PROGRAMA DE CONTROL DE CALIDAD

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROGRAMA DE CONTROL DE CALIDAD"

Transcripción

1 WORK PAPER # 1 PROGRAMA DE CONTROL DE CALIDAD Nro. DE PROCEDIMIENTO: AC - PRO 01 Nro. DE HOJAS: 6 ELABORÓ: Ing. Víctor A. Laredo Antezana CÓDIGO: TÍTULO WORK PAPER: LO BÁSICO DE MATLAB DPTO: UDABOL LA PAZ CENTRAL DESTINADO A: X DOCENTES ESTUDIANTES ADMINISTRATIVOS OTROS OBSERVACIONES: Ejecución de la práctica del Work Paper en Laboratorio. FECHA DE DIFUSIÓN: 22 de Agosto de 2005 FECHA DE ENTREGA: 25 de Agosto de

2 LO BÁSICO DE Matriz Laboratory (MATLAB) VARIABLES Y EXPRESIONES MATRICIALES Una variable es un nombre que se da a una entidad numérica, que puede ser una matriz, un vector o un escalar. El valor de esa variable, e incluso el tipo de entidad numérica que representa, puede cambiar a lo largo de una sesión de MATLAB o a lo largo de la ejecución de un programa. La forma más normal de cambiar el valor de una variable es colocándola a la izquierda del operador de asignación (=). Una expresión de MATLAB puede definirse de la siguiente manera: >>variable = expresión VECTORES Un vector de celdas es un vector cuyos elementos son cada uno de ellos una variable de tipo cualquiera. En un arreglo ordinario todos sus elementos son números o cadenas de caracteres. Inicie creando vectores; ingrese cada elemento del vector (separado por un espacio) entre corchetes e iguale a una variable de la siguiente manera: >>vector = [ ] Si se desea crear un vector con 6 elementos espaciados por incrementos de 2 a partir de cero ingrese: >>a = 0:2:10 a = Puede realizar operaciones con vectores por ejemplo: >>x = [ ] f = x + a f = Se debe tomar en cuenta vectores de la misma longitud. La resta de dos vectores se puede realizar de la misma manera. FUNCIONES MatLab dispone de diversas funciones estándar, donde cada una de ella cumple una tarea especí fica, funciones estándar como sin, cos, log, exp,sqrt entre otras. 2

3 Es también común usar constantes como pi ( π = ) e i o j para representar la raí z cuadrada de -1. Ejemplo: >>f = sin(pi/4) >>f = Para determinar el uso de cualquier función ingrese el comando help [nombre de función] en la ventana de comandos de MatLab. MATRICES La creación de matrices se realiza de la misma manera que los vectores, excepto que cada fila de elementos se separa por un punto y coma (;) o por retorno de carro: Ejemplo (matriz de tres filas y tres columnas): >>m = [ ; ; ] m = MATLAB puede operar con matrices por medio de operadores y por medio de funciones. Los operadores matriciales de MATLAB son los siguientes: + adición o suma sustracción o resta * multiplicación ' traspuesta ^ potenciación \ división-izquierda / división-derecha.* producto elemento a elemento./ y.\ división elemento a elemento.^ elevar a una potencia elemento a elemento Estos operadores se aplican también a las variables o valores escalares, aunque con algunas diferencias. Todos estos operadores son coherentes con las correspondientes operaciones matriciales: no se puede por ejemplo sumar matrices que no sean del mismo tamaño. Si los operadores no se usan de modo correcto se obtiene un mensaje de error. Considérese el siguiente ejemplo: >> transp = m' transp =

4 Cabe hacer notar que si se obtiene la transpuesta de una matriz compleja, el resultado hubiese dado el complejo conjugado de la matriz transpuesta. Se puede por ejemplo realizar multiplicación de elemento a elemento utilizando los operadores matriciales (*, ^, \ y /) de la matriz de la siguiente manera: >> E = [1 2;3 4] E = >> F = [2 3;4 5] F = >> P = E.*F P = Si se desea elevar al cubo cada elemento de la matriz: >> F = [2 3;4 5].^3 F = GRAFICACIÓN MATLAB utiliza un tipo especial de ventanas para realizar las operaciones gráficas. Ciertos comandos abren una ventana nueva y otros dibujan sobre la ventana activa, bien sustituyendo lo que hubiera en ella, bien añadiendo nuevos elementos gráficos a un dibujo anterior. MATLAB dispone de cuatro funciones básicas para crear gráficos 2-D. Estas funciones se diferencian principalmente por el tipo de escala que utilizan en los ejes de abscisas y de ordenadas. Estas cuatro funciones son las siguientes: o plot() crea un gráfico a partir de vectores y/o columnas de matrices, con escalas lineales sobre ambos ejes o loglog() con escala logarí tmica en ambos ejes o semilogx() escala lineal en el eje de ordenadas y logarí tmica en el eje de abscisas o semilogy() con escala lineal en el eje de abscisas y logarí tmica en el eje de ordenadas Existen además otras funciones orientadas a añadir tí tulos al gráfico, a cada uno de los ejes, a dibujar una cuadrí cula auxiliar, a introducir texto, etc. o title('tí tulo') añade un tí tulo al dibujo 4

5 o xlabel añade una etiqueta al eje de abscisas. Con xlabel off desaparece o ylabel añade una etiqueta al eje de ordenadas. Con ylabel off desaparece o text(x,y,'texto') introduce 'texto' en el lugar especificado por las coordenadas x e y. Si x e y son vectores, el texto se repite por cada par de elementos. o gtext('texto') introduce texto con ayuda del ratón: el cursor cambia de forma y se espera un clic para introducir el texto en esa posición o legend() define rótulos para las distintas lí neas o ejes utilizados en la figura. Para más detalle, consultar el Help o grid activa la inclusión de una cuadrí cula en el dibujo. Con grid off desaparece la cuadrí cula Ejemplo: graficar una onda senoidal en función del tiempo. Primero se forma un vector de tiempo (en punto y coma después de cada sentencia le dice a MatLab que no se requiere ver todos los vallores) y luego se calcula el valor de la función en cada instante de tiempo. >> t = 0:0.25:6; >> y = sin(t); >> plot(t,y) >> grid La gráfica correspondiente aproximadamente algo más de un periodo de la onda senoidal:

6 PRÁCTICA WORK PAPER No. 1 LABORATORIO P- 1. Dadas las funciones variables complejas: A = i B = i C = i Realice las siguientes operaciones complejas: F = A + B F = A * B C F = P- 2. Dada las siguientes matrices: ( A C)* B C ( ) + B A A = x = Hallar la expresión resultante de las operaciones de matrices siguientes: F = A * x F = 5 * (A/x) F = A T * (x * x T ) P- 3. Aplicando la transformada de Laplace resolver la ecuación diferencial siguiente: 12d 3 3 V 12d V dv V = 6 di + 16I considere todas las condiciones iniciales igual a cero. P- 4. Al sistema siguiente: V(t) + R 5 i(t) - - se aplica una señal de entrada v(t) = 4 sen(t) [v], obtener la señal de salida i(t) [A] si el valor del elemento resistivo R = 5 [ ]. Grafique la salida respectiva utilizando Matlab. - Si la señal de entrada es de tipo exponencial v(t) = 2 e 2t [v], graficar la señal de salida. 6

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica Programación TE243 Segundo semestre de 2014 Ing: José Norbey Sánchez Grupo: UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica 2. Gráficos en dos y tres dimensiones: 2.1 Gráficos en dos

Más detalles

http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab

http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab 1 de 6 04/11/2010 0:58 La Estética de los Gráficos Más de un Gráfico en una ventana (Subplot) Cambiando los ejes Agregar Texto Gráficos en Matlab Una de las funciones más importantes en Matlab es la función

Más detalles

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para

Más detalles

1) Como declarar una matriz o un vector.

1) Como declarar una matriz o un vector. MATLAB es un programa que integra matemáticas computacionales y visualización para resolver problemas numéricos basándose en arreglos de matrices y vectores. Esta herramienta posee infinidad de aplicaciones,

Más detalles

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control 1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática

Más detalles

Funciones de graficación en MATLAB. Antes de comenzar, se hará mención a dos herramientas que permitirán trabajar más eficientemente con Matlab.

Funciones de graficación en MATLAB. Antes de comenzar, se hará mención a dos herramientas que permitirán trabajar más eficientemente con Matlab. HERRAMIENTAS COMPUTACIONALES 1 EN CIENCIAS EXACTAS Funciones de graficación en MATLAB Antes de comenzar, se hará mención a dos herramientas que permitirán trabajar más eficientemente con Matlab. La primera

Más detalles

Los componentes individuales

Los componentes individuales MatLab Los componentes individuales La ventana de comandos (Command Window), La ventana histórica de comandos (Command History Browser), El espacio de trabajo (Workspace Browser), La plataforma de lanzamiento

Más detalles

GUÍA PARA EL USO DE MATLAB PARTE 1

GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA DE USUARIO BÁSICO PARA MATLAB El programa Matlab MatLab (MATrix LABoratory) es un programa para realizar cálculos numéricos con vectores y matrices. Una de las capacidades

Más detalles

Formatos y Operadores

Formatos y Operadores Formatos y Operadores Formatos numéricos format short long hex bank short e short g long e long g rational coma fija con 4 decimales (defecto) coma fija con 15 decimales cifras hexadecimales números con

Más detalles

Introducción a Matlab.

Introducción a Matlab. Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación

Más detalles

Álgebra Lineal Tutorial básico de MATLAB

Álgebra Lineal Tutorial básico de MATLAB Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de

Más detalles

Práctica 1: Introducción al entorno de trabajo de MATLAB *

Práctica 1: Introducción al entorno de trabajo de MATLAB * Práctica 1: Introducción al entorno de trabajo de MATLAB * 1. Introducción MATLAB constituye actualmente un estándar dentro de las herramientas del análisis numérico, tanto por su gran capacidad y sencillez

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

Características básicas de Matlab

Características básicas de Matlab Práctica 1: Introducción a Matlab Objetivo: Conocer las herramientas básicas que ofrece Matlab: Matrices y vectores. Programación básica en Matlab: funciones y guiones (scripts). Representación bidimensional

Más detalles

Introducción a MATLAB/ OCTAVE. Fundamentos Físicos de la Informática, 2006

Introducción a MATLAB/ OCTAVE. Fundamentos Físicos de la Informática, 2006 Introducción a MATLAB/ OCTAVE Fundamentos Físicos de la Informática, 006 Matlab/ Octave Matlab es un lenguaje de programación orientado al cálculo numérico, principalmente matricial Octave es un programa

Más detalles

Tema 12: Graficación 2D.

Tema 12: Graficación 2D. Tema 12: Graficación 2D. Gráficos cartesianos a partir de puntos (plot), gráficos logarítmicos (semilogx, semilogy, loglog), opciones de graficación (colores, trazos y símbolos), control de los ejes (axis),

Más detalles

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL 2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 2: INTRODUCCIÓN A MATLAB. CARACTERÍSTICAS BÁSICAS DE MATLAB Funcionalidades

Más detalles

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013. Práctica 1

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013. Práctica 1 PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013 Prácticas Matlab Práctica 1 Objetivos Iniciarse en el uso de Matlab. Conocer comandos básicos de Matlab para realizar cálculos con números reales y números

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Algorítmica y Lenguajes de Programación. MATLAB (i)

Algorítmica y Lenguajes de Programación. MATLAB (i) Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.

Más detalles

MATLAB en 30 minutos

MATLAB en 30 minutos MATLAB en 30 minutos Rafael Collantes. Octubre 200. Introducción MATLAB nació como un programa para cálculo matricial, pero en la actualidad MATLAB es un sistema que permite no solamente realizar todo

Más detalles

LENGUAJE DE PROGRAMACIÓN SCILAB

LENGUAJE DE PROGRAMACIÓN SCILAB LENGUAJE DE PROGRAMACIÓN SCILAB CONTENIDO 1. Operaciones básicas. Suma. Resta. Producto. División. Potencia. Raíz cuadrada. Números complejos 2. Funciones. Exponencial. Logarítmica. Trigonométricas. Evaluación

Más detalles

Dibujamos estos puntos en el espacio, y no cerramos la figura

Dibujamos estos puntos en el espacio, y no cerramos la figura PRÁCTICA SÉPTIMA: PROYECCIÓN ORTOGONAL. INVERSA DE MOORE-PENROSE 1. Proyección de un vector sobre un subespacio En este apartado vamos a recordar como se proyecta un vector v R m sobre un subespacio vectorial

Más detalles

Tema 4: Empezando a trabajar con ficheros.m

Tema 4: Empezando a trabajar con ficheros.m Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos

Más detalles

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

Curso de Excel. Empresarial y Finanzas SESIÓN 5: ÍNDICE EXCEL. Documento propiedad de J. David Moreno Universidad Carlos III de Madrid

Curso de Excel. Empresarial y Finanzas SESIÓN 5: ÍNDICE EXCEL. Documento propiedad de J. David Moreno Universidad Carlos III de Madrid Curso de Excel Empresarial y Finanzas SESIÓN 5: OPTIMIZACIÓN A TRAVÉS DE EXCEL J. David Moreno ÍNDICE 1. Operaciones con matrices 1. Aplicación: ió Cálculo l de la Rentabilidad d de una cartera 2. Aplicación:

Más detalles

Procesado de datos con MATLAB

Procesado de datos con MATLAB Procesado de datos con MATLAB 1. Introducción En este tutorial 1 pretendemos cubrir los comandos básicos de MATLAB necesarios para introducirnos en el manejo de datos. Para más información sobre los comandos

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Fundamentos de Informática - Ms. Excel (3) 2011

Fundamentos de Informática - Ms. Excel (3) 2011 Tabla de contenidos Resolución de sistemas de ecuaciones usando Ms. Excel... Introducción... Ecuación de una incógnita... 3 Método gráfico... 3 Herramienta Buscar objetivo... 4 Herramienta Solver... 8

Más detalles

ELEMENTOS BÁSICOS DE MATHEMATICA

ELEMENTOS BÁSICOS DE MATHEMATICA CAPÍTULO 1 ELEMENTOS BÁSICOS DE MATHEMATICA 1.- COMENZANDO A TRABAJAR 2.- OPERADORES MATEMÁTICOS 3.- REPRESTACIÓN DE VALORES NUMÉRICOS 4.- VARIABLES CAPÍTULO 1 7 8 1.- COMENZANDO A TRABAJAR Una vez iniciado

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica Programación TE243 Segundo semestre de 2007 Ing: José Norbey Sánchez Grupo: 02 UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica 1. Gráficos en dos y tres dimensiones: 1.1 Gráficos en

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

El elemento estructural y operativo fundamental de una hoja de cálculo es la Celda

El elemento estructural y operativo fundamental de una hoja de cálculo es la Celda BREVES NOTAS SOBRE EXCEL Estas notas sólo pretenden ser una referencia muy breve para fijar algunos conceptos básicos que se utilizan con gran frecuencia por cualquier usuario (científico) de EXCEL. Hacen

Más detalles

Tema 3: Vectores y matrices. Conceptos básicos

Tema 3: Vectores y matrices. Conceptos básicos Tema : Vectores matrices. Conceptos básicos 1. Definición Matlab está fundamentalmente orientado al trabajo el cálculo matricial. Veremos que las operaciones están definidas para el trabajo con este tipo

Más detalles

Introducción a MATLAB

Introducción a MATLAB Introducción a MATLAB Juan-Antonio Infante Rey José María En estas breves notas, desarrolladas por Juan-Antonio Infante y José María Rey, profesores del Departamento de Matemática Aplicada de la Universidad

Más detalles

Prácticas de programación en C con MinGW Developer Studio

Prácticas de programación en C con MinGW Developer Studio Prácticas de programación en C con MinGW Developer Studio MinGW Developer Studio es un entorno de desarrollo integrado (IDE) para la programación en lenguaje C gratuito y cómodo de usar. Se ejecuta en

Más detalles

Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE

Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE Last modified: Tue Mar 13 09:42:53 ART 2007 Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE El objetivo de esta práctica es proveer al alumno con una breve guía sobre la utilización

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Complemento Microsoft Mathematics

Complemento Microsoft Mathematics Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones

Más detalles

Operación de Microsoft Excel

Operación de Microsoft Excel Representación gráfica de datos Generalidades Excel puede crear gráficos a partir de datos previamente seleccionados en una hoja de cálculo. El usuario puede incrustar un gráfico en una hoja de cálculo,

Más detalles

Curso de Postgrado Introducción al Trabajo con Matlab. Profesor: Ramón Quiza Sardiñas E-Mail: quiza@umcc.cu. Marzo / 2006

Curso de Postgrado Introducción al Trabajo con Matlab. Profesor: Ramón Quiza Sardiñas E-Mail: quiza@umcc.cu. Marzo / 2006 Universidad de Matanzas Camilo Cienfuegos Facultad de Ingenierías Química y Mecánica Departamento de Ingeniería Mecánica Curso de Postgrado Introducción al Trabajo con Matlab Profesor: Ramón Quiza Sardiñas

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

Guía de uso de MATLAB

Guía de uso de MATLAB Guía de uso de MATLAB Se necesitan unos pocos comandos básicos para empezar a utilizar MATLAB. Esta pequeña guía explica dichos comandos fundamentales. Habrá que definir vectores y matrices para poder

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

2. INTRODUCCIÓN A MATHCAD. El principal programa utilizado para la realización de este trabajo se llama Mathcad 2000

2. INTRODUCCIÓN A MATHCAD. El principal programa utilizado para la realización de este trabajo se llama Mathcad 2000 2. INTRODUCCIÓN A MATHCAD 2.1 Mathcad El principal programa utilizado para la realización de este trabajo se llama Mathcad 2000 Professional. Este software, diseñado en ambiente Windows, es una combinación

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Introducción a MATLAB y SIMULINK para Control

Introducción a MATLAB y SIMULINK para Control Introducción a MATLAB y SIMULINK para Control Virginia Mazzone INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL http://iaci.unq.edu.ar Av. Calchaqui 58, Fcio. Varela Buenos Aires, Argentina Índice Introducción

Más detalles

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB 1er Laboratorio de MN II 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB Para salir de MATLAB se escribe quit ó exit. Al terminar una sesión de MATLAB, las variables en el espacio de trabajo se borran.

Más detalles

Comenzando con MATLAB

Comenzando con MATLAB ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.

Más detalles

Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS

Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS ESTIMACIÓN DE UN MODELO DE REGRESIÓN LINEAL CON EXCEL La Herramienta para análisis Regresión

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES DERIVE FUNCIONES ELEMENTALES REPRESENTACIÓN GRÁFICA DE FUNCIONES Cómo introducir la expresión analítica de una función Para introducir una función pulsa el icono y escribe su expresión. Una función se

Más detalles

Esta y todas las demás prácticas están pensadas para ser trabajadas delante de

Esta y todas las demás prácticas están pensadas para ser trabajadas delante de PRÁCTICA 1 Vectores y MATLAB Esta y todas las demás prácticas están pensadas para ser trabajadas delante de un ordenador con MATLAB instalado, y no para ser leídas como una novela. En vez de eso, cada

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Herramientas computacionales para la matemática MATLAB: Arreglos

Herramientas computacionales para la matemática MATLAB: Arreglos Herramientas computacionales para la matemática MATLAB: Arreglos Verónica Borja Macías Marzo 2013 1 Arreglos Un arreglo es una estructura que MATLAB utiliza para almacenar y manipular datos. Es una lista

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Práctica N 2 Simulink como herramienta para resolver ecuaciones diferenciales

Práctica N 2 Simulink como herramienta para resolver ecuaciones diferenciales Universidad Simón Bolívar Ingeniería Electrónica SEÑALES Y SISTEMAS I Práctica N Simulink como herramienta para resolver ecuaciones diferenciales Preparación Revisar el help que sobre Simulink tiene Matlab

Más detalles

Gráficos. Informática aplicada al medio ambiente curso 2010/2011

Gráficos. Informática aplicada al medio ambiente curso 2010/2011 Gráficos Informática aplicada al medio ambiente curso 2010/2011 Gráficos en Matlab Comando básico: plot(x1, y1, x2, y2, x3, y3,..., 'opciones') X e Y: Vectores de la misma longitud Opciones: Color, estilo,

Más detalles

Práctica 3: Funciones

Práctica 3: Funciones Fonaments d Informàtica 1r curs d Enginyeria Industrial Práctica 3: Funciones Objetivos de la práctica En esta práctica estudiaremos cómo podemos aumentar la funcionalidad del lenguaje MATLAB para nuestras

Más detalles

OPERACIONES MATEMÁTICAS CON MATRICES. Vicerrectoria Administrativa

OPERACIONES MATEMÁTICAS CON MATRICES. Vicerrectoria Administrativa OPERACIONES MATEMÁTICAS CON MATRICES Vicerrectoria Administrativa SUMA Y RESTA La suma y resta de matrices o vectores, se realiza con elementos de la misma dimensión y elemento a elemento (A11 + B11) +

Más detalles

PRÁCTICA 2: MODELADO DE SISTEMAS

PRÁCTICA 2: MODELADO DE SISTEMAS . PRÁCTICA : MODELADO DE SISTEMAS. INTRODUCCIÓN Esta práctica está dedicada al modelado de sistemas. En primer lugar se describen las técnicas de representación basadas en el modelo de estado y posteriormente

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

MATLAB: Introducción al procesamiento de imágenes

MATLAB: Introducción al procesamiento de imágenes MATLAB: Introducción al procesamiento de imágenes Visión por Computador Esther de Ves Cuenca Representación de imágenes en MATLAB Matlab almacena las imágenes como vectores bidimensionales (matrices),

Más detalles

5ª Práctica. Matlab página 1

5ª Práctica. Matlab página 1 5ª Práctica. Matlab página PROGRAMACIÓN EN MATLAB PRÁCTICA 05 GRÁFICOS EN MATLAB 2D Y 3D LECTURA DE FICHEROS ENTRADA DE PUNTOS CON EL RATÓN EJERCICIO. GRÁFICOS EN MATLAB BIDIMENSIONALES... EJERCICIO. UTILIZACIÓN

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Tema 7: Programación con Matlab

Tema 7: Programación con Matlab Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

Introducción a la Programación en MATLAB

Introducción a la Programación en MATLAB Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q APLICACIONES DE LAS MATRICES El presente estudio se originó como respuesta a la ayuda que me pidió mi nieto mayor, de 7 años, mientras hacía su curso en un colegio de Brisbane, Australia, a la fecha de

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

Trabajo: DEMO: 3-D plots. Informática aplicada á problemas químicos.

Trabajo: DEMO: 3-D plots. Informática aplicada á problemas químicos. Trabajo: DEMO: 3-D plots. Informática aplicada á problemas químicos. Héctor Miguéns Moares. D.N.I.: 53486401 Q Esteban Suárez Picado. D.N.I.: 47380753 V DEMO: 3-D Plots: Introducción: En este trabajo manejaremos

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales.

En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales. Comandos básicos En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales.» x=2+3 x = 5 Si no se asigna el resultado a ninguna

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio 2013

Opción A Ejercicio 1 opción A, modelo Junio 2013 IES Fco Ayala de Granada Junio de 01 (Modelo Específico o Colisión) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 m Sea g la función definida por g() para n. ( - n)

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

Herramientas computacionales para la matemática MATLAB: Scripts

Herramientas computacionales para la matemática MATLAB: Scripts Herramientas computacionales para la matemática MATLAB: Scripts Verónica Borja Macías Marzo 2012 1 Scripts Hasta ahora los comandos MATLAB que hemos visto se ejecutaban en Ia Ventana de Comandos. Aunque

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Fórmulas y funciones

Fórmulas y funciones 05... Fórmulas y funciones En este tema vamos a profundizar en el manejo de funciones ya definidas por Excel, con el objetivo de agilizar la creación de hojas de cálculo, estudiando la sintaxis de éstas

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

3_formato I. NOTA: al pegar unas celdas sobre otras no vacías, se borrará el contenido de estas últimas.

3_formato I. NOTA: al pegar unas celdas sobre otras no vacías, se borrará el contenido de estas últimas. 3. Luego se seleccionan las celdas donde se quiere que se sitúen las celdas cortadas. No hace falta seleccionar el rango completo sobre el que se va a pegar, ya que si se selecciona una única celda, Calc

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. NÚMEROS COMPLEJOS. INTRO. ( I ) Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. Si bien esto no era un problema

Más detalles