferencia de radio "a", que cortará al eje mayor en los focos F y F', puesto que los extremos del eje menor pertenecen a uno de los ejes de simetría tendrán sus radios vectores iguales entre sí. Para hallar distintos puntos de la curva, marcamos sobre el eje mayor una serie de puntos arbitrarios 1,2,3... El punto P1 se obtiene mediante la intersección de dos arcos de circunferencia; el primero de ellos tiene su centro en F y su radio es 1A. El segundo tiene su centro en F' y su radio es 1A'. Con el mismo trazado podemos obtener el punto P'1 simétrico de P1 con respecto al eje mayor. Los demás puntos de la curva se obtienen de igual forma, sustituyendo 1 por 2, 3... En todos ellos se cumple la condición que define a la elipse como lugar geométrico; la suma de radios vectores en cada punto es AA'. PARÁBOLA: Una vez definida la directriz y el foco, localizamos sobre el eje el punto medio entre ambos, que será el vértice de la curva. Figura 4: Trazado de la elipse. A partir del vértice V, marcamos una serie de puntos arbitrarios 1, 2, 3... El punto P1 de la curva estará sobre una paralela a la directriz pasando por el punto 1, y a una distancia de F igual a D1. En el mismo trazado se puede localizar el punto P'1 simétrico de P1. Figura 5: Trazado de la parábola. 4 Francisco Irles Mas.
5 Los demás puntos de la curva se obtendrán de igual forma, sustituyendo el punto 1 por 2, 3... En todos ellos se cumple la condición de parábola como lugar geométrico, dado que la distancia de cada punto al foco es la misma que a la directriz. HIPÉRBOLA: Como en los dos casos anteriores marcamos los puntos auxiliares 1,2,3... para poder hallar los distintos puntos de la hipérbola como intersección de dos arcos; el primero de ellos será el de centro F' y radios A'1, A'2, A'3... El segundo arco será el de centro F y radios A1, A2, A3... La otra rama de la hipérbola se realizará de igual forma, tomando los puntos auxiliares 1', 2', 3'... 3 RECTAS TANGENTES A CÓNICAS. Figura 6: Trazado de la hipérbola. La tangente en un punto de la elipse es la bisectriz del ángulo que forma un radio vector y la prolongación del otro. Para la hipérbola y la parábola, la tangente es la bisectriz del ángulo que forman los dos radios vectores. Figura 7: Tangente: Bisectriz de radios vectores. 5 Francisco Irles Mas.
6 3.1 CIRCUNFERENCIAS FOCALES. En la elipse llamamos así a la circunferencia de centro uno de los focos y de radio igual al eje mayor de la elipse, es el lugar geométrico de los simétricos del otro foco con respecto a la tangente. Existen dos, una para cada foco. Esto mismo ocurre con la hipérbola, tomando siempre radio 2a y centro los focos. Para la parábola la circunferencia focal se confunde con la directriz ya que 2a vale infinito. Figura 8: Circunferencias focales 3.2 CIRCUNFERENCIA PRINCIPAL. ELIPSE: La recta FF 1 es perpendicular a la tangente, podemos decir que los pies de las perpendiculares trazadas desde el foco a la tangente están situados sobre una circunferencia de centro O y radio OA. A esta circunferencia se le denomina circunferencia principal y se puede definir como el lugar geométrico de los pies de las perpendiculares trazadas desde los focos a las tangentes. Figura 9: Circunferencia principal. 6 Francisco Irles Mas.
7 PARÁBOLA: En este caso la tangente en el vértice de la parábola es el lugar geométrico de los pies de las perpendiculares trazadas desde el foco a las tangentes. La tangente en el vértice de la parábola goza de las mismas propiedades que la circunferencia principal en la elipse y en la hipérbola. HIPÉRBOLA: En este caso el lugar geométrico de los pies de las perpendiculares trazadas desde los focos a las tangentes de una hipérbola es una circunferencia de centro O y radio OA, llamada circunferencia principal. Figura 10: Circunferencia principal, en la parábola y en la hipérbola. 4. DIÁMETROS CONJUGADOS. Los diámetros conjugados son las rectas que pasan por el centro de una cónica y están dispuestos de tal forma que cualquier cuerda paralela a uno de ellos queda dividida en dos partes iguales por el otro. Figura 11: Diámetros conjugados en una elipse y una hipérbola. Son de gran aplicación dando construcciones específicas, además en cualquier proyección cilíndrica ortogonal de una elipse nos encontramos que 7 Francisco Irles Mas.
8 las proyecciones de los ejes principales son ejes conjugados de la elipse proyección. Esto ocurre en el caso de las proyecciones diédricas. 5. SOLUCIÓN A EJERCICIOS UNIDAD 7 A O1 T2 O2 15 R30 T1 Figura de ejercicio / Dadas dos rectas paralelas a una distancia de 40 mm. y un punto A sobre una de ellas, obtén el enlace de las mismas mediante una curva en S que arranque de A y que sus dos arcos tengan un radio de 15 mm. 2/ Obtén el dibujo de la figura resolviendo los problemas de tangencias que se te presenten. R R R100 Figura de ejercicio 2: ENUNCIADO. O2 O1 6. PROPUESTA DE EJERCICIOS R100 Figura de ejercicio 2: SOLUCIÓN. dos focales. R36 1/ Dibuja una elipse conocidos los ejes principales: eje mayor 80 mm, el menor 50 mm. Determina y nombra sus: vértices (AA BB ), focos (FF ), la circunferencia principal y las 8 Francisco Irles Mas.
9 2/ Dibuja una parábola sabiendo que la distancia que media de su vértice a su foco es de 20 mm. Obtén su directriz. Traza sus dos tangentes que forman 45º con su eje de simetría, obteniendo los dos puntos de tangencia. 9 Francisco Irles Mas.
TEMA 7 GEOMETRÍA ANALÍTICA
Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una
Geometria Analítica Laboratorio #1 Sistemas de Coordenadas
1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.
TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS
TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS Los siguientes ejercicios tienen el propósito de hacer que el estudiante use las construcciones geométricas fundamentales y además adquiera práctica
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta
PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS
Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 OPCIÓN A
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 INSTRUCCIONES GENERALES La prueba consiste
Sistema Diédrico (I). Verdadera magnitud. Abatimientos
Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas
TEMA 5: CIRCUNFERENCIA Y CÍRCULO
TEMA 5: CIRCUNFERENCIA Y CÍRCULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. LA CIRCUNFERENCIA Y EL CÍRCULO... 1 3. MEDICIÓN DE ÁNGULOS... 3 4. ÁNGULOS EN
Caracterización geométrica
Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
CRITERIOS DE VALORACIÓN
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
Capítulo II. Movimiento plano. Capítulo II Movimiento plano
inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González
Aplicaciones de vectores
Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del
I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós
I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA 1 1.INTRODUCCIÓN Los sistemas de representación en perspectiva, tienen como objetivo
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas
B23 Curvas cónicas Curvas cónicas
Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección
KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones
KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación
Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)
Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es
Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano.
CURVAS CÓNICAS Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. Secciones de un cono Supongamos un cono de revolución de dos ramas; según
ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16
Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso
GEOMETRÍA CON LA CLASSPAD 300
8. GEOMETRÍA CON LA CLASSPAD 300 LA APLICACIÓN GEOMETRÍA Para acceder a la aplicación para trabajar con distintas construcciones geométricas bastará con pulsar el icono correspondiente a Geometry en el
GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:
GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas
CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.
ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso
Qué son los cuerpos geométricos?
Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
Tema 8: Intersección de superficies. Aplicaciones al dibujo técnico.
Tema 8: Intersección de superficies. plicaciones al dibujo técnico. Consideraciones generales. El proceso para obtener la intersección de dos superficies S y S2, se desarrolla como sigue (figura ):. Por
Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)
Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb
ESTUDIO GRÁFICO DE LA ELIPSE.
Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO
PRUEBA DE EXAMEN DELINEANTE
PRUEBA DE EXAMEN DELINEANTE RESPUESTAS: 1.- Cúal es la unidad de medida en planos AutoCAD? a) Kilómetro. b) Metro. c) Centímetro. 2.- Qué se debe reflejar en los planos de Construcción? a) Vistas superiores
EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos
EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades
VECTORES. Abel Moreno Lorente. February 3, 2015
VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector
Vectores en el espacio
Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Tema 1.- Cónicas y Cuádricas.
Ingenierías: Aeroespacial, Civil y Química. Matemáticas I. 2010-2011. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Tema 1.- Cónicas y Cuádricas. 1.1.-
LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el
LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,
Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:
Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo
RECTAS Y PLANOS EN EL ESPACIO
UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen
Geometría UNIDAD DIDACTICA No. 11 FIGURAS CURVAS PARTICULARES
Geometría UNIDAD DIDACTICA No. 11 FIGURAS CURVAS PARTICULARES 1. Descripción: Con esta unidad esperamos que el estudiante Conceptualice, identifique, reconozca y pueda trazar con exactitud y usando el
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
Sistemas de vectores deslizantes
Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Vectores no colineales.
Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
TEMA 1: DISEÑO Y DIBUJO DE OBJETOS.
TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. Francisco Raposo Tecnología 3ºESO 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención
TEMA 8: TRAZADOS GEOMÉTRICOS
EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor
A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.
Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos a dos; tiene dos ejes
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
22. CURVAS CÓNICAS-ELIPSE
22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 0 Lic. Manuel
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.
REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F
Análisis de componentes principales
Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los
Clave: 107-5-V-2-2013
Clave: 107-5-V-2-2013 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave de Examen: 107-5-V-2-2013 Curso: Matemática Intermedia 1 Semestre: Segundo Código del
Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz
1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
GEOMETRÍA DEL ESPACIO EUCLÍDEO
CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES
LA CIRCUNFERENCIA EN EL PLANO CARTESIANO
LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE
TIPOS DE RESTRICCIONES
RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
22 CURVAS CÓNICAS- HIPÉRBOLAS
22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica. 22.2 Focos y directrices.
Reloj de Sol analemático.
Reloj de Sol analemático. IES de Llerena Curso 20122013 Juan Guerra Bermejo Un reloj de sol analemático es un reloj de sol horizontal dibujado en el suelo en el que el gnomon es perpendicular a éste. El
4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.
Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y
Dibujo Técnico Curvas cónicas
23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Tema 1: Cuerpos geométricos. Aplicaciones
Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:
TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)
TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de
GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría
VECTORES EN EL PLANO
VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
5 Geometría analítica plana
Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles
Tolerancias geométricas
PRIMER CURSO DE INGENIERÍA TÉCNICA INDUSTRIAL. ELECTRÓNICA Grupos A y B Asignatura: EXPRESIÓN GRÁFICA Y DISEÑO ASISTIDO POR ORDENADOR Tolerancias geométricas Norma UNE 1121-1:1991 1 Significado de las
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)
1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso
Parcial I Cálculo Vectorial
Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
- A3, Bl - B2 -B3, Cl - C2.
UNVERSDADES PUBLCAS DE LA COMUNDAD DE MADRD PRUEBASDEACCESOA ESTUDOSUNVERSTAROS(LOGSE) Curso2007-2008 MATERA: DBUJO TÉCNCO 11 NSTRUCCONES GENERALES La prueba consiste en la realización de cinco ejercicios
Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas
Cónicas Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas Eres un arquitecto y tu trabajo es construir una letrina según las normas higiénicas, para ayudar a mejorar la salud
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco