INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER"

Transcripción

1 INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática I PROGRAMA: S3C Lima-Perú

2 SESION 1 SISTEMAS DE NUMERACION DEFINICION : Es un conjunto de reglas y principios que nos van a servir para una buena lectura y escritura de los números. BASE DE UN SISTEMA DE NUMERACIÓN: Es el número de unidades de un orden cualquiera, necesarios para formar una unidad del orden inmediato superior. La base de un sistema de numeración es un número entero positivo y mayor que uno. SISTEMA DECIMAL: Su principio fundamental es: diez unidades de un orden cualquiera, forman una unidad del orden inmediato superior. OBSERVACIONES: 1. En todo sistema de numeración se utiliza la cifra cero (0). 2. En base n se utilizan n cifras 3. La mayor cifras disponible es la base menos uno. 4. En los sistemas de numeración mayores que el de base diez, se utilizan los siguientes convencionalismos: = 10 ; = 11 ; = 12 PRINCIPALES SISTEMAS DE NUMERACIÓN EJERCICIOS 1 Base (10) : 24, 568, 8347, etc. Base (2) : 10 (2) ; 110 (2) ; 1010 (2) Base (5) : 13 (5) ; 214 (5) ; 423 (5) Base (9) : 234 (9) ; 357 (9) ; 876 (9) BASE SISTEMA CIFRAS DISPONIBLES 2 Binario 0,1 3 Ternario 0,1,2 4 Cuaternario 0,1,2,3 5 Quinario 0,1,2,3,4 6 Senario 0,1,2,3,4,5 7 Heptal 0,1,2,3,4,5,6 8 Octal 0,1,2,3,4,5,6,7 9 Nonario 0,1,2,3,...,7,8 10 Decimal 0,1,2...,7,8,9 11 Undecimal 0,1,2,...,8,9, 12 Duodecimal 0,1,2,...,, SESION 2 OPERACIONES ARITMETICAS CONVERSIÓN DE SISTEMAS Primer caso.- De un sistema de base n al sistema decimal. Ejemplo: Convertir 425 (6) al sistema decimal. 425 (6) = 4 x x (6) = 161 Segundo caso.- Del sistema decimal a un sistema de base n. Ejemplo: Convertir 418 al sistema quinario. Luego: 418 = 3133 (5) Tercer caso.- De un sistema de base n a otro de base m donde n y m 10 y m Ejemplo: Convertir 251 (7) al sistema de base 4 A base 10: 251 (7) = 2x x (7) = 134 A base 4: Luego: 251 (7) = 2012 (4) Convertir: (2) al sistema de base (12) al sistema decimal 3. 5 (12) al sistema decimal (5) al sistema nonario (8) al sistema binario al sistema undecimal EJERCICIOS 2 n

3 SESION 3 ENUNCIADO: Se denomina así a toda frase u oración. Ejemplo: 1. Qué estudias en la Universidad? 2. Alcánzame la toalla 3. 2x+3=11 4. Madrid es la capital de España. LOGICA PROPOSICIONAL PROPOSICIÓN: Es un enunciado que tiene la propiedad de ser verdadera (v) o falsa (f), pero nunca verdadera y falsa simultáneamente. Las proposiciones se denotan con letras minúsculas tales como: p, q, r, s, t,... a las que se les denomina variables proposicionales. Ejemplos: 1. César Vallejo nació en París (f) < 10-3 (v) 3. El número 1331 es divisible por 11 (v) 4. Todos los hombres no son mortales (f) LAS PROPOSICIONES SIMPLES Y COMPUESTAS 1. Proposiciones Simples: Llamadas también proposiciones atómicas o elementales, son aquellos enunciados que tienen un solo sujeto y un solo predicado. 2. Proposiciones Compuestas: Llamadas también proposiciones moleculares o coligativas, son aquellas que están constituidas por dos o mas proposiciones simples. SESION 4 FUNCIONES VERITATIVAS LEYES DE LA LOGICA PROPOSICIONAL 1. CONJUNCIÓN ( ).- Representa al conectivo y, es verdadera cuando las dos proposiciones p y q son verdaderas, en cualquier otro caso es falsa. 2. DISYUNCIÓN INCLUSIVA (v).- Representa al conectivo o, es verdadera si al menos una de las proposiciones componentes es verdadera, resultando falsa solo cuando las dos son falsas. 3. DISYUNCIÓN EXCLUSIVA ( ).- Representa al conectivo o en su sentido excluyente, es verdadera cuando solamente una de las proposiciones es verdadera y no las dos, resultando falsa en otros casos. 4. NEGACIÓN (~).- El valor de la negación de un enunciado es siempre opuesto al valor de verdad del enunciado. 5. LA CONDICIONAL ( ).- Representa al conectivo si...entonces, es falsa solamente cuando el antecedente es verdadero y el consecuente es falso, siendo verdadera en todos los demás casos. 6. LA BICONDICIONAL ( ).- Representa al conectivo si y solo si, es verdadera cuando las proposiciones componentes tienen el mimo valor de verdad, en otros casos es falsa. SESION 5 DEFINICIÓN: COMPUERTAS LOGICAS Un circuito conmutador es un circuito eléctrico que contiene interruptores para el paso o la interrupción de la corriente. Si designamos por p y q dos interruptores eléctricos que dejan pasar corriente y por p y q dos interruptores eléctricos que no dejan pasar corriente, estos se pueden conectar por un alambre en serie o en paralelo. ESTADO LOGICO INTERRUPTOR LAMPARA V Cerrado Encendida F Abierto Apagada RELACION ENTRE LA LOGICA Y LA INFORMATICA: Existe una íntima relación entre la lógica y la informática, puesto que la lógica constituye el fundamento teórico de la informática, en cuanto comprende mejor las computadoras y su respectiva construcción de lenguajes de programación.

4 Entre sus múltiples aplicaciones, la lógica se aplica a la tecnología. En este campo, la lógica se aplica a la construcción de circuitos lógicos, y entre ellos los circuitos eléctricos, compuertas lógicas, los diagramas de flujo, etc. SESION 6 CIRCUITOS EN SERIE: CIRCUITOS EN SERIE Y EN PARALELO Los circuitos en serie constan de dos o mas interruptores, donde un interruptor esta después de otro y así sucesivamente. El gráfico de un circuito en serie es la representación de una fórmula proposicional conjuntiva, cuya expresión más simple es p y q. p q DOMINIO DE UNA RELACION.- Se llama dominio a todas las primeras componentes de los pares ordenados de la relación. Se denota Dom(R) y se simboliza : Dom (R)= x A / y B, ( X,Y ) R RANGO DE UNA RELACION.- Se llama rango de una relación R de A en B al conjunto de las segundas componentes de los pares ordenados de la relación. Se denota Ran (R) y es simboliza : Ran (R)= y B / x A, ( X,Y ) R EJEMPLO: Hallar el dominio y el rango de las relaciones en A siendo A = 1,2,3,4,5 y, R 1 = (x,y) AxA / x+y = 7 Solución.- p q R 1 = ( 2,5);(3,4);(5,2);(4,3) CIRCUITOS EN PARALELO: Los circuitos en paralelo constan en dos o mas interruptores, donde cada interruptor esta en la otra línea y así sucesivamente. El gráfico de un circuito en paralelo es la representación de una fórmula proposicional disyuntiva,cuya expresión más simple es p o q. SESION 7 RELACIONES p q p v q TEORIA DE CONJUNTOS Definición.- Se llama relación entre los elementos de un conjunto A y los elementos de un conjunto B a todo subconjunto R del producto cartesiano AxB ; esto es, una relación R consiste en lo siguiente : 1.- Un conjunto A ( conjunto de partida ) 2.- Un conjunto B ( conjunto de llegada ) Simbólicamente se denota por: R : A B R A x B Siendo : Dom (R 1) = 2,3,4,5 Ran (R 1) = 2,3,4,5 FUNCIONES Definición.- Es un conjunto de pares ordenados en el que dos pares distintos nunca tienen la misma primera componente es decir : 1.- f AxB 2.- (x,y) f (x,z) f (y=z) EJEMPLO : Sea A = 1,2,3,4 y B = a,b,c,d,e si f es la función: f = (1,a);(2,b);(3,c);(4,c) Solución.- Dom f = 1,2,3,4 Ran f = a,b,c En la función y = f(x) = 3 x 0,4 hallar el dominio y el rango. Solución.- Dom f = 0,4 Ran f = 3

5 Hallar el dominio y rango de la función f(x) = (x-1) (x-9) Solución.- (x-1) (x-9) > 0 ( X-1 0 X-9 0 ) ( X-1 0 X-9 0 ) ( X 1 X 9) ( X 1 X 9 ) (X 9 ) ( X 1) <-,1 9, > = Dom f y = f(x) ( x-1) (x-9) 0 0, > y = f(x) 0, > entonces el rango es : Ran f = 0, > SESION 8 APLICACIONES CON CONJUNTOS Hallar el dominio y rango de las relaciones en A siendo A = 1,2,3,4,5 a.- R = (x,y) AxA / x+y < 4 b.- R = (x,y) AxA / y < 4 c.- R = (x,y) AxA / x 2-2 y d.- R = (x,y) AxA / x-3y = 12 Hallar el rango de la función f(x) = (x+1) x 0,8 Hallar el dominio y rango de la función f(x) = x 2-6x+8 Hallar el dominio y rango de la función f(x) = x 2 +6x+8 SESION 9 RAZONES: RAZONES Y PROPORCIONES Se llama así al resultado de la comparación de dos cantidades.esta comparación se puede hacer de dos modos: 1. Cuando una cantidad excede a la otra, llamada también razón aritmética o por diferencia. Ejemplo: a-b = c a: antecedente b: consecuente c: valor de la razón (diferencia) 2. Cuando una cantidad contiene a otra, llamada también razón geométrica o por división. Ejemplo: a = c b a: antecedente b: consecuente c: valor de la razón (cociente) PROPORCIONES: Dadas cuatro cantidades, si el valor de la razón de las dos primeras es igual al valor de la razón de las otras dos, entonces dichas cuatro cantidades forman una proporción. Las proporciones también pueden aritméticas o geométricas. PROPIEDADES DE LAS PROPORCIONES: Si: EJERCICIOS 9 a = c ; una proporción entonces: se cumple que: b d 1º a + b = c + d b d 2º a - b = c - d b d 3º a = c b+a d+c 3º a = c b-a d-c 5º a + c = a = c b+d b d 5º a - c = a = c b-d b d 1. La diferencia de dos números es 244, y estan en relación de 7 a 3, cúal es el mayor de los números? 2. Lo que cobra y lo que gasta diariamente un individuo suman 60 soles, lo que gasta y lo que cobra esta en relación de 2 a 3, en cuánto tiene que disminuir el gasto diario para que dicha relación sea de 3 a 5? 3. La relación entre dos números es de 11 a 14. Si a uno de ellos se le suma 33 unidades y al otro se le suma 60 entonces ambos resultados serían iguales. Hallar dichos números 4. En una serie de razones equivalentes, los antecedentes son: 2,3,7 y 11. El producto de los consecuentes es Hallar la suma de los consecuentes.

6 5. Los antecedentes de varias razones equivalentes son: 3, 4, 5 6. Si la suma de los dos primeros conecuentes es 28. Hallar los dos últimos. SESION 12 MATRICES DEFINICION : Una matriz es un arreglo rectangular de números reales ordenados en filas o columnas Ejemplo. Sen, Cos, Tg Las matrices se denotan con letras mayúsculas A,B,C... etc. El conjunto de los elementos se denotan con letras minúsculas subindicadas aij, bij, cij...etc. A = aij En general : el elemento aij ocupa la intersección de la i-esima fila y la j-ésima columna. ORDEN DE UNA MATRIZ El orden de una matriz esta dado por el producto del número de filas con el número de columnas. Ejemplo. A= es una matriz de orden 2x3 C- MATRIZ COLUMNA.- Es la matriz que tiene varias filas y una sola columna. -3 G = 1 4 (3X1) D- MATRIZ CERO.- Es la matriz que todos sus elementos son cero K = (3X3) E- MATRIZ CUADRADA.- Es aquella matriz que tiene el mismo numero de filas y columnas A = EJERCICIOS 12 Indicar que tipo de matrices y que orden tienen las siguientes matrices. A = TIPOS DE MATRICES A- MATRIZ RECTANGULAR.- Es la matriz donde el número de filas es diferente al número de columnas A = (2X3) B- MATRIZ FILA.- Es la matriz donde es una sola fila y varias columnas. P = (1X4) B = C = 2-2 k -3 F = 1 7 b G =

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO HRS. DEL CURSO: 48 CLAVE: 314 HRS. POR SEMANA: 4

POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO HRS. DEL CURSO: 48 CLAVE: 314 HRS. POR SEMANA: 4 N- R POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO CATEDRÁTICO: CARRERA: ASIGNATURA Ing. Fernando Robles Gil Sistemas Computacionales Hardware II (Matemáticas Discretas) INICIO

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

UNIDAD I: LÓGICA PROPOSICIONAL

UNIDAD I: LÓGICA PROPOSICIONAL UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

PARTE II LÓGICA COMPUTACIONAL

PARTE II LÓGICA COMPUTACIONAL PARTE II LÓGICA COMPUTACIONAL Lógica de proposiciones INTRODUCCION Teniendo en mente que queremos presentar los sistemas deductivos de la lógica como una herramienta práctica para los informáticos, vamos

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica)

Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Apellidos: No. Estudiante: Nombre: Sección: Conceptos Básicos de Lógica: Lógica es el estudio de como razonar correctamente.

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Artículo adaptado del artículo de Wikipedia Sistema Binario en su versión del 20 de marzo de 2014, por varios autores bajo la Licencia de Documentación

Más detalles

INTRODUCCION A LA LÓGICA DE ENUNCIADOS

INTRODUCCION A LA LÓGICA DE ENUNCIADOS INTRODUCCION A LA LÓGICA DE ENUNCIADOS Carlos S. Chinea 0. Enunciados: Lo fundamental en el lenguaje ordinario, la herramienta para manifestar las ideas, sentimientos, descripción de situaciones diversas,

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES.

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES. TEMA 7: CIRCUITOS DIGITALES 1. INTRODUCCIÓN. La utilización creciente de circuitos digitales ha dado lugar en los últimos tiempos a una revolución sin precedentes en el campo de la tecnología. Basta observar

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Objetivo: Conoce los sistemas de numeración diferentes al decimal Ser capaces de transformar una cifra de un sistema a otro 1 Introducción El sistema de numeración usado de forma

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente:

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente: Como convertir números binarios a decimales y viceversa El sistema binario es un sistema de numeración en el que los números se representan utilizando 0 y 1. Es el que se utiliza en los ordenadores, pues

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

CONTENIDO. 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador.

CONTENIDO. 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador. CONTENIDO 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador. 4. Sistemas numéricos. 4.1 Generalidades. 42 Sistema binario. 4.3 Sistema octal,. 4.4 Sistema decimal. 4.5 Sistema

Más detalles

TECNOLOGÍA 4º ESO. 20 2 Realizando la lectura como indica la flecha 0 10 2 obtenemos: 20 10) =10100 2) 0 5 2 1 2 2 0 1 Lectura

TECNOLOGÍA 4º ESO. 20 2 Realizando la lectura como indica la flecha 0 10 2 obtenemos: 20 10) =10100 2) 0 5 2 1 2 2 0 1 Lectura Ejercicio Nº1 : La electrónica digital trabaja con dos niveles de tensión 0 V ó 5 voltios, equivalentes a 0 y 1, es decir, ausencia de tensión y presencia de tensión. Al trabajar sólo con dos niveles de

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

Tema 1. Representación de la información MME 2012-20131

Tema 1. Representación de la información MME 2012-20131 Tema 1 Representación de la información 1 Índice Unidad 1.- Representación de la información 1. Informática e información 2. Sistema de numeración 3. Representación interna de la información 2 Informática

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza. Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de

Más detalles

Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden

Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden Especificación TEMA 1 formal de problemas Objetivos Revisar los principales conceptos de la lógica de primer orden Entender el concepto de estado de cómputo y cómo se modela con predicados lógicos Familiarizarse

Más detalles

Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas

Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas Matemáticas Básicas para Computación Sesión 7: Compuertas Lógicas Contextualización En esta sesión lograremos identificar y comprobar el funcionamiento de las compuertas lógicas básicas, además podremos

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Realizado por Pablo Yela ---- pablo.yela@gmail.com ---- http://pabloyela.wordpress.com

Realizado por Pablo Yela ---- pablo.yela@gmail.com ---- http://pabloyela.wordpress.com ARITMETICA BINARIA Operaciones básicas con sistema binario Conversión de Decimal a Binario Lo primero que debemos comprender es como convertir números decimales a binarios para realizar este proceso existen

Más detalles

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO EN COMPUTACIÓN E INFORMÁTICA GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I CÓDIGO 50287 Elaborada por

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

Algoritmos. Autor: José Ángel Acosta Rodríguez

Algoritmos. Autor: José Ángel Acosta Rodríguez Autor: 2006 ÍNDICE Página Índice 1 Problema 1. Movimiento de figuras geométricas.2 Problema 2. Conversión decimal a binario....3 Problema 3. Secuencias binarias..4 Problema 4. Conversión a binario a octal...

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html SIMETRÍA Elementos y operaciones de simetría Grupos puntuales de simetría Modelo de repulsión de pares de electrones de la capa de valencia (VSEPR) Simetría de las moléculas Tablas de caracteres http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012 Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal CONVERSIONES DE UN SISTEMA A OTRO Para la realización de conversiones entre números de bases diferentes se efectúan operaciones aritméticas

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

U i n d id d a 3. El Element os á bá i s cos de un programa

U i n d id d a 3. El Element os á bá i s cos de un programa Programación Digital U id d 3 El t bá i Unidad 3. Elementos básicos de un programa 1. Concepto de Programa Es un conjunto de instrucciones (órdenes dadas a la computadora), que producirán la ejecución

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

UNIVERSIDAD BOLIVARIANA DE VENEZUELA

UNIVERSIDAD BOLIVARIANA DE VENEZUELA Introducción: El análisis de la LOGICA DIGITAL precisa la consideración de dos aspectos diferentes: el proceso lógico, que es la base teórica de los computadores, calculadoras, relojes digitales, etc.

Más detalles

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12) SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A.

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A. TEMA II: CONJUNTOS Y RELACIONES DE ORDEN OBJETIVOS GENERALES 1. Hacer que el alumno asimile el concepto de conjunto como la estructura algebraica más simple en la que se ambientarán el resto de las estructuras

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos:

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos: UNIDAD Nº 1: TECNICATURA EN INFORMATICA UNLAR - CHEPES 1.1. INTRODUCCION 1. SISTEMAS DE NUMERACION El mundo del computador es un mundo binario. Por el contrario, el mundo de la información, manejada por

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES Ing. Juan Sacerdoti Facultad de Ingeniería Departamento de Matemática Universidad de Buenos Aires 2002 V 2.01 INDICE 4.- RELACIONES Y FUNCIONES 4.1.- PAR ORDENADO (PO) 4.1.1.- DEFINICIÓN

Más detalles

5.2 Estructuras Algebraicas Introducción

5.2 Estructuras Algebraicas Introducción 5.2 Introducción * Los números naturales: N Al contar objetos se les asigna números: 1, 2, 3,, pasando de un número a su sucesor. La representación en el sistema decimal de números está hecha de tal forma

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

Sistema Binario. Sistema Binario. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1

Sistema Binario. Sistema Binario. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1 Página Historia Página 2 George Boole [85, 864], fue un matemático y filósofo ingles. Inventor del álgebra de Boole, la base de la aritmética computacional moderna. Boole contribuyó con 22 artículos. A

Más detalles

PARTE 3 SISTEMAS DE NUMERACION

PARTE 3 SISTEMAS DE NUMERACION PARTE 3 SISTEMAS DE NUMERACION Cuántos camellos hay?. Para responder a esta pregunta hay que emplear el número. Serán cuarenta? Serán cien? Para llegar al resultado el beduino precisa poner en práctica

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

MLM 1000 - Matemática Discreta

MLM 1000 - Matemática Discreta MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso

Más detalles

Curso Propedéutico. Fundamentos de Matematicas. Para Computacion

Curso Propedéutico. Fundamentos de Matematicas. Para Computacion Instituto Tecnológico de Chilpancingo Academia de Ingeniería en Sistemas computacionales Curso Propedéutico undamentos de Matematicas Para Computacion Para las carreras Ingeniería en Informática, Ingeniería

Más detalles

INSTITUTO TECNOLOGICO DE ORIZABA Matemáticas Discretas

INSTITUTO TECNOLOGICO DE ORIZABA Matemáticas Discretas 2011 INSTITUTO TECNOLOGICO DE ORIZABA INGENIERÍA EN SISTEMAS COMPUTACIONALES Elvia Osorio Barradas 16/08/2011 INTRODUCCION Hoy en día es aceptado que las matemáticas es una creación de la mente humana

Más detalles

Universidad autónoma de Guerrero Unidad Académica de Ingeniería. Eric Rodríguez Peralta. erodriguez@uagro.mx. Sistemas numéricos

Universidad autónoma de Guerrero Unidad Académica de Ingeniería. Eric Rodríguez Peralta. erodriguez@uagro.mx. Sistemas numéricos istemas numéricos Circuitos Lógicos esión : istemas numéricos y códigos istema numérico: Es un sistema que emplea un conjunto determinado de símbolos o dígitos para representar cantidades numéricas. Existen

Más detalles

Estructuras Discretas. César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro

Estructuras Discretas. César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro Estructuras Discretas César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla 1. CONJUNTOS Y CLASES 1

Más detalles

SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA 1 SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS I GUIA DE ESTUDIO

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 3: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi

ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi 3 INTRODUCCIÓN Estas notas han sido elaboradas con el objetivo de ofrecer al ingresante a las carreras de la

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

http://ingenieros.sitio.net

http://ingenieros.sitio.net SISTEMAS DIGITALES Version Inicial: 13-06-05 Modificando 1-1 CONTENIDO CONTENIDO... 1-2 1 SISTEMAS NUMERICOS... 1-3 UNIDAD II 2 ALGEBRA DE BOOLE... 2-22 UNIDAD III 3 FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS...

Más detalles

Sistemas numéricos. Aurelio Sanabria Taller de programación

Sistemas numéricos. Aurelio Sanabria Taller de programación Sistemas numéricos Aurelio Sanabria Taller de programación II semestre, 2015 Sistemas numéricos Son un conjunto de reglas y símbolos que permiten construir representaciones numéricas. Los símbolos son

Más detalles

Fundamentos Matemáticos II Electrónicos Curso 2006-07 2

Fundamentos Matemáticos II Electrónicos Curso 2006-07 2 Tema 2.- MATRICES!ESPACIO VECTORIAL!PRODUCTO DE MATRICES!POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos II Electrónicos Curso 2006-07 1 Un poco de historia Lord Cayley es uno de los

Más detalles