ESTUDIO DE LA MÁQUINA ASÍNCRONA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTUDIO DE LA MÁQUINA ASÍNCRONA"

Transcripción

1 ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA

2 Sistemas Eléctricos La Máquina de Inducción o Asíncrona ÍNDICE OBJETIVO DE LA PRÁCTICA...3 EL MOTOR DE INDUCCIÓN...4. Obtención del Circuito Equivalente Ensayo de Rozamiento Medida de la Resistencia del Estator Ensayo en Vacío Ensayo en Cortocircuito o con Rotor Parado Ensayo en Carga: Determinación de Curvas Características Arranque y Frenado del Motor Asíncrono Compensación del Factor de Potencia Funcionamiento como Generador ESQUEMAS EXPERIMENTALES Y CÁLCULOS Ensayo de Rozamiento Medida de Resistencia R (Ω)= Ensayo en Vacío y Ensayo en Cortocircuito Ensayo en Carga Arranque y Frenado del Motor Compensación del Factor de Potencia Funcionamiento como Generador MATERIAL Y EQUIPO NECESARIO PAUTAS DE DESARROLLO DE LA PRÁCTICA... 8

3 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 3 OBJETIVO DE LA PRÁCTICA Al igual que se hizo para el transformador, el objetivo de esta práctica es que el alumno conozca las características principales de un motor trifásico asíncrono y que sea capaz de llevar a cabo los distintos ensayos que se suelen realizar habitualmente para determinar el valor de los parámetros de su circuito equivalente, y que son los siguientes: Medida de Resistencia en el Estator Ensayo de Rozamiento Ensayo en Vacío Ensayo en Cortocircuito o con el Rotor Parado Ensayos con diferentes valores de Carga Mecánica Ensayos de Arranque y Frenado Compensación del Factor de Potencia En los siguientes apartados se da una explicación más detallada acerca de cada uno de los ensayos enumerados anteriormente.

4 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 4 EL MOTOR DE INDUCCIÓN El motor de inducción es el tipo de motor eléctrico más utilizado, bien sea monofásico o trifásico. Nosotros en esta práctica analizaremos el comportamiento del motor trifásico. Un motor se define como la máquina que transforma la energía eléctrica en mecánica mediante la interacción de dos campos magnéticos. Estos campos son el del inductor (estator) y el del inducido (rotor). En el caso concreto de un motor trifásico, el campo inductor es generado por tres bobinados a los que se les aplica un sistema trifásico equilibrado de tensiones CA. Este campo actúa, a través del entrehierro, sobre los devanados dispuestos en el rotor dando lugar a tensiones inducidas. Si el inducido forma un circuito cerrado, aparecerá una corriente que producirá un flujo magnético opuesto al principal. El motor trifásico se suele representar eléctricamente por medio de su circuito equivalente monofásico referido al estator, tal como puede verse en la figura siguiente: I R jx I c A Im R jx I V g c -jb m -s s R B R y X representan la resistencia y reactancia del bobinado del estator. R y X representan la resistencia y reactancia del bobinado del rotor referidas ambas al estator. g c representa la conductancia de pérdidas en el hierro y b m la susceptancia magnetizante. [(-s)/s]*r es una resistencia que no existe realmente en el rotor, pero representa la potencia mecánica que el motor proporciona al exterior.

5 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 5. OBTENCIÓN DEL CIRCUITO EQUIVALENTE Para determinar los parámetros del circuito anterior, se recurre a la realización de los ensayos que se explican en los apartados siguientes... ENSAYO DE ROZAMIENTO Mediante este ensayo se calculan las pérdidas que se producen en la máquina por motivos puramente mecánicos. Consiste en arrastrar el motor mediante una máquina auxiliar, hasta que el conjunto alcance la velocidad nominal del motor ensayado. Una vez alcanzada la citada velocidad, se mide la potencia útil suministrada por el motor auxiliar, que será la potencia que se pierde por rozamiento en el motor ensayado. Asimismo, se realizará el mismo ensayo a diferentes velocidades, tales como al 50% y al 75% de la velocidad nominal, así como a la velocidad del motor en vacío... MEDIDA DE LA RESISTENCIA DEL ESTATOR Suponiendo que los bobinados de las tres fases del motor son idénticos, bastará con obtener el valor de la resistencia en uno de los tres bobinados. Para hacer esto, es suficiente con utilizar la función correspondiente del polímetro. Debe tenerse en cuenta que la resistencia por fase de un bobinado trifásico no es la misma que la medida entre los extremos de las bobinas. La resistencia equivalente por fase del motor es la mitad de la medida entre dos fases. Si los bobinados están conectados en estrella, la resistencia de cada bobina es la mitad de la medida entre dos fases y, si están conectados en triángulo, los 3/ de la medida entre dos fases. Como lo que interesa es la resistencia equivalente por fase, independientemente de la conexión se escribirá que: R = V I DC DC También puede hacerse la medida mediante un multímetro.

6 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 6..3 ENSAYO EN VACÍO Normalmente, para realizar este ensayo, se alimenta el motor a la tensión y frecuencia nominales y se mide la potencia absorbida (con los dos vatímetros), la intensidad que circula por cada fase y la tensión aplicada al estator. En este ensayo no se obtiene potencia útil en el eje (dado que no existe ninguna carga y por lo tanto el rotor forma un circuito abierto para el paso de corriente), por lo que toda la potencia corresponde a pérdidas (en el hierro, en el cobre del estator, y en rozamiento). Por lo tanto, el ensayo en vacío permite medir estas pérdidas, y a partir de ellas los parámetros en el núcleo de la máquina mediante las siguientes expresiones: V + o = V Io = I = Iϕ Po = W W En función del circuito equivalente monofásico, se puede escribir: Vo P hn = V o g c = P o P Roz0 3R I o Iϕ g c + b 3 De donde, finalmente, se obtiene: m g c P = o P Roz0 V o 3I o R b m = I Vo ϕ 3 c g A la hora de sustituir los valores de las pérdidas por rozamiento en las expresiones anteriores, no se va a utilizar el dato obtenido en el ensayo realizado anteriormente, sino que se va a proceder de forma distinta calculando un nuevo valor para las pérdidas de rozamiento según un segundo método que se va a describir a continuación. Posteriormente, el alumno realizará un estudio comparativo entre los dos valores obtenidos. Para determinar P Roz0 y P h se va a alimentar el motor con diferentes valores de tensión, siendo estos de 0,5; 0,75; 0,90; y,0 veces la nominal; midiendo para cada caso los valores de la potencia absorbida por el motor en vacío (con los vatímetros), así como la intensidad y la tensión aplicada exactamente mediante los polímetros. Al representar la suma de las pérdidas en el hierro y de rozamiento en función de la tensión aplicada, se obtiene una curva parabólica semejante a la representada en la Figura a. Extrapolando

7 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 7 esta curva, hasta que corte el eje de ordenadas, se tiene para una tensión aplicada de cero voltios, el valor de las pérdidas mecánicas, ya que en este caso las pérdidas en el hierro son cero al no existir flujo en la máquina. Para que sea más fácil extrapolar esta curva, se suele representar la suma de estas pérdidas en función de la tensión aplicada al cuadrado, obteniéndose para este caso una relación lineal, tal y como muestra la figura b. Por lo tanto, prolongando la línea recta formada por los distintos puntos de trabajo de la máquina en los diferentes ensayos realizados, se obtiene la potencia mecánica del motor. Asimismo, tal y como puede verse, estas gráficas también permiten obtener los valores de las distintas pérdidas en el hierro que tienen lugar en función de la tensión aplicada, aunque habrá que descontar las producidas en el cobre en el estator (muy pequeñas). Sustituyendo estos valores de pérdidas en las expresiones anteriores se pueden obtener los parámetros eléctricos del núcleo. Por otra parte, interesa que el alumno compare el valor obtenido para las pérdidas por rozamiento con este método, con las pérdidas facilitadas por el ensayo de rozamiento realizado al principio de esta práctica...4 ENSAYO EN CORTOCIRCUITO O CON ROTOR PARADO Mediante este ensayo se determinan los valores de la resistencia del rotor y de ambas reactancias. Para realizarlo, el rotor debe estar perfectamente fijo, impedido de giro, con lo cual el deslizamiento será la unidad. En estas condiciones, se aplica al motor una tensión trifásica equilibrada que irá incrementándose desde cero hasta que el motor absorba una corriente del orden de la nominal por el estator. La tensión (denominada de cortocircuito) que se debe aplicar para obtener la corriente nominal con rotor parado es siempre inferior a la nominal.

8 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 8 Las expresiones utilizadas para calcular los parámetros son las que se presentan a continuación. Las magnitudes que aparecen en ellas corresponden a valores del sistema trifásico, pasadas al monofásico equivalente (el raíz de tres, el tres; recuerde ). V + c = V Ic = I = IN Pc = W W En función del circuito monofásico, se puede escribir: V P + 3 c cun = 3(R + R)IN = P c V c gc = IN (R + R) + (X X) Despejando de las expresiones anteriores: Vc P c V c g c 3 + R = X + X = R 3I I N N [ R ] R + Sabiendo R del ensayo de corriente continua, podemos hallar R sin problemas. Para obtener los valores de las reactancias, utilizaremos la siguiente tabla que determina la relación entre ambas para distintos tipos de motores: CLASE DE MOTOR X ( X + ) X ( X + ) X X TIPO A Par normal I a normal TIPO B Par normal I a baja TIPO C Par elevado I a normal TIPO D Par elevado "s" elevado ROTOR DEVANADO ENSAYO EN CARGA: DETERMINACIÓN DE CURVAS CARACTERÍSTICAS Para determinar las curvas características (T-s, I-s, P u -s, η-s) de un motor, se van a realizar ensayos con diferentes valores de carga, obteniendo distintos valores de par mecánico para cada una de las velocidades de giro. Concretamente, esto se realizará para valores de 0.5, 0.5, 0.75 y veces la carga nominal. En cada uno de los casos se medirá la intensidad y potencia absorbida, así como la velocidad de giro (se empleará el tacómetro). Con los valores mencionados se puede determinar el valor del deslizamiento, el rendimiento y la potencia útil mediante las expresiones siguientes:

9 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 9 P η = P u E n s 0 f = P P u = P m P Roz ns n s = n s P m = 3I R s s Con los ensayos realizados se pueden determinar las relaciones entre corriente, par, potencia y rendimiento y el deslizameinto en la zona de menores deslizamientos. Para el cálculo de los puntos de par máximo y par de arranque se utilizarán las fórmulas analíticas ya conocidas de la teoría: Z V = V = = + E ZTH RE jxe + YZ + YZ T max = 3 V ω E s R E + R E + R E + ( X + X ) ( X + X ) + [ X + X ] E E E T a = 3 V ω E s [ R + R ] + [ X + X ] E R E..6 ARRANQUE Y FRENADO DEL MOTOR ASÍNCRONO Antes de proceder al arranque del motor, se van a realizar dos ensayos: Se conectará el motor a una fuente de tensión continua y se responderá a las preguntas: Qué sucede? Por qué? Existen campos magnéticos? Variables en el tiempo y en el espacio o no? Se conectarán las tres bornas de la máquina a una misma fase y se responderá a las preguntas: Qué sucede? Por qué? Existen campos magnéticos? Variables en el tiempo y en el espacio o no? A continuación, se procederá a realizar el arranque estrellatriángulo para la máquina asíncrona. En él se comprobará la diferencia de pares y corriente absorbida cuando la conexión de la máquina es en triángulo y cuando es en estrella. Por lo que se refiere al frenado del motor, se pueden emplear tres procedimientos: El primero que es puramente mecánico, utilizando el freno. No tiene secretos. Excepto en que es necesario eliminar

10 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 0 rápidamente la alimentación para que no absorba una corriente excesiva al quedar parado el eje. El segundo se basa en la aplicación de corriente continua en los terminales del motor. Se deberá indicar porqué se produce este efecto de frenado. El tercero está basado en el cambio de sentido de giro del motor. Al invertir la secuencia de fases aplicada, el campo giratorio se mueve en sentido contrario y provoca el frenado de la máquina. Hay que tener cuidado en no sobrepasar el punto de velocidad cero para que no empiece a girar en sentido contrario...7 COMPENSACIÓN DEL FACTOR DE POTENCIA Se deberá conectar el osciloscopio a la máquina y observar la forma de las ondas de tensión y corriente, obteniéndose el ángulo de desfase. Posteriormente se procederá a la conexión a la entrada de una batería de condensadores, con el objeto de compensar el desfase de V e I. Esta compensación deberá visualizarse nuevamente en el osciloscopio, anotando el nuevo ángulo de desfase y haciendo una representación aproximada de las ondas obtenidas...8 FUNCIONAMIENTO COMO GENERADOR Si en las ecuaciones del par, de la potencia y de la corriente se dan valores al deslizamiento s desde - hasta + y se hacen sus representaciones gráficas, se obtienen las siguientes curvas. I T m P m Par Potencia Corriente 0 - s FRENO MOTOR GENERADOR

11 Sistemas Eléctricos La Máquina de Inducción o Asíncrona Si la máquina funciona con deslizamientos negativos, la velocidad de giro del rotor es superior a la de sincronismo. Para que esto sea posible, se necesita la ayuda de una fuente mecánica exterior que proporcione el par necesario para superar dicha velocidad. En primer lugar, el estator de la máquina de inducción estará conectado a la red y, en principio, sin carga mecánica aplicada, alcanzará la velocidad de vacío, próxima a n s ; entonces, se conecta el motor de CC y se le hace girar en el mismo sentido que la máquina de inducción, ayudándole y consiguiendo que la velocidad aumente por encima de la de sincronismo. Cuando esto sucede, la máquina estará funcionando como generador y proporciona una energía eléctrica a la red gracias a la energía mecánica de la fuente exterior (motor de CC). En la práctica se trata de comprobar que esto se cumple.

12 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 3 ESQUEMAS EXPERIMENTALES Y CÁLCULOS 3. ENSAYO DE ROZAMIENTO Procedimento La curva obtenida deberá ser del tipo: P Roz =k n+k n 3 kn P ROZ (0,5n N ) P ROZ (0,75n N ) P ROZ (n N ) P ROZ (n o ) Procedimento : Utilizando el ensayo en vacío P ROZ (n o ) 3. MEDIDA DE RESISTENCIA R (Ω)=. 3.3 ENSAYO EN VACÍO Y ENSAYO EN CORTOCIRCUITO V V 3 V V A A A I I I W W MOTOR DE INDUCCIÓN Nota: La única diferencia entre ambos ensayos es que en el de cortocircuito el rotor se encuentra impedido de giro. No se utilizan vatímetros, sino el analizador de redes.,05 V N V I P 0 V N 0,75 V N 0,50 V N Dibújese la gráfica de I<>V y P o <>V de estos ensayos.

13 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 3,05 V N CÁLCULOS DE POTENCIAS P cu P Roz P h V N 0,75 V N 0,50 V N Procedimiento Procedimiento CÁLCULOS VACÍO P Roz Ensayo de Roz. P hn (W) P 0 (W) g c (S) b m (S) CÁLCULOS VACÍO P Roz y P h Ensayo Vacío P hn (W) P 0 (W) g c (S) b m (S) Curva P Roz +P h <> V Recta P Roz +P h <> V ENSAYO EN CORTOCIRCUITO: MEDIDAS EXPERIMENTALES Estator V (V) I (A) Potencia Total V I

14 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 4 CÁLCULOS CORTOCIRCUITO P CuN (W) P C (W) R (Ω) R (Ω) X (Ω) X (Ω) 3.4 ENSAYO EN CARGA Medidas experimentales Cálculos V(V) I (A) P(W) n s η P u (W) T u T máx (Nm) T a (Nm) Curvas de par, corriente, potencia útil y rendimiento para los ensayos de carga realizados

15 Sistemas Eléctricos La Máquina de Inducción o Asíncrona ARRANQUE Y FRENADO DEL MOTOR Arranque (Estrella-Triángulo) Medidas Cálculos V(V) I Υ (A) I Δ (A) T Υa (Nm) T Δa (Nm) Coméntense los resultados obtenidos en las experiencias citadas en el apartado correspondiente del guión al arranque y frenado del motor. Éstas son la aplicación de corriente continua, la aplicación de la misma tensión alterna en las tres fases y, finalmente, el frenado del motor: mecánico, con aplicación de corriente continua y mediante la aplicación de secuencia inversa. 3.6 COMPENSACIÓN DEL FACTOR DE POTENCIA Medidas Experimentales V(V) I (A) P(W) Cosφ Sin Batería Con Batería

16 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 6 Desfases entre V e I obtenidos con el osciloscopio en ambos casos 3.7 FUNCIONAMIENTO COMO GENERADOR Máquina Asíncrona Motor CC n(rpm) I(A) P(W) P(W)

17 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 7 4 MATERIAL Y EQUIPO NECESARIO Para realizar los montajes descritos es suficiente con los siguientes elementos: Motor Asíncrono Motor de Corriente Continua para Ensayo de Rozamiento 3 Polímetros ( Amperímetros y voltímetro) Vatímetros W Osciloscopio

18 Sistemas Eléctricos La Máquina de Inducción o Asíncrona 8 5 PAUTAS DE DESARROLLO DE LA PRÁCTICA Para realizar la práctica y poder evaluar los conocimientos adquiridos en su desarrollo, es preciso tener en cuenta lo siguiente: La práctica consiste en realizar los montajes descritos en los apartados previos anotando las indicaciones de los diferentes aparatos de medida en las casillas de las tablas que aparecen en el apartado 3 de este guión. Las casillas sombreadas en color gris que aparecen en las tablas de este guión corresponden a los cálculos que hay que realizar con los datos obtenidos experimentalmente, que se colocarán en las casillas en blanco. Asimismo, deberán representarse gráficamente las curvas que se piden en los recuadros dispuestos en el mismo apartado La forma de realizar cada ensayo, los resultados experimentales obtenidos y cómo se llevan a cabo los cálculos serán la base de las preguntas del examen de laboratorio. No hay que entregar memoria de la práctica.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN

SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN MQ_IND_1 El rotor de un generador síncrono de seis polos gira a una velocidad mecánica de 1200 rev/min. 1º Expresar esta velocidad mecánica en radianes

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

PROBLEMAS DE MAQUINAS ASINCRONICAS

PROBLEMAS DE MAQUINAS ASINCRONICAS PROBLEMAS DE MAQUINAS ASINCRONICAS Problemas de MAQUINAS ASINCRONICAS Problema 1: Un motor de inducción trifásico que tiene las siguientes características de placa: P 1.5 HP; 1400 rpm; U N 220/380 V. Se

Más detalles

Motores y máquinas eléctricas TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11

Motores y máquinas eléctricas TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11 TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11 1.1 Introducción... 11 1.2 Definición y clasificación de las máquinas eléctricas... 11 1.3 Conceptos básicos... 13 1.3.1 Inductancia

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

MOTORES ASÍNCRONOS MONOFÁSICOS

MOTORES ASÍNCRONOS MONOFÁSICOS MOTORES ASÍNCRONOS MONOFÁSICOS INTRODUCCIÓN Los motores monofásicos, como su propio nombre indica son motores con un solo devanado en el estator, que es el devanado inductor. Prácticamente todas las realizaciones

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA Resumen Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. José Ángel Laredo García jgarci2@platea.pntic.mec.es CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO II Apellidos y nombre: Número de matrícula: DNI: PARTE 1: PREGUNTAS DE TEST (25% del total del examen). Cada 3 respuestas incorrectas descuentan una correcta 1º) Indique cual o cuales de

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Máquinas Eléctricas. Resultados de aprendizaje. Contenidos

Máquinas Eléctricas. Resultados de aprendizaje. Contenidos Máquinas Eléctricas Descripción general (*)Los objetivos que se persiguen en esta materia son: - La adquisición de los conocimientos básicos sobre la constitución y el funcionamiento de las máquinas eléctricas

Más detalles

Unidad Didactica. Motores Asíncronos Monofásicos

Unidad Didactica. Motores Asíncronos Monofásicos Unidad Didactica Motores Asíncronos Monofásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

PRÁCTICA 1 RED ELÉCTRICA

PRÁCTICA 1 RED ELÉCTRICA PRÁCTICA 1 RED ELÉCTRICA PARTE 2.- SISTEMAS TRIFÁSICOS. PARÁMETROS BÁSICOS OBJETIVOS - Distinguir con claridad en un sistema trifásico sus parámetros fundamentales: tensiones de línea y de fase, corrientes

Más detalles

Motores de corriente alterna

Motores de corriente alterna Motores de corriente alterna María Jesús Vallejo Fernández MOTORES DE CORRIENTE ALTERNA. INTRODUCCIÓN 1 MOTORES DE INDUCCIÓN 1 Principio de funcionamiento del motor asíncrono 2 CARACTERÍSTICAS INDUSTRIALES

Más detalles

CONTENIDO TEMA 17. LÍNEAS DE BT. CONDUCTOR DESNUDO O TRENZADO

CONTENIDO TEMA 17. LÍNEAS DE BT. CONDUCTOR DESNUDO O TRENZADO CONTENIDO TEMA 16. CÁLCULO MECÁNICO DE LÍNEAS ELÉCTRICAS 16.0. Introducción. 16.1. Cuestiones fundamentales. Catenaria y Parábola. 16.2. Tensión en cualquier punto de la curva. 16.3. Ecuación de cambio

Más detalles

Conductor formando espira

Conductor formando espira 8 Motor trifásico de inducción 8. Campo magnético rotante Máquina de dos polos magnéticos Si tomamos un conjunto de chapas magnéticas que tienen la forma mostrada en la figura 8.0 en la cual se ha realizado

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA ASÍNCRONA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA ASÍNCRONA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de ngeniería léctrica.t.s. de ngenieros ndustriales Universidad de Valladolid 3/4 MÁQUNAS LÉCTCAS: MÁQUNA ASÍNCONA 3º D NGNOS NDUSTALS Boletín de roblemas MÁQUNA ASÍNCONA roblemas propuestos. Se

Más detalles

Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. Academias Ingeniería Electromecánica

Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. Academias Ingeniería Electromecánica 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Máquinas Eléctricas Ingeniería Electromecánica EMC - 0523 4 2 10 2.- HISTORIA

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN ANEXO VII (continuación) CONTENIDOS DE LA PARTE ESPECÍFICA DE LA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR PARTE ESPECÍFICA OPCIÓN B EJERCICIO DE TECNOLOGÍA INDUSTRIAL 1. RECURSOS ENERGÉTICOS.

Más detalles

TEORIA UTIL PARA ELECTRICISTAS ALTERNADORES Y MOTORES CA

TEORIA UTIL PARA ELECTRICISTAS ALTERNADORES Y MOTORES CA Definición.- Es una maquina rotativa que genera corriente eléctrica alterna a partir de otra energía mecánica, como un molino de viento, una noria de agua, por vapor, etc. Diferencias con la dinamo.- En

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores INDICE Prefacio XXI Capitulo I. 1. Introducción a los Principios de las Máquinas 1.1. Las máquinas eléctricas y los transformadores en la vida cotidiana 1 1.2. Nota sobre las unidades y notación Notación

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de ngeniería léctrica.t.s. de ngenieros ndustriales Universidad de Valladolid 003/004 MÁQUNAS LÉCTRCAS: TRANSFORMADORS 3º D NGNROS NDUSTRALS Boletín de Problemas TRANSFORMADORS Problemas propuestos

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

CONTROL ELECTRÓNICO DE MOTORES CA. Tema 4

CONTROL ELECTRÓNICO DE MOTORES CA. Tema 4 CONTROL ELECTRÓNICO DE MOTORES CA Tema 4 2 INDICE 3.1 MOTORES DE CORRIENTE ALTERNA... 4 3.2 REGULACIÓN DE LA VELOCIDAD... 4 CONTROL DE LA TENSIÓN Y FRECUENCIA DE LÍNEA.... 5 CONTROL VECTORIAL... 10 3.3.

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

ESTUDIO DE LA MÁQUINA DE C.C.

ESTUDIO DE LA MÁQUINA DE C.C. ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº 3: Sistemas Eléctricos ESTUDIO DE LA MÁQUINA DE C.C. Sistemas Eléctricos 2009-2010. La Máquina de Corriente Continua

Más detalles

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores CRCUTO EQUALENTE DE UN TRANSFORMADOR La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la

Más detalles

Motores Síncronos. Florencio Jesús Cembranos Nistal. Revista Digital de ACTA 2014. Publicación patrocinada por

Motores Síncronos. Florencio Jesús Cembranos Nistal. Revista Digital de ACTA 2014. Publicación patrocinada por Florencio Jesús Cembranos Nistal Revista Digital de ACTA 2014 Publicación patrocinada por 2014, Florencio Jesús Cembranos Nistal 2014, Cualquier forma de reproducción, distribución, comunicación pública

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Experimentos con Máquinas Eléctricas Didácticas 2 ÍNDICE 1 Introducción...3 2 Máquinas de Corriente Continua...4

Más detalles

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS INTRODUCCIÓN Para una mejor comprensión del problema que se plantea, partamos en primer lugar del circuito equivalente por fase del motor asíncrono trifásico.

Más detalles

1. Un motor de corriente continua serie se alimenta con 120 V y absorbe una intensidad de 30 A, las bobinas inductoras tienen una resistencia de 0,60

1. Un motor de corriente continua serie se alimenta con 120 V y absorbe una intensidad de 30 A, las bobinas inductoras tienen una resistencia de 0,60 1. Un motor de corriente continua serie se alimenta con 120 V y absorbe una intensidad de 30 A, las bobinas inductoras tienen una resistencia de 0,60 Ω y las bobinas inducidas de 0,40 Ω. Se ha comprobado

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 2 Máquina Asíncrona David Santos Martín CAPÍTULO 2 Máquina Asíncrona 2.1.- Introducción 2.2.-

Más detalles

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ REPASAMOS CONCEPTOS MAGNETISMO Imanes naturales : atraen al hierro. Características de los imanes: -La atracción magnética es más intensa en los extremos de la barra magnética. -Un imán se parte en varios

Más detalles

Pontificia Universidad Católica Argentina

Pontificia Universidad Católica Argentina MÁQUINAS Y MOTORES ELECTRICOS Plan de Estudios 2006 OBJETIVOS DE LA MATERIA Programa de la Materia 2012 El objetivo principal es proveer al estudiante los conocimientos básicos de las máquinas y motores

Más detalles

Compensación individual

Compensación individual LEYDEN Boletín Técnico Pag. 1/13 Compensación individual 1. MOTORES ASINCRONICOS 1.1. Introducción. El factor de potencia de un motor de inducción es bueno a plena carga, generalmente entre un 80 ó 90%,

Más detalles

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Trabajo de Sistemas Eléctricos - CURSO 2005-2006 DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ÍNDICE 1 Diseño de

Más detalles

4 Analizar las formas de Onda Desfasaje: (Tensión, Corriente) en circuito : RESISTIVO PURO INDUCTIVO PURO( Ideal) CAPACITIVO PURO(Ideal).

4 Analizar las formas de Onda Desfasaje: (Tensión, Corriente) en circuito : RESISTIVO PURO INDUCTIVO PURO( Ideal) CAPACITIVO PURO(Ideal). 1 Qué ocurre con el valor de la Reactancia Inductiva y la Reactancia Capacitiva si el período de la señal de alimentación disminuye a la mitad? XL=2πf L Reactancia Inductiva, si el período disminuye a

Más detalles

1.1 Motivo y finalidad de los ensayos. 9 1.2 Las normas 9 1.3 Símbolos gráficos de las máquinas eléctricas 11

1.1 Motivo y finalidad de los ensayos. 9 1.2 Las normas 9 1.3 Símbolos gráficos de las máquinas eléctricas 11 Prefacio 5 CAPÍTULO I. - La normalizacián 9 1.1 Motivo y finalidad de los ensayos. 9 1.2 Las normas 9 1.3 Símbolos gráficos de las máquinas eléctricas 11 CAPÍTULO 11. - Instrumentos y aparatos. 15 2.1

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Tema: Motor eléctrico Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Principio de funcionamiento: Clasificación: 1. Energía eléctrica de alimentación

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

PROJECTE FI DE CARRERA

PROJECTE FI DE CARRERA 6:19 6:19 PROJECTE FI DE CARRERA TÍTOL: Análisis del motor de inducción mediante técnicas de programación no lineal AUTOR: Christian Pasquet Ibañez TITULACIÓ: Ingeniería Técnica Industrial Especialidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2004-2005 - CONVOCATORIA: Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si fuera necesario. Capacidad para el planteamiento de problemas y procedimientos

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

4.2 Transformadores de potencia

4.2 Transformadores de potencia 4. Transformadores de potencia 4.. Generalidades Descripción Circuito magnético Circuito eléctrico Refrigeración Aspectos constructivos 4.. Principio de funcionamiento El transformador ideal Funcionamiento

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

Sistemas Traccionarios de Corriente Alterna. Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios

Sistemas Traccionarios de Corriente Alterna. Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios Sistemas Traccionarios de Corriente Alterna Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios Los vehículos eléctricos se han desarrollado en forma lenta, pero en cada

Más detalles

ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen

ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen Norberto A. Lemozy 1 INTRODUCCIÓN A continuación se presenta un resumen de los distintos métodos de arranque y de control de

Más detalles

Generadores de corriente continua

Generadores de corriente continua Generadores de corriente continua Concepto Los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo

Más detalles

TEMA 11: MOTORES DE CORRIENTE ALTERNA

TEMA 11: MOTORES DE CORRIENTE ALTERNA EMA 11: MOOE DE COIENE ALENA 1.- La corriente alterna (C.A.) La corriente alterna es una corriente eléctrica en la que el sentido de circulación de los electrones y la cantidad de electrones varían cíclicamente.

Más detalles

ME II 03 TEORIA DE BOBINADOS TRIFASICOS

ME II 03 TEORIA DE BOBINADOS TRIFASICOS TIPOS DE CONEXIONES EN MOTORES ASINCRONOS TRIFASICOS Existen dos tipos: Motor trifásico tipo jaula de ardilla. CONEXIONES INTERNAS Este tipo de conexiones se realizan cuando el motor se halla en el proceso

Más detalles

Pruebas de funcionamiento. Historial de un motor de c. a.

Pruebas de funcionamiento. Historial de un motor de c. a. Pruebas de funcionamiento Historial de un motor de c. a. Una vez terminadas las operaciones de bobinado, y cuando las circunstancias lo permitan, se deben realizar, al motor reparado, todas las pruebas

Más detalles

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS DE TRANSFORMADORES Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

LABORATORIO DE MAQUINAS

LABORATORIO DE MAQUINAS I. DATOS GENERALES SILABO 1. Nombre de la Asignatura : LABORATORIO DE MAQUINAS ELECTRICAS 2. Carácter : Obligatorio. 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA. 4. Código : IM0606 5. Semestre

Más detalles

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián GENERADORES DE CORRIENTE ALTERNA Ley de Faraday La Ley de inducción electromagnética ó Ley Faraday se basa en los experimentos que Michael

Más detalles

Ahorro de materiales en equipos, líneas de transmisión y distribución.

Ahorro de materiales en equipos, líneas de transmisión y distribución. MÁQUNA NCRÓNCA 9.1 ntroducción La generación, transmisión y distribución de energía eléctrica se efectúa a través de sistemas trifásicos de corriente alterna. Las ventajas que se obtienen en los sistemas

Más detalles

PRÁCTICAS DE AUTOMATISMOS ELÉCTRICOS. ARRANQUE Y ACCIONAMIENTO DE MOTORES ASÍNCRONOS TRIFÁSICOS MEDIANTE AUTOMATISMOS ELÉCTRICOS.

PRÁCTICAS DE AUTOMATISMOS ELÉCTRICOS. ARRANQUE Y ACCIONAMIENTO DE MOTORES ASÍNCRONOS TRIFÁSICOS MEDIANTE AUTOMATISMOS ELÉCTRICOS. ACCIONAMIENTO DE MOTORES ASÍNCRONOS TRIFÁSICOS MEDIANTE AUTOMATISMOS ELÉCTRICOS. MUY IMPORTANTE Antes de comenzar con el desarrollo propiamente dicho de las prácticas sobre automatismos eléctricos, hay

Más detalles

8. Tipos de motores de corriente continua

8. Tipos de motores de corriente continua 8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

variadores de velocidad electrónicos

variadores de velocidad electrónicos sumario arrancadores y variadores de velocidad electrónicos 1 principales tipos de variadores 2 principales funciones de los arrancadores y variadores de velocidad electrónicos 3 composición 4 principales

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

DEFINICIÓN Y PRINCIPIO DE OPERACIÓN

DEFINICIÓN Y PRINCIPIO DE OPERACIÓN DEFINICIÓN Y PRINCIPIO DE OPERACIÓN El motor eléctrico es un dispositivo que transforma la energía eléctrica en energía mecánica por medio de la acción de los campos magnéticos generados en sus bobinas.

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

VARIADORES DE FRECUENCIA

VARIADORES DE FRECUENCIA VARIADORES DE FRECUENCIA REPASO DE CONCEPTOS ELECTROTÉCNICOS. Como paso previo a la lectura de estos apuntes, sería conveniente un repaso a los conceptos básicos de los motores asíncronos de jaula de ardilla,

Más detalles

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA FNDAMENTOS DE TECNOLOGÍA ELÉCTRCA CRSO 03-04 ÍNDCE Determinación del coeficiente de autoinducción de una bobina. Medidas de tensiones y corrientes mediante el uso del osciloscopio, determinación de curvas

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

MOTORES ELÉCTRICOS. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales

MOTORES ELÉCTRICOS. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales MOTORES ELÉCTRICOS Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales Motores Eléctricos Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo 2 PUNTOS OBJETO DE ESTUDIO Introducción Transformador ideal Transformador real Ensayos de

Más detalles

Motores eléctricos. Unidad. En esta unidad aprenderemos a:

Motores eléctricos. Unidad. En esta unidad aprenderemos a: Unidad En esta unidad aprenderemos a: Y estudiaremos:. Motores asíncronos trifásicos. Tipos y sistemas de arranque. Motores asíncronos monofásicos. Protección de los motores eléctricos. Medidas eléctricas

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO I Apellidos y nombre: Número de matrícula: DNI: ARTE : REGUNTAS DE TEST (5% del total del examen) Cada respuestas incorrectas descuentan una correcta º) ara un material rromagnético dado

Más detalles

Resolución paso a paso de problemas de máquinas eléctricas

Resolución paso a paso de problemas de máquinas eléctricas Resolución paso a paso de problemas de máquinas eléctricas Mario Ortiz García Sergio Valero Verdú Carolina Senabre Blanes Título: Autor: Resolución paso a paso de problemas de máquinas eléctricas 2ed Mario

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

Motor Sincrónico. Dr. Ing. Mario Guillermo Macri

Motor Sincrónico. Dr. Ing. Mario Guillermo Macri Motor Sincrónico Circuito Equivalente y Diagrama Fasorial (Método de Z d) Ra xad wr Ia UA E0 E 0 U IsRs jis w1ld U Is Rs jxd Posición del eje magnético polar en vacío U Iaxad - Ia xl E0 If - SR Ia IaRa

Más detalles

Configuración estrella triángulo. Aplicación industrial

Configuración estrella triángulo. Aplicación industrial Configuración estrella triángulo. Aplicación industrial Apellidos, nombre Pérez Cruz, Juan (juperez@die.upv.es) Departamento Centro Departamento de Ingeniería Eléctrica Escuela Técnica Superior de Ingenieros

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

TEMA 7 TRANSFORMADORES

TEMA 7 TRANSFORMADORES TEMA 7 TRASFORMADORES. Transformador monofásico. Transformador real.3 Transformador real.4 Transformador trifásico.5 Estructura del sistema eléctrico Cuestiones . TRASFORMADOR MOOFÁSCO Un transformador

Más detalles

Diseña, analiza, adapta y opera sistemas analógicos y digitales.

Diseña, analiza, adapta y opera sistemas analógicos y digitales. Nombre de la materia: Maquinas Eléctricas Aportación al perfil Diseña, analiza, adapta y opera sistemas analógicos y digitales. Planea, organiza, dirige y controla actividades de instalación, operación

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010 DPARTAMNTO D NGNRÍA LÉCTRCA BOLTÍN D PROBLMAS TRANSFORMADOR 009/010 TRANSFORMADORS Problemas propuestos 1. Dibujar un diagrama vectorial para un transformador monofásico cargado y con relación de transformación

Más detalles

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

3. Motores de corriente continua

3. Motores de corriente continua 3. Motores de corriente continua 1. Principios básicos Tipos de máquinas eléctricas Generador: Transforma cualquier clase de energía, normalmente mecánica, en eléctrica. Transformador: Modifica alguna

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A.

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. En la industria se utilizan diversidad de máquinas con la finalidad de transformar o adaptar una energía, no obstante, todas ellas cumplen los siguientes

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 9: Máquinas síncronas PUNTOS OBJETO DE ESTUDIO 3

Más detalles

Controladores de Potencia Máquina de Corriente Continua

Controladores de Potencia Máquina de Corriente Continua Máquina de Corriente Continua 17 de febrero de 2012 USB Principio de Funcionamiento Figura 1: Principio de funcionamiento de las máquinas eléctricas rotativas USB 1 Figura 2: Esquema del circuito magnético

Más detalles

Determinación Experimental de los Parámetros Eléctricos de una Máquina de Inducción de 180Watt

Determinación Experimental de los Parámetros Eléctricos de una Máquina de Inducción de 180Watt Reporte de Investigación 007-10 Determinación Experimental de los Parámetros Eléctricos de una Máquina de Inducción de 180Watt Responsables: Adriana Ríos Antonieta Strauss Rubén Terán Supervisor: Francisco

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles