Aritmética finita y análisis de error

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aritmética finita y análisis de error"

Transcripción

1 Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47

2 Contenidos 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 2 / 47

3 Tratamiento matemático de un problema físico En este curso presentaremos los métodos numéricos básicos que resuelven un conjunto de problemas matemáticos clásicos. Los ordenadores son una herramienta necesaria en el uso eficiente de los métodos numéricos. Por lo tanto, veremos como los números, que pueden tener infinitos dígitos, se almacenan en el ordenador, que es un dispositivo finito. Esto nos lleva a tener en cuenta los errores, como definirlos y medirlos. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 3 / 47

4 Sistemas decimal y binario Contenido 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 4 / 47

5 Sistemas decimal y binario Almacenamiento de números Los números se almacenan en los ordenadores en los siguientes formatos Entero Permite el almacenamiento exacto de un conjunto de números enteros En punto flotante Permite el almacenamiento exacto de un conjunto de números enteros un conjunto de números no enteros El formato usado más habitualmente es formato IEEE 754 (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 5 / 47

6 Sistemas decimal y binario Representación en punto flotante: decimal La representación en punto flotante en base 10 de un número real x 0 es donde σ = ±1, el signo, 1 x < 10, la mantisa, e Z, el exponente x = σ x 10 e, El número de dígitos en x es la precisión de la representación. Ejemplo: Para la representación exacta en punto flotante decimal podemos escribir x = = , y entonces que tiene una precisión de 5 dígitos. σ = +1, x = , e = 2. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 6 / 47

7 Sistemas decimal y binario Representación en punto flotante: binaria La representación en punto flotante en base 2 de un número real x 0 es x = σ x 2 e, donde σ = ±1, el signo, (1) 2 x < (10) 2, la mantisa, e Z, el exponente Ejemplo: Si x = ( ) 2 = ( ) entonces σ = +1, x = ( ) 2, e = (4) 10 = (100) 2. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 7 / 47

8 Sistemas decimal y binario Ejemplo Para x = ( ) 2 = ( ) 10 tenemos representación decimal en punto flotante: σ = +1, x = , e = 0, representación binaria en punto flotante: σ = (1) 2, x = (1.0100) 2, e = (2) 10 = (10) 2. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 8 / 47

9 Sistemas decimal y binario Paso del sistema decimal a binario y viceversa En el sistema decimal el número significa: = Los ordenadores usan el sistema binario. Sólo se almacenan 0 y 1. En el sistema binario, los números representan potencias de 2: ( ) 10 = = ( ) 2 Y el paso de binario a decimal es directo: ( ) 2 = = ( ) 10 (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 9 / 47

10 Sistemas decimal y binario Paso del sistema decimal a binario y viceversa Decimal a binario: Parte entera: dividimos sucesivamente por 2. Tomamos el último conciente y los restos, empezando por el último: Cocientes Restos Parte fraccionaria: multiplicamos por 2, restamos la parte entera y repetimos hasta que la parte fraccionaria sea cero. Tomamos las partes enteras: Decimal Entera El resultado es: ( ) 10 = ( ) 2. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 10 / 47

11 Sistemas decimal y binario Ejemplo: representación de enteros con 4 bits Representación Enteros Enteros Enteros Enteros binaria sin signo con signo con signo con signo (Expo.) (m = 4 bits) (signo en 1 er bit) sesgo = 2 m 1 sesgo = 2 m Reservado Reservado (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 11 / 47

12 Contenido Representación de números: la norma IEEE Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 12 / 47

13 Representación de números: la norma IEEE 754 La norma IEEE 754 IEEE significa Institute of Electrical and Electronics Engineers. El estandar IEEE 754 es el de la representación en punto flotante de los numeros en los ordenadores y es el usado por casi todos los procesadores. Formatos básicos Formatos binarios (b = 2) Formatos decimales (b = 10) parámetro binary32 binary64 binary128 decimal64 decimal128 precisión (p) e max e min = 1 e max Además de los formatos básicos exiten los formatos de precisión extendida y de precisión extensible. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 13 / 47

14 Representación de números: la norma IEEE 754 La norma IEEE 754:precision simple PRECISIÓN SIMPLE (32 bits) signo exponente (8 bits) mantisa (23 bits) x = σ (1.a 1 a 2... a 23 ) 2 e Utiliza 32 bits (4 bytes) distribuídos: 1 bit para el signo. 8 bits para el exponente. 23 bits para la mantisa. Tiene una precisión de 24 dígitos binarios. El exponente toma valores en [ 126, 127] con sesgo 127. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 14 / 47

15 Representación de números: la norma IEEE 754 La norma IEEE 754: precision doble PRECISIÓN DOBLE (64 bits) signo exponente (11 bits) mantisa (52 bits) x = σ (1.a 1 a 2... a 52 ) 2 e Utiliza 64 bits (8 bytes) distribuídos: 1 bit para el signo. 11 bits para el exponente. 52 bits para la mantisa. Tiene una precisión de 53 dígitos binarios. El exponente toma valores en [ 1022, 1023] con sesgo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 15 / 47

16 Representación de números: la norma IEEE 754 IEEE 754. Precisión simple El número x = σ (1.a 1 a 2... a 23 ) 2 e, con e [ 126, 127] se almacena usando 32 bits (4 bytes): b 1 b 2... b 9 b b 32 Aquí { 0 si σ = +1, b 1 = 1 si σ = 1. b 2... b 9 para almacenar E = e + 127(> 0), b b 32 para almacenar la parte decimal, m de la mantisa x. El entero parte de x es 1 siempre que x 0 o un número no normalizado. E = 0 0 < E < (255) 10 E = (255) 10 m = 0 0 ( 1) σ 2 E 127 ± m 0 números no normalizados NaN (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 16 / 47

17 Representación de números: la norma IEEE 754 IEEE 754. Doble precisión El número x = σ (1.a 1 a 2... a 52 ) 2 e, with e [ 1022, 1023] se almacena usando 64 bits (8 bytes): b 1 b 2... b 12 b b 64 Aquí { 0 si σ = +1, b 1 = 1 si σ = 1. b 2... b 12 para almacenar E = e (> 0), b b 64 para almacenar la parte decimal, m de la mantisa x. La parte entera de x es 1 siempre que x 0 o un número no normalizado. E = 0 0 < E < (2047) 10 E = (2047) 10 m = 0 0 ( 1) σ 2 E 1023 ± m 0 números no normalizados NaN (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 17 / 47

18 Representación de números: la norma IEEE 754 Ejemplo. De base 10 a binario IEEE 754 Vamos a convertir en base 10 a binario IEEE 754 en precisión simple. Los pasos son: 1 Convertimos la parte entera a base 2: (10) 10 = (1010) 2. 2 Convertimos la parte fraccionaria a base 2: (.25) 10 = (.01) 2. 3 Los sumamos: = Lo escribimos en binario normalizado: Convertimos el 3 añadiéndole el sesgo correspondiente. En este caso 127. Por lo tanto tenemos = 130, que convertimos a binario Escribimos el número en el orden (signo exponente mantisa) Fijarse que el bit escondido 1 no está representado. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 18 / 47

19 Valores especiales Contenido 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 19 / 47

20 Valores especiales Valores especiales Infinito. Aparece cuando se produce un overflow. Valor signo exponente mantisa NaN (Not a Number). Aparece cuando se realiza una operación no válida (por ejemplo 0/0). Valor signo exponente mantisa SNaN QNaN (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 20 / 47

21 Valores especiales Valores especiales Cero. Como se asume que el bit escondido tiene valor 1, no es posible representar el cero con los valores normalizados. Valor signo exponente mantisa Números desnormalizados. El exponente contiene todo ceros. Se asume que el bit escondido es cero y que el valor del exponente es el mínimo posible, es decir (que equivale a 126 en precisión sencilla). Valor signo exponente mantisa n o desnorm n o desnorm (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 21 / 47

22 Valores especiales Ejemplo: número desnormalizado signo exponente mantisa El exponente es el mínimo de precisión sencilla, 126, y su bit escondido es 0. ( ) Este número se corresponde con el número en base 10 ( ) Su precisión es p = 20 Es menor que el R min = (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 22 / 47

23 Exactitud Contenido 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 23 / 47

24 Exactitud Exactitud en punto flotante Queremos medir la exactitud del almacenamiento en punto flotante. Las medidas habituales son: El epsilon de la máquina: Es la diferencia entre 1 y el número siguiente x > 1 que se puede almacenar de forma exacta. El entero más grande: Es el entero más grande M tal que todos los enteros x, donde 0 x M, se almacenan de la misma forma. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 24 / 47

25 Exactitud El epsilon de la máquina: precisión simple El número 1, en formato normalizado en precisión simple, sería σ (1.a 1 a 2... a 22 a 23 ) 2 e +1 ( ) 2 0 cómo hace falta alinear los números para sumarlos, el número ɛ más pequeño que le podemos sumar usando este tipo de almacenamiento es que si escribimos normalizado es es decir, 1 = +1 ( ) 2 0 ɛ = +1 ( ) ɛ = +1 ( ) 2 0 ɛ = +1 ( ) 2 23 ɛ = (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 25 / 47

26 Exactitud El epsilon de la máquina: precisión doble El número 1, en formato normalizado en precisión simple, sería σ (1.a 1 a 2... a 51 a 52 ) 2 e +1 ( ) 2 0 cómo hace falta alinear los números para sumarlos, el número ɛ más pequeño que le podemos sumar usando este tipo de almacenamiento es que si escribimos normalizado es es decir, 1 = +1 ( ) 2 0 ɛ = +1 ( ) ɛ = +1 ( ) 2 0 ɛ = +1 ( ) 2 52 ɛ = (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 26 / 47

27 Exactitud Exactitud en punto flotante: el entero más grande Si n es el número de dígitos binarios en la mantisa, entonce, el entero más grande es M = 2 n porque Todos los enteros x con 0 x (11 }{{}... 1) 2 2 n 1 = 2 n 1 +2 n = 2n = 2n 1, n 1 se pueden almacenar de forma exacta. x = (10 }{{}... 0) 2 2 n = 2 n se puede almacenar de forma exacta. n 1 x = (10 }{{}... 0) 2 2 n + 1 no se puede almacenar de forma exacta. n 1 (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 27 / 47

28 Exactitud El entero más grande: precisión simple Decimal Binario Mantisa Exp Representación almacenado 25 dígitos bits Exacta Exacta Exacta Exacta Exacta M = Exacta Redondeada Exacta Redondeada Exacta (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 28 / 47

29 Exactitud El entero más grande: precisión doble Decimal Binario Mantisa Exp Representación almacenado 54 dígitos bits Exacta Exacta Exacta Exacta Exacta Exacta Redondeada Exacta Redondeada Exacta (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 29 / 47

30 Exactitud Exactitud en punto flotante: el entero más grande Precisión simple IEEE: M = 2 24 = , y podemos almacenar los enteros con 6 dígitos. Precisión doble IEEE: M = , y podemos almacenar todos los enteros con 15 dígitos y casi todos los enteros con 16 dígitos. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 30 / 47

31 Exactitud Exactitud IEEE El mayor número normalizado que puede representar en doble precisión (en valor absoluto) será, en representación binaria En decimal este número será: (±1) ( ) R max = ±( ) ± El menor número normalizado en doble precisión que puede representar será, en representación binaria (±1) ( ) Por lo tanto, en decimal este número será: R min = ± ± (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 31 / 47

32 Exactitud Exactitud IEEE Qué sucede si intentamos almacenar un número mayor en valor absoluto que R max? Error de overflow: Un error de overflow se produce cuando intentamos usar un número demasiado grande. En la mayor parte de los ordenadores se aborta la ejecución. El formato IEEE puede darle soporte asignándole los valores simbólicos ±. A menudo, se debe a errores de programación, que deben ser corregidos. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 32 / 47

33 Exactitud Exactitud IEEE Y qué sucede si intentamos almacenar un número menor en valor absoluto que R min? Error de underflow: Se produce un error de underflow cuando intentamos almacenar un número menor que R min. Desde la inclusión de los números desnormalizados, que se sitúan entre R min y el cero, se utiliza el valor desnormalizado más cercano y se pierde precisión. Es lo que se llama un underflow gradual. Si el número es menor que el menor desnormalizado se sustituye por cero y la ejecución continua. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 33 / 47

34 Redondeo Contenido 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 34 / 47

35 Redondeo Redondeo decimal Escribamos un número x con notación en punto flotante en base 10 como ( ) x = ±d 0.d 1 d n = ± d k 10 k 10 n, donde d 0 0 y 0 d k 9, para k = 1, 2,... k=0 Si la mantisa tiene más de p dígitos decimales, es decir, d k 0 para algunos k > p 1, entonces x no tiene un representación en punto flotante exacta con precisión p. En esta situación, se produce el redondeo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 35 / 47

36 Redondeo Redondeo decimal Dos formas habituales de redondeo ( ) x = ±d 0.d 1 d n = ± d k 10 k 10 n : k=0 Redondeo a cero o truncado con p + 1 dígitos: x = ±d 0.d 1 d 2... d p 10 p, Redondeo al (par) más cercano con p dígitos: ±d 0.d 1 d 2... d p 1 10 n si 0 d p 4, x = ±(d 0.d 1 d 2... d p p+1 ) 10 n si 5 d p 9, al número acabado en par más cercano si d p = 5 y d p+k = 0. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 36 / 47

37 Redondeo Ejemplos redondeo decimal Ejemplo: Para x = y p = 4 Truncando x = Redondeando x = Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = (Hacia el n o acabado en par más cercano) Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = (Hacia el n o acabado en par más cercano) (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 37 / 47

38 Redondeo Redondeo binario Escribamos un número x en punto flotante en base dos como ( ) x = ±(1.d 1 d 2...) 2 2 e = ± 1 + d k 2 k 2 e, donde 0 d k (1) 2, para k = 1, 2,... k=1 Si la mantisa tiene más de p dígitos binarios, es decir, d k 0 para algunos k > p 1, entonces x no tiene un representación en punto flotante exacta con precisión p. Otra vez, se produce redondeo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 38 / 47

39 Redondeo Redondeo binario Dos formas de redondear ( ) x = ±(1.d 1 d 2...) 2 2 e = ± 1 + d k 2 k 2 e : k=1 Redondeo a cero o truncado con p dígitos: x = ±(1.d 1 d 2... d p 1 ) 2 2 e, Redondeo al (par) más cercano con p dígitos: ±(1.d 1 d 2... d p 1 ) 2 2 e si d p = 0, x = ±((1.d 1 d 2... d p 1 ) p+1 ) 2 e si d p = 1, al número acabado en cero más cercano si d p = 1 y d p+k = 0. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 39 / 47

40 Redondeo Ejemplos redondeo binario Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = (Hacia el n o acabado en cero más cercano) Ejemplo: Para x = y p = 3 Truncando x = Redondeando x = (Hacia el n o acabado en cero más cercano) (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 40 / 47

41 Redondeo Comparación entre truncado y redondeo en binario La representación en punto flotante con precisión p de x puede expresarse como { [ x 2 = x(1 + γ), donde γ = p+1, 0 ] [ si truncamos, 2 p, 2 p] si redondeamos. Consecuencias: El mayor error de truncamiento es el doble que el mayor error de redondeo. El error de truncamiento es siempre no positivo, mientras que el error de redondeo puede cambiar de signo. Por lo tanto, lo errores se amplifican menos si usamos redondeo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 41 / 47

42 Redondeo Ejemplos Si x = ( ) 2 = ( ) 10 lo aproximamos con truncamiento a 5 dígitos binarios, x = (1.1001) 2 = (1.5625) 10 y entonces γ = x x = [ 2 4, 0 ]. x redondeo a 5 dígitos binarios, x = (1.1010) 2 = (1.625) 10 y entonces γ = x x x = [ 2 5, 2 5]. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 42 / 47

43 Error Contenido 1 Sistemas decimal y binario 2 Representación de números: la norma IEEE Valores especiales 4 Exactitud 5 Redondeo 6 Error (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 43 / 47

44 Inestabilidad numérica Error Errores de redondeo que se deben a que la aritmética de la computación es finita son pequeños en cada operación, pero pueden acumularse y propagarse si un algoritmo tiene muchas operaciones o iteraciones, resultando en una diferencia grande entre la solución exacta y la solución calculada numéricamente. Este efecto se conoce como inestabilidad numérica del algoritmo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 44 / 47

45 Error Ejemplo Para la sucesión s k = k, for k = 1, 2,..., calcular cuyo resultado es x k = 1 s k + 2 s k k s k, x k = 1 para todos los k = 1, 2,... Sin embargo, en precisión simple obtenemos k xk x k xk (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 45 / 47

46 Error Error absoluto y relativo Hay dos medidas principales del error cometido cuando aproximamos un número x con x : Error absoluto: e a = x x. Error relativo: e r = x x. x El error relativo es independiente de la escala y por tanto es más significativo que el error absoluto, como podemos ver en el siguiente Ejemplo: x x e a e r (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 46 / 47

47 Error Dígitos significativos Decimos que x aproxima a x con p dígitos significativos si p es el mayor entero no negativo tal que el error relativo satisface x x x 5 10 p. Ejemplos: x = aproxima x = con p = 2 dígitos significativos: x x x = = = x = aproxima x = con p = 2 dígitos significativos: x x x = = = x = aproxima x = 1000 con p = 4 dígitos significativos: x x x = = = (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 47 / 47

Organización del Computador. Prof. Angela Di Serio

Organización del Computador. Prof. Angela Di Serio Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de

Más detalles

SISTEMAS NUMERICOS Y ERRORES

SISTEMAS NUMERICOS Y ERRORES SISTEMAS NUMERICOS Y ERRORES 1. Introducción a la Computación Numérica El primer computador electrónico en base a la tecnología de tubos al vacío fue el ENIAC de la Universidad de Pensilvania, en la década

Más detalles

Representación en Punto Flotante

Representación en Punto Flotante Representación en Punto Flotante Minaya Villasana Abril-Julio, 2004 1 Representación en base 2 Las computadoras tienen dos formas de representar números: enteros (solo usado para enteros) y punto flotante

Más detalles

Sistemas Numéricos Cambios de Base Errores

Sistemas Numéricos Cambios de Base Errores Cálculo Numérico Definición: es el desarrollo y estudio de procedimientos (algoritmos) para resolver problemas con ayuda de una computadora. π + cos ( x) dx 0 Tema I: Introducción al Cálculo Numérico Sistemas

Más detalles

Solución: exp. 1994. Febrero, primera semana. Paso 1º: Cálculo del campo exponente. Según el apartado a) del primer corolario: 53.

Solución: exp. 1994. Febrero, primera semana. Paso 1º: Cálculo del campo exponente. Según el apartado a) del primer corolario: 53. INGENIERÍA TÉCNICA en INFORMÁTICA de SISTEMAS y de GESTIÓN de la UNED. Febrero, primera semana. Obtenga la representación del número 5.7 en formato normalizado IEEE 75 para coma flotante de 6 bits (es

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010 Detalles de Matlab MATLAB utiliza la aritmética del punto flotante, la cual involucra un conjunto finito de números con precisión finita. Esta limitación conlleva dos dificultades: los números representados

Más detalles

Cursada Primer Semestre 2015 Guía de Trabajos Prácticos Nro. 2

Cursada Primer Semestre 2015 Guía de Trabajos Prácticos Nro. 2 Temas: Programación en MATLAB: Sentencias, expresiones y variables. Estructuras de control. Operadores relacionales y lógicos. Programación de funciones. Aritmética finita: Representación de números en

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

1.1 Sistema de numeración binario

1.1 Sistema de numeración binario 1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo VI Concepto de error 6.1 Introducción Uno de los temas más importantes en

Más detalles

Buceando en los MCUs Freescale...

Buceando en los MCUs Freescale... COMENTARIO TÉCNICO Buceando en los MCUs Freescale... Por Ing. Daniel Di Lella Dedicated Field Application Engineer EDUDEVICES www.edudevices.com.ar dilella@arnet.com.ar Matemática de Punto Flotante Por

Más detalles

Representación de Números Reales

Representación de Números Reales 30 de marzo de 2010 Números Reales A qué nos referimos cuando decimos número Real? Un número que tiene una parte entera y una parte fraccionaria En una representación dónde debe estar el punto binario

Más detalles

Representación de números en binario

Representación de números en binario Representación de números en binario Héctor Antonio Villa Martínez Programa de Ciencias de la Computación Universidad de Sonora El sistema binario es el más utilizado en sistemas digitales porque es más

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Sebastián García Galán Sgalan@ujaen.es

Sebastián García Galán Sgalan@ujaen.es Universidad de Jaén E.U.P. Linares Dpto. Telecomunicaciones Área de Ingeniería Telemática Sebastián García Galán Sgalan@ujaen.es TEMA 2: 2.1 CODIFICACIÓN 2.2 SISTEMAS DE NUMERACIÓN BASES DE NUMERACIÓN

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

Estructura de Computadores

Estructura de Computadores Estructura de Computadores Tema 2. Representación de la información Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Tema 2 Representación de la información. Fundamentos de Computadores

Tema 2 Representación de la información. Fundamentos de Computadores Tema 2 Representación de la información Fundamentos de Computadores septiembre de 2010 Índice Índice 2.1 Introducción 2.2 Representación de enteros 2.2.1 Representación posicional de los números. 2.2.2

Más detalles

Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería

Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería Red de investigaciones y Tecnología Avanzada - RITA Facultad de ingeniería Universidad Distrital Francisco José de Caldas Copyleft

Más detalles

TEMA 2 REPRESENTACIÓN BINARIA

TEMA 2 REPRESENTACIÓN BINARIA TEMA 2 REPRESENTACIÓN BINARIA ÍNDICE. INTRODUCCIÓN HISTÓRICA A LA REPRESENTACIÓN NUMÉRICA 2. REPRESENTACIÓN POSICIONAL DE MAGNITUDES 2. Transformaciones entre sistemas de representación (cambio de base)

Más detalles

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 3: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles

Representación de los números en la computadora

Representación de los números en la computadora Facultad de Ciencias Astronómicas y Geofísicas - UNLP - Representación de los números en la computadora Pablo J. Santamaría Representación de los números en la computadora. Pablo J. Santamaría. Abril 2013

Más detalles

Lección 1. Representación de números

Lección 1. Representación de números Lección 1. Representación de números 1.1 Sistemas de numeración Empecemos comentando cual es el significado de la notación decimal a la que estamos tan acostumbrados. Normalmente se escribe en notación

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

TEMA 1 Representación de la información

TEMA 1 Representación de la información TEMA 1 Representación de la información Tema 1: Representación de la información. Aritmética y Representación binaria 1) Introducción BB1, Cap 2, Ap: 2.1, 2.2.1 2) Sistemas binario-octal-hexadecimal BB1,

Más detalles

Informática Básica: Representación de la información

Informática Básica: Representación de la información Informática Básica: Representación de la información Departamento de Electrónica y Sistemas Otoño 2010 Contents 1 Sistemas de numeración 2 Conversión entre sistemas numéricos 3 Representación de la información

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

LABORATORIO DE COMPUTADORAS

LABORATORIO DE COMPUTADORAS TP 1 LABORATORIO DE COMPUTADORAS Facultad de Ingeniería. UNJu Tema: Sistemas Numéricos y Diseño Combinacional y Secuencial Apellido y Nombre: LU: Carrera: Fecha: 2013 EJEMPLOS Estándar IEEE 754 El estándar

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Introducción a la Informática

Introducción a la Informática DAI Departamento Académico de Informática Introducción a la Informática L21: Representación de datos en Sistemas de Computadoras Ingº Manuel Peñaloza Figueroa Objetivos: Entender los fundamentos de la

Más detalles

Errores en las Operaciones Aritméticas

Errores en las Operaciones Aritméticas Errores en las Operaciones Aritméticas Matemáticas de la Especialidad (Mecánica-Máquinas) Madrid, 8 de octubre de 2001 Javier García de Jalón ETSII - Departamento de Matemática Aplicada a la Ingeniería

Más detalles

Introducción a la Informática

Introducción a la Informática Ingº Manuel Peñaloza Figueroa DAI Introducción a la Informática L21: Representación de datos en Sistemas de Computadoras Departamento Académico de Informática Objetivos: Entender los fundamentos de la

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA ARQUITECTURA DE LAS COMPUTADORAS PRACTICA SISTEMAS NUMÉRICOS INTRODUCCIÓN TEÓRICA: Definimos Sistema de Numeración como al conjunto de reglas que permiten, con una cantidad finita de símbolos, representar

Más detalles

Trabajo Práctico. Representación de números. Nombre: Alejandro Adrián Iglesias Legajo: 100267 Profesor: Jose Luis Caero. Año: 2008.

Trabajo Práctico. Representación de números. Nombre: Alejandro Adrián Iglesias Legajo: 100267 Profesor: Jose Luis Caero. Año: 2008. Introducción: Trabajo Práctico Representación de números. El presente trabajo tiene por objetivo explicar los conceptos relacionados con las formas de representación usuales de los distintos sistemas de

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

SISTEMAS Y CÓDIGOS DE NUMERACIÓN

SISTEMAS Y CÓDIGOS DE NUMERACIÓN INTRODUCCIÓN SISTEMAS Y CÓDIGOS DE NUMERACIÓN Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio, en una señal digital se utiliza sólo un número

Más detalles

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos:

UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos: UNIDAD Nº 1: TECNICATURA EN INFORMATICA UNLAR - CHEPES 1.1. INTRODUCCION 1. SISTEMAS DE NUMERACION El mundo del computador es un mundo binario. Por el contrario, el mundo de la información, manejada por

Más detalles

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Formación Básica Dpto de Matemática Carrera de : Ingeniería Civil, Electricista, Electrónica, Industrial, Mecánica y Agrimensura Autor:

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

ARITMÉTICA EN PUNTO FLOTANTE

ARITMÉTICA EN PUNTO FLOTANTE ARITMÉTICA EN PUNTO FLOTANTE AMPLIACIÓN DE ESTRUCTURA DE COMPUTADORES Daniel Mozos Muñoz Facultad de Informática 1 Aritmética en punto flotante 1. Representación de números en punto flotante 2. IEEE 754

Más detalles

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice...

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice... SSTEMS NUMÉROS PEENX PÉNE J En este apéndice... ntroducción a sistemas numéricos.......................... Sistema numérico decimal................................ Sistema numérico octal...................................

Más detalles

Aritmética Binaria. Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid

Aritmética Binaria. Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid Aritmética Binaria Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Representación de números con signo Sistemas de Signo y Magnitud, Complemento a

Más detalles

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla Lección 1: Introducción al Análisis Numérico ARITMÉTICA DE PRECISIÓN

Más detalles

Bienvenido a mis Tutorías en la UNED

Bienvenido a mis Tutorías en la UNED Bienvenido a mis Tutorías en la UNED Ejemplos de utilización IEEE 754 Ejemplo 1: César Moreno Fernández El problema es el del examen del 3 de Febrero de 94. Se pide la representación del Nº 53'2874 en

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid Arquitectura de Ordenadores Codificación de la Información Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Lógica Binaria COD-1 Internamente el ordenador

Más detalles

Estructura de Datos. Unidad I Tipos de Datos

Estructura de Datos. Unidad I Tipos de Datos Estructura de Datos Unidad I Tipos de Datos Conceptos Básicos Algoritmo: es una secuencia finita de pasos o instrucciones ordenadas crono-lógicamente que describen un método para resolver un problema específico.

Más detalles

Representación de Números Reales

Representación de Números Reales Representación de Números Reales María Elena Buemi 15 abril de 2011 Introducción a la Computación Representación de Números Reales Cómo se representa un número real? Un numeral con parte entera y parte

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I ANALISTA DE SISTEMAS EN COMPUTACIÓN Materia: DATOS Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I Cátedra: Lic. Ulises Vazquez SEGUNDO APUNTES DE CLASE 1 INDICE SISTEMAS NUMÉRICOS - 1 RA PARTE...3 DEFINICIÓN

Más detalles

ARITMÉTICA FLOTANTE Y ANÁLISIS DE ERRORES

ARITMÉTICA FLOTANTE Y ANÁLISIS DE ERRORES TEMA 2. ARITMÉTICA FLOTANTE Y ANÁLISIS DE ERRORES 2 Aritmética de ordenadores y análisis de errores 29 2.1 Por qué son importantes los errores numéricos?.................. 29 2.1.1 El fallo de un misil

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

La Tabla 1 muestra los valores de los dígitos de un número binario.

La Tabla 1 muestra los valores de los dígitos de un número binario. Título: Sistema de los Números Binarios Autor: Luis R. Morera González Luego de muchos años dictando cursos de matemáticas he encontrado que muchos de los libros que he utilizado no explican de una manera

Más detalles

Asignatura: PROGRAMACIÓN Y MÉTODOS NUMÉRICOS

Asignatura: PROGRAMACIÓN Y MÉTODOS NUMÉRICOS UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS DEPARTAMENTO DE MATEMÁTICA APLICADA Y MÉTODOS INFORMÁTICOS Asignatura: PROGRAMACIÓN Y MÉTODOS NUMÉRICOS Tema: ERRORES DE

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Representación de la información

Representación de la información Representación de la información A. Josep Velasco González Con la colaboración de: Ramon Costa Castelló Montse Peiron Guàrdia PID_00163598 CC-BY-SA PID_00163598 2 Representación de la información CC-BY-SA

Más detalles

Representación de los números en la computadora.

Representación de los números en la computadora. Representación de los números en la computadora. Sólo hay 10 tipos de personas: las que saben binario y las que no. Pablo Santamaría Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional

Más detalles

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Informática Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Temas O Sistema de Numeración O Conversión entre números decimales y binarios. O El tamaño de las cifras binarias

Más detalles

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información TEMA 1: SISTEMAS INFORMÁTICOS Parte 2: representación de la información Qué vamos a ver? Cómo se representa y almacena la información en un ordenador Cómo podemos relacionar la información que entendemos

Más detalles

❷ Aritmética Binaria Entera

❷ Aritmética Binaria Entera ❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas

Más detalles

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León.

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León. Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León Programa 1. Introducción. 2. Operaciones lógicas. 3. Bases de la aritmética

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING.

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING. INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING. JUAN DE LA ROSA T. TEMA 1 Desde tiempos remotos el hombre comenzó a

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN

TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN TEMA II: REPRESENTACIÓN DE LA INFORMACIÓN 2.1. Introducción. El computador procesa información. Para que un ordenador ejecute unos datos es necesario darle dos tipos de información: las instrucciones que

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación

OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación 1 Introducción (I) ALU / Arquitectura Von Neumann CPU banco de registros

Más detalles

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012 Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal CONVERSIONES DE UN SISTEMA A OTRO Para la realización de conversiones entre números de bases diferentes se efectúan operaciones aritméticas

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 Módulo 1. Fundamentos de Computadores Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 1 CONTENIDO Tema 1. Introducción y conceptos básicos

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Aritmetica del Computador

Aritmetica del Computador Pantoja Carhuavilca Métodos Numérico Agenda Sistema de Numeración Representación de enteros Base Binaria (2) 2 bits [0,1] 3 1011 en base 2 = 1 2 3 + 0 2 2 + 1 2 1 + 1 2 0 = 8 + 0 + 2 + 1 = 11 en base decimal

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos

Más detalles

Sistemas de numeración, operaciones y códigos

Sistemas de numeración, operaciones y códigos Sistemas de numeración, operaciones y códigos Slide 1 Sistemas de numeración Slide 2 Números decimales El sistema de numeración decimal tiene diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9 Es un sistema

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Parte 2: Representación de Reales Lic. Andrea V. Manna Sistemas posicionales: Repaso N= d k-1 d k-2 d 1 d 0,d -1 d -l = d k-1 *p k-1 + d k-2 *p k-2 +.+ d 0 *p 0,+ d -1 *p -1 +...+

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario binariooliverio J. Santana Jaria 2. El sistema de numeración Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Todos Curso 2006 2007 En numeración estamos decimal, familiarizados ya que

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. 5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres

Más detalles